Energy Balance, Hormonal Status, and Military Performance in Strenuous Winter Training
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Różański, P.; Jówko, E.; Tomczak, A. Assessment of the levels of oxidative stress, muscle damage, and psychomotor abilities of special force soldiers during military survival training. Int. J. Environ. Res. Public Health 2020, 17, 4886. [Google Scholar] [CrossRef] [PubMed]
- Hamarsland, H.; Paulsen, G.; Solberg, P.A.; Slaathaug, O.G.; Raastad, T. Depressed physical performance outlasts hormonal disturbances after military training. Med. Sci. Sports Exerc. 2018, 50, 2076–2084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, N.E.; Carrigan, C.T.; Philip, K.J.; Pasiakos, S.M.; Margolis, L.M. Threshold of energy deficit and lower-body performance declines in military personnel: A meta-regression. Sports Med. 2018, 48, 2169–2178. [Google Scholar] [CrossRef] [PubMed]
- Margolis, L.M.; Murphy, N.E.; Martini, S.; Spitz, M.G.; Thrane, I.; McGraw, S.M.; Blatny, J.M.; Castellani, J.W.; Rood, J.C.; Young, A.J.; et al. Effects of winter military training on energy balance, whole-body protein balance, muscle damage, soreness, and physical performance. Appl. Physiol. Nutr. Metab. 2014, 39, 1395–1401. [Google Scholar] [CrossRef] [PubMed]
- Nindl, B.C.; Barnes, B.R.; Alemany, J.A.; Frykman, P.N.; Shippee, R.L.; Friedl, K.E. Physiological consequences of U.S. army ranger training. Med. Sci. Sports Exerc. 2007, 39, 1380–1387. [Google Scholar] [CrossRef] [PubMed]
- Charlot, K. Negative energy balance during military training: The role of contextual limitations. Appetite 2021, 1, 105263. [Google Scholar] [CrossRef]
- O’Leary, T.J.; Wardle, S.L.; Greeves, J.P. Energy deficiency in soldiers: The risk of the athlete triad and relative energy deficiency in sport syndromes in the military. Front. Nutr. 2020, 7, 142. [Google Scholar] [CrossRef]
- Tharion, W.J.; Lieberman, H.R.; Montain, S.J.; Young, A.J.; Baker-Fulco, C.J.; Delany, J.P.; Hoyt, R.W. Energy requirements of military personnel. Appetite 2005, 44, 47–65. [Google Scholar] [CrossRef]
- Tassone, E.C.; Baker, B.A. Body weight and body composition changes during military training and deployment involving the use of combat rations: A systematic literature review. Br. J. Nutr. 2017, 117, 897–910. [Google Scholar] [CrossRef]
- Nykänen, T.; Ojanen, T.; Heikkinen, R.; Fogelholm, M.; Kyröläinen, H. Changes in body composition, energy metabolites and electrolytes during winter survival training in male soldiers. Front. Physiol. 2022, 16, 797268. [Google Scholar] [CrossRef]
- Gagnon, D.D.; Pullinen, T.; Karinen, H.; Rintamäki, H.; Kyröläinen, H. Recovery of hormonal, blood lipid, and hematological profiles from a North Pole expedition. Aviat. Space Environ. Med. 2011, 82, 1110–1117. [Google Scholar] [CrossRef] [PubMed]
- Pasiakos, S.M.; Caruso, C.M.; Kellogg, M.D.; Kramer, F.M.; Lieberman, H.R. Appetite and endocrine regulators of energy balance after 2 days of energy restriction: Insulin, leptin, ghrelin, and DHEA-S. Obesity 2011, 19, 1124–1130. [Google Scholar] [CrossRef] [PubMed]
- Hill, N.E.; Fallowfield, J.L.; Delves, S.K.; Ardley, C.; Stacey, M.; Ghatei, M.; Bloom, S.R.; Frost, G.; Brett, S.J.; Wilson, D.R.; et al. Changes in gut hormones and leptin in military personnel during operational deployment in Afghanistan. Obesity 2015, 23, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Kyröläinen, H.; Karinkanta, J.; Santtila, M.; Koski, H.; Mäntysaari, M.; Pullinen, T. Hormonal responses during a prolonged military field exercise with variable exercise intensity. Eur. J. Appl. Physiol. 2008, 102, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Øfsteng, S.J.; Garthe, I.; Jøsok, Ø.; Knox, S.; Helkala, K.; Knox, B.; Ellefsen, S.; Rønnestad, B.R. No effect of increasing protein intake during military exercise with severe energy deficit on body composition and performance. Scand. J. Med. Sci. Sports 2020, 30, 865–877. [Google Scholar] [CrossRef] [Green Version]
- Ojanen, T.; Kyröläinen, H.; Igendia, M.; Häkkinen, K. Effect of prolonged military field training on neuromuscular and hormonal responses and shooting performance in warfighters. Mil. Med. 2018, 183, e705–e712. [Google Scholar] [CrossRef] [Green Version]
- Smolander, J.; Ajoviita, M.; Juuti, T.; Nummela, A.; Rusko, H. Estimating oxygen consumption from heart rate and heart rate variability without individual calibration. Clin. Physiol. Funct. Imaging 2011, 31, 266–271. [Google Scholar] [CrossRef]
- Robertson, A.; King, K.; Ritchie, S.; Gauthier, A.P.; Laurence, M.; Dorman, S. Validating the use of heart rate variability for estimating energy expenditure. Int. J. Hum. Mov. Sports Sci. 2015, 3, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Häkkinen, K.; Kallinen, M.; Izquierdo, M.; Jokelainen, K.; Lassila, H.; Mälkiä, E.; Kraemer, W.J.; Newton, R.U.; Alen, M. Changes in agonist-antagonist EMG, muscle CSA, and force during strength training in middle-aged and older people. J. Appl. Physiol. 1998, 84, 1341–1349. [Google Scholar] [CrossRef]
- Vaara, J.P.; Eränen, L.; Ojanen, T.; Pihlainen, K.; Nykänen, T.; Kallinen, K.; Heikkinen, R.; Kyröläinen, H. Can physiological and psychological factors predict dropout from intense 10-day winter military survival training? Int. J. Environ. Res. Public Health 2020, 4, 9064. [Google Scholar] [CrossRef]
- Bosco, C.; Luhtanen, P.; Komi, P.V. A simple method for measurement of mechanical power in jumping. Eur. J. Appl. Physiol. Occup. Physiol. 1983, 50, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Beckham, G.; Lish, S.; Keebler, L.; Longaker, C.; Disney, C.; DeBeliso, M.; Adams, K. The reliability of the seated medicine ball throw for distance. J. Phys. Act. Res. 2019, 4, 131–136. [Google Scholar] [CrossRef] [Green Version]
- Viljanen, T.; Viitasalo, J.T.; Kujala, U.M. Strength characteristics of a healthy urban adult population. Eur. J. Appl. Physiol. 1991, 63, 43–47. [Google Scholar] [CrossRef]
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 6th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2000. [Google Scholar]
- Léger, L.A.; Lambert, J. A maximal multistage 20-m shuttle run test to predict VO2 max. Eur. J. Appl. Physiol. Occup. Physiol. 1982, 49, 1–12. [Google Scholar] [CrossRef]
- Ramsbottom, R.; Brewer, J.; Williams, C. A progressive shuttle run test to estimate maximal oxygen uptake. Br. J. Sports Med. 1988, 22, 141–144. [Google Scholar] [CrossRef] [Green Version]
- Hoyt, R.W.; Opstad, P.K.; Haugen, A.H.; DeLany, J.P.; Cymerman, A.; Friedl, K.E. Negative energy balance in male and female rangers: Effects of 7 d of sustained exercise and food deprivation. Am. J. Clin. Nutr. 2006, 83, 1068–1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, C.M.; Melanson, E.L.; Frydendall, E.J.; Perreault, L.; Eckel, R.H.; Wright, K.P. Energy expenditure during sleep, sleep deprivation and sleep following sleep deprivation in adult humans. J. Physiol. 2011, 589, 235–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinde, K.; White, G.; Armstrong, N. Wearable devices suitable for monitoring twenty-four-hour heart rate variability in military populations. Sensors 2021, 21, 1061. [Google Scholar] [CrossRef]
- Aubry, A.; Hausswirth, C.; Louis, J.; Coutts, A.J.; Buchheit, M.; Le Meur, Y. The development of functional overreaching is associated with a faster heart rate recovery in endurance athletes. PLoS ONE 2015, 10, e0139754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, V.C.; Myers, S.D.; Wardle, S.L.; Siddall, A.G.; Powell, S.D.; Needham-Beck, S.; Jackson, S.; Greeves, J.P.; Blacker, S.D. Nutrition and physical activity in British army officer cadet training part 2-daily distribution of energy and macronutrient intake. Int. J. Sport Nutr. Exerc. Metab. 2022, 32, 204–213. [Google Scholar] [CrossRef]
- Mullie, P.; Maes, P.; Van Veelen, L.; Van Tiggelen, D.; Clarys, P. Energy balance and energy availability during a selection course for Belgian paratroopers. Mil. Med. 2021, 186, 1176–1182. [Google Scholar] [CrossRef] [PubMed]
- Spancken, S.; Steingrebe, H.; Stein, T. Factors that influence performance in Olympic air-rifle and small-bore shooting: A systematic review. PLoS ONE 2021, 16, e0247353. [Google Scholar] [CrossRef] [PubMed]
- Tomczak, A.; Dąbrowski, J.; Mikulski, T. Psychomotor performance of Polish Air Force cadets after 36 hours of survival training. Ann. Agric. Environ. Med. 2017, 24, 387–391. [Google Scholar] [CrossRef]
- Tharion, W.J.; Shukitt-Hale, B.; Lieberman, H.R. Caffeine effects on marksmanship during high-stress military training with 72 hour sleep deprivation. Aviat. Space Environ. Med. 2003, 74, 309–314. [Google Scholar] [PubMed]
- Urhausen, A.; Gabriel, H.; Kindermann, W. Blood hormones as markers of training stress and overtraining. Sports Med. 1995, 20, 251–276. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.W.; Jeong, J.H.; Hong, S.C. The impact of sleep and circadian disturbance on hormones and metabolism. Int. J. Endocrinol. 2015, 2015, 591729. [Google Scholar] [CrossRef]
- Capling, L.; Beck, K.L.; Gifford, J.A.; Slater, G.; Flood, V.M.; O’Connor, H. Validity of dietary assessment in athletes: A systematic review. Nutrients 2017, 9, 1313. [Google Scholar] [CrossRef] [Green Version]
- Langer, R.D.; Borges, J.H.; Pascoa, M.A.; Cirolini, V.X.; Guerra-Júnior, G.; Gonçalves, E.M. Validity of bioelectrical impedance analysis to estimation fat-free mass in the army cadets. Nutrients 2016, 8, 121. [Google Scholar] [CrossRef] [Green Version]
Group | n | Age (Years) | Height (cm) | Body Mass (kg) | BMI (kg/m2) |
---|---|---|---|---|---|
RECO | 26 | 19.7 ± 1.2 | 181 ± 6 | 78.2 ± 9.6 | 23.9 ± 2.7 |
FEX | 42 | 19.6 ± 0.8 | 179 ± 7 | 74.4 ± 10.7 | 23.1 ± 2.8 |
Days | PRE Day 1 | Day 2 | Day 3 | Day 4 | Day 5 | MID Day 6 | Day 7 | POST Day 8 |
---|---|---|---|---|---|---|---|---|
Task | Education in garrison | Field exercise | Recovery in RECO Field exercise in FEX | |||||
Energy expenditure | x | x | x | |||||
Heart rate variability | ||||||||
Energy intake | x | x | x | |||||
Pre-filled food diaries | ||||||||
Blood samples | x | x | x | |||||
Immunoassay | ||||||||
Body composition | x | x | x | |||||
Bioimpedance | ||||||||
Fitness tests | x | x | x | |||||
Strength and endurance | ||||||||
Shooting test | x | x | x | |||||
Prone and standing |
Physical and Shooting Performance | Group | PRE | MID | POST |
---|---|---|---|---|
Maximal isometric force, lower (kg) | FEX | 88 ± 10 (42) | 82 ± 11 (28) | 85 ± 12 (26) |
RECO | 83 ± 11 (25) | 79 ± 11 (22) | 84 ± 11 (21) | |
Maximal isometric force, upper (kg) | FEX | 312 ± 89 (42) | 312 ± 88 (28) | 336 ± 103 (26) |
RECO | 314 ± 74 (25) | 296 ± 79 (22) | 321 ± 66 (21) | |
Standing long jump (cm) | FEX | 225 ± 22(41) | 222 ± 22 (27) | 221 ± 18 (24) |
RECO | 217 ± 16 (24) | 217 ± 16 (22) | 218 ± 15 (21) | |
Medicine ball throw (cm) | FEX | 611 ± 74 (42) | 590 ± 68 (28) | 575 ± 68 (26) |
RECO | 595 ± 58 (24) | 585 ± 51 (22) | 609 ± 47 (21) | |
Push-ups (reps/min) | FEX | 39 ± 13 (41) | 30 ± 14 (27) | 34 ± 12 (24) |
RECO | 32 ± 11 (24) p = 0.029 | 27 ± 13 (22) | 36 ± 10 (21) | |
Sit-ups (reps/min) | FEX | 43 ± 9 (41) | 40 ± 10 (27) | 39 ± 9 (24) |
RECO | 39 ± 6 (24) | 39 ± 8 (22) | 41 ± 7 (21) | |
20-m shuttle run for VO2max (ml·kg−1·min−1) | FEX | 46 ± 5 (24) | 39 ± 7 (27) | 36 ± 12 (23) |
RECO | 45 ± 5 (41) | 41 ± 8 (21) | 45 ± 5 (20) p = 0.003 | |
Shooting, prone (points) | FEX RECO | 86 ± 10 (24) 93 ± 6 (26) p < 0.001 | 88 ± 7 (28) 93 ± 3 (22) p = 0.001 | 76 ± 9 (26) 91 ± 6 (21) p < 0.001 |
Shooting, standing (points) | FEX | 62 ± 10 (42) | 63 ± 11 (28) | 64 ± 12 (26) |
RECO | 69 ± 11 (26) p = 0.016 | 68 ± 11 (22) | 69 ± 11 (21) |
Leptin | Ghrelin | T/C Ratio | ||
---|---|---|---|---|
PRE-POST changes | ||||
Energy intake | FEX | r = −0.089, p = 0.784 | r = −0.003, p = 0.413 | r = −0.214, p = 0.504 |
RECO | r = 0.099, p = 0.687 | r = −0.215, p = 0.46 | r = −0.035, p = 0.888 | |
Energy expenditure | FEX | r = −0.566, p = 0.003 | r = −0.131, p = 0.552 | r = −0.231, p = 0.257 |
RECO | r = −0.007, p = 0.977 | r = 0.028, p = 0.915 | r = −0.145, p = 0.145 | |
Energy balance | FEX | r = 0.398, p = 0.2 | r = 0.104, p = 0.774 | r = 0.104, p = 0.747 |
RECO | r = 0.197, p = 0.419 | r = −0.466, p = 0.093 | r = −0.387, p = 0.102 | |
PRE-MID changes | ||||
Energy intake | FEX | r = −0.302, p = 0.173 | r = −0.35, p = 0.12 | r = 0.014, p = 0.951 |
RECO | r = −0.384, p = 0.116 | r = −0.123, p = 0.689 | r = 0.479, p = 0.044 | |
Energy expenditure | FEX | r = −0.059, p = 0.775 | r = 0.388, p = 0.067 | r = −0.366, p = 0.066 |
RECO | r = −0.27, p = 0.225 | r = −0.001, p = 0.996 | r = −0.017, p = 0.94 | |
Energy balance | FEX | r = −0.187, p = 0.405 | r = −0.337, p = 0.135 | r = 0.245, p = 0.328 |
RECO | r = −0.181, p = 0.473 | r = −0.163, p = 0.595 | r = 0.15, p = 0.506 | |
MID-POST changes | ||||
Energy intake | FEX | r = −0.086, p = 0.814 | r = 0.121, p = 0.74 | r = −0.668, p = 0.035 |
RECO | r = −0.560, p = 0.013 | r = 0.317, p = 0.269 | r = −0.284, p = 0.254 | |
Energy expenditure | FEX | r = −0.512, p = 0.011 | r = 0.214, p = 0.326 | r = −0.375, p = 0.071 |
RECO | r = −0.165, p = 0.269 | r = −0.238, p = 0.358 | r = −0.236, p = 0.303 | |
Energy balance | FEX | r = 0.43, p = 0.215 r = −0.067, p = 0.784 | r = −0.275, p = 0.441 r = 0.489, p = 0.076 | r = −0.25, p = 0.485 r = −0.027, p = 0.916 |
RECO |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nykänen, T.; Ojanen, T.; Vaara, J.P.; Pihlainen, K.; Heikkinen, R.; Kyröläinen, H.; Fogelholm, M. Energy Balance, Hormonal Status, and Military Performance in Strenuous Winter Training. Int. J. Environ. Res. Public Health 2023, 20, 4086. https://doi.org/10.3390/ijerph20054086
Nykänen T, Ojanen T, Vaara JP, Pihlainen K, Heikkinen R, Kyröläinen H, Fogelholm M. Energy Balance, Hormonal Status, and Military Performance in Strenuous Winter Training. International Journal of Environmental Research and Public Health. 2023; 20(5):4086. https://doi.org/10.3390/ijerph20054086
Chicago/Turabian StyleNykänen, Tarja, Tommi Ojanen, Jani P. Vaara, Kai Pihlainen, Risto Heikkinen, Heikki Kyröläinen, and Mikael Fogelholm. 2023. "Energy Balance, Hormonal Status, and Military Performance in Strenuous Winter Training" International Journal of Environmental Research and Public Health 20, no. 5: 4086. https://doi.org/10.3390/ijerph20054086
APA StyleNykänen, T., Ojanen, T., Vaara, J. P., Pihlainen, K., Heikkinen, R., Kyröläinen, H., & Fogelholm, M. (2023). Energy Balance, Hormonal Status, and Military Performance in Strenuous Winter Training. International Journal of Environmental Research and Public Health, 20(5), 4086. https://doi.org/10.3390/ijerph20054086