Effect of a Virtual Reality Exercise on Patients Undergoing Haemodialysis: A Randomised Controlled Clinical Trial Research Protocol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Type of Study
2.2. Study Population
2.2.1. Population Sample
Inclusion Criteria [23,34]:
Exclusion Criteria [23,34]:
- Had a myocardial infarction in the 6 months before the start of the study;
- Suffered unstable angina at rest or during exercise;
- Have cerebrovascular diseases (such as transient ischemia or stroke);
- Present amputation of lower limbs above the knee without prothesis;
- Present a musculoskeletal or respiratory pathology likely to worsen with exercise;
- Present an inability to carry out functional assessment tests;
- Present visual or cognitive impairments that affect the ability to use the VR equipment or understand the VR exercise.
2.2.2. Randomisation of the Sample
2.2.3. Description of the Intervention
2.3. Exercise Program
Description of the Non-Immersive VR Exercise Program
2.4. Functional Assessment of Patients
2.4.1. First Day of Functional Tests
Short Physical Performance Battery (SPPB) Test
- Three balance tests: Subjects stand with feet together, in semi-tandem, and in tandem, showing whether they can maintain that position for 10 s (Figure 4; score from 0 to 4).
- STS-5 Test: The test consists of getting up and sitting down five times on a chair without arms placed against the wall. The time taken until the patient is standing after the fifth repetition is measured, and a score from 0 to 4 is assigned. The test must be performed with arms crossed.
- One Leg Balance Test: The test is assessed by asking the subjects to raise one leg (the one that gives them the most security), flex it, leaving the other supported, and holding it for as long as possible. The length of time is recorded at the end of the test. The subject can move the arms and flex the knee if necessary to maintain balance. The test ends when the subject uses the arms to support himself or the elevated leg or when 45 s has elapsed. The test is repeated three times and the best time is recorded [44].
2.4.2. Second Day of Functional Tests
- STS-10 Test [46]: The test measures the number of seconds it takes for the patient to get up and sit down 10 consecutive times in flat shoes. The test is performed on a chair without armrests, approximately 44.5 cm high, 38 cm deep, and leaning against the wall to minimise the risk of falling during the test [47]. The patient must remain seated for a few minutes before carrying out the test, allowing time between this and the previous test. The test must be carried out with the arms crossed over the chest. After the completion of the test, the time needed and the effort perceived with the RPE scale are recorded.
2.4.3. Third Day of Functional Tests
Six-Minute Walk Test [50,51]
2.5. Plasma Determinations
Inflammatory Parameters
2.6. Psychological Assessment
2.6.1. Multidimensional Questionnaire of Adaptation to the Disease for Renal Patients on Dialysis (CAMAE-RD) [53]
2.6.2. State-Trait Anxiety Inventory (STAI) [54]
2.6.3. Beck Depression Inventory II (BDI-II) [55]
2.7. Exercise Adherence
2.8. Statistical Analysis
3. Expected Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Olsen, E.; van Galen, G. Chronic renal failure: Causes, clinical findings, treatments and prognosis. Vet. Clin. N. Am. Equine Pract. 2022, 38, 25–46. [Google Scholar] [CrossRef]
- Gorostidi, M.; Sánchez-Martínez, M.; Ruilope, L.M.; Graciani, A.; Juan, J.; Santamaría, R.; del Pino, M.D.; Guallar-Castillón, P.; de Álvaro, F.; Rodríguez-Artalejo, F.; et al. Prevalencia de enfermedad renal crónica en España: Impacto de la acumulación de factores de riesgo cardiovascular. Nefrología 2018, 38, 606–615. [Google Scholar] [CrossRef] [PubMed]
- Mills, K.T.; Xu, Y.; Zhang, W.; Bundy, J.D.; Chen, C.-S.; Kelly, T.N.; Chen, J.; He, J. A systematic analysis of worldwide population-based data on the global burden of chronic kidney disease in 2010. Kidney Int. 2015, 88, 950–957. [Google Scholar] [CrossRef] [Green Version]
- Levin, A.; Stevens, P.E.; Bilous, R.W.; Coresh, J.; De Francisco, A.L.; De Jong, P.E.; Griffith, K.E.; Hemmelgarn, B.R.; Iseki, K.; Lamb, E.J.; et al. Kidney disease: Improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 2013, 3, 1–150. [Google Scholar]
- Akchurin, O.M.; Kaskel, F. Update on inflammation in chronic kidney disease. Blood Purif. 2015, 39, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Bangalore, S.; Maron, D.J.; O’Brien, S.M.; Fleg, J.L.; Kretov, E.I.; Briguori, C.; Kaul, U.; Reynolds, H.R.; Mazurek, T.; Sidhu, M.S.; et al. Management of Coronary Disease in Patients with Advanced Kidney Disease. N. Engl. J. Med. 2020, 382, 1608–1618. [Google Scholar] [CrossRef] [PubMed]
- Tian, N.; Penman, A.D.; Manning, R.D.; Flessner, M.F.; Mawson, A.R. Association between circulating specific leukocyte types and incident chronic kidney disease: The atherosclerosis risk in communities (ARIC) study. J. Am. Soc. Hypertens. 2012, 6, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Bazeley, J.; Bieber, B.; Li, Y.; Morgenstern, H.; de Sequera, P.; Combe, C.; Yamamoto, H.; Gallagher, M.; Port, F.K.; Robinson, B.M. C-reactive protein and prediction of 1-year mortality in prevalent hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2011, 6, 2452–2461. [Google Scholar] [CrossRef] [Green Version]
- Honda, H.; Qureshi, A.R.; Heimbürger, O.; Barany, P.; Wang, K.; Pecoits-Filho, R.; Stenvinkel, P.; Lindholm, B. Serum albumin, C-reactive protein, interleukin 6, and fetuin a as predictors of malnutrition, cardiovascular disease, and mortality in patients with ESRD. Am. J. Kidney Dis. 2006, 47, 139–148. [Google Scholar] [CrossRef]
- Bossola, M.; Rosa, F.; Tazza, L.; de Curtis, A.; Costanzo, S.; Vulpio, C.; Iacoviello, L. P-selectin, E-selectin, and CD40L over time in chronic hemodialysis patients. Hemodial. Int. 2012, 16, 38–46. [Google Scholar]
- Bolton, C.H.; Downs, L.G.; Victory, J.G.; Dwight, J.F.; Tomson, C.R.; Mackness, M.I.; Pinkney, J.H. Endothelial dysfunction in chronic renal failure: Roles of lipoprotein oxidation and pro-inflammatory cytokines. Nephrol. Dial. Transplant. 2001, 16, 1189–1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalrymple, L.S.; Go, A.S. Epidemiology of acute infections among patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2008, 3, 1487–1493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naqvi, S.B.; Collins, A.J. Infectious complications in chronic kidney disease. Adv. Chronic Kidney Dis. 2006, 13, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Segura-Ortí, E. Exercise in haemodyalisis patients: A literature systematic review. Nefrologia 2010, 30, 236–246. [Google Scholar]
- Huang, M.; Lv, A.; Wang, J.; Xu, N.; Ma, G.; Zhai, Z.; Zhang, B.; Gao, J.; Ni, C. Exercise training and outcomes in hemodialysis patients: Systematic review and meta-analysis. Am. J. Nephrol. 2019, 50, 240–254. [Google Scholar] [CrossRef] [PubMed]
- Nieman, D.C. Moderate exercise improves immunity and decreases illness rates. Am. J. Lifestyle Med. 2011, 5, 338–345. [Google Scholar] [CrossRef]
- Gleeson, M.; Bishop, N.C.; Stensel, D.J.; Lindley, M.R.; Mastana, S.S.; Nimmo, M.A. The anti-inflammatory effects of exercise: Mechanisms and implications for the prevention and treatment of disease. Nat. Rev. Immunol. 2011, 11, 607–610. [Google Scholar] [CrossRef]
- Meléndez Oliva, E.; Villafañe, J.H.; Alonso Pérez, J.L.; Alonso Sal, A.; Molinero Carlier, G.; Quevedo García, A.; Turroni, S.; Martínez-Pozas, O.; Valcárcel Izquierdo, N.; Sánchez Romero, E.A. Effect of exercise on inflammation in hemodialysis patients: A systematic review. J. Pers. Med. 2022, 12, 1188. [Google Scholar] [CrossRef]
- Petersen, A.M.W.; Pedersen, B.K. The anti-inflammatory effect of exercise. J. Appl. Physiol. 2005, 98, 1154–1162. [Google Scholar] [CrossRef] [Green Version]
- Beiter, T.; Hoene, M.; Prenzler, F.; Mooren, F.; Steinacker, J.; Weigert, C.; Nieß, A.; Munz, B. Exercise, Skeletal Muscle and Inflammation: ARE-Binding Proteins as Key Regulators in Inflammatory and Adaptive Networks. Exerc. Immunol. Rev. 2015, 21, 42–57. Available online: https://pubmed.ncbi.nlm.nih.gov/25826388/ (accessed on 31 October 2022).
- Pillastrini, P.; Ferrari, S.; Rattin, S.; Cupello, A.; Villafañe, J.H.; Vanti, C. Exercise and tropism of the multifidus muscle in low back pain: A shortreview. J. Phys. Ther. Sci. 2015, 27, 943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meléndez-Oliva, E.; Gómez-Trelles, I.S.-V.; Segura-Orti, E.; Pérez-Domínguez, B.; García-Maset, R.; García-Testal, A.; Lavandera-Díaz, J.L. Effect of an aerobic and strength exercise combined program on oxidative stress and inflammatory biomarkers in patients undergoing hemodialysis: A single blind randomized controlled trial. Int. Urol. Nephrol. 2022, 54, 2393–2405. [Google Scholar] [CrossRef]
- Timmerman, K.L.; Flynn, M.G.; Coen, P.M.; Markofski, M.M.; Pence, B.D. Exercise training-induced lowering of inflammatory (CD14+CD16+) monocytes: A role in the anti-inflammatory influence of exercise? J. Leukoc. Biol. 2008, 84, 1271–1278. [Google Scholar] [CrossRef]
- McFarlin, B.K.; Flynn, M.G.; Campbell, W.W.; Stewart, L.K.; Timmerman, K.L. TLR4 is lower in resistance-trained older women and related to inflammatory cytokines. Med. Sci. Sport. Exerc. 2004, 36, 1876–1883. [Google Scholar] [CrossRef]
- Carrero, J.J.; Stenvinkel, P.; Cuppari, L.; Ikizler, T.A.; Kalantar-Zadeh, K.; Kaysen, G.; Mitch, W.E.; Price, S.R.; Wanner, C.; Wang, A.Y.; et al. Etiology of the protein-energy wasting syndrome in chronic kidney disease: A consensus statement. International Society of Renal Nutrition and Metabolism. J. Ren. Nutr. 2013, 23, 77–90. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Bai, Y.; Zhao, X.; Huang, L.; Wang, W.; Zhou, W.; Zhang, H. Therapeutic effects of exercise interventions for patients with chronic kidney disease: An umbrella review of systematic reviews and meta-analyses. BMJ Open 2022, 12, e054887. [Google Scholar] [CrossRef]
- Junqué-Jiménez, A.; Morera-Mas, A.; Pérez-Ventana-Ortiz, C.; Andreu-Periz, L.; Segura-Ortí, E. Home-based exercise programs in patients with chronic kidney disease: A systematic review and META-analysis. Worldviews Evid. Based Nurs. 2022, 19, 322–337. [Google Scholar] [CrossRef]
- Jayakumar, S.; Jennings, S.; Halvorsrud, K.; Clesse, C.; Yaqoob, M.; Carvalho, L.; Bhui, K. A systematic review and meta-analysis of the evidence on inflammation in depressive illness and symptoms in chronic and end-stage kidney disease. Psychol. Med. 2022, 18, 1–13. [Google Scholar] [CrossRef]
- Alradaydeh, M.F.; Khalil, A.A. The effectiveness of physical exercise on psychological status, and sleep quality among jordanian patients undergoing hemodialysis: Literature review. Open J. Nurs. 2019, 9, 1267. [Google Scholar] [CrossRef] [Green Version]
- Chou, H.Y.; Chen, S.C.; Yen, T.H.; Han, H.M. Effect of a virtual reality-based exercise program on fatigue in hospitalized Taiwanese end-stage renal disease patients undergoing hemodialysis. Clin. Nurs. Res. 2020, 29, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Mestre, D.R.; Maïano, C.; Dagonneau, V.; Mercier, C.S. Does virtual reality enhance exercise performance, enjoyment, and dissociation? An exploratory study on a stationary bike apparatus. Presence Teleoperators Virtual Environ. 2011, 20, 1–14. [Google Scholar] [CrossRef]
- Vieira, G.D.P.; De Araujo, D.F.G.H.; Leite, M.A.A.; Orsini, M.; Correa, C.L. Realidade virtual na reabilitação física de pacientes com Doença de Parkinson. J. Hum. Growth Dev. 2014, 24, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.; Sohng, K.Y. The effect of a virtual reality exercise program on physical fitness, body composition, and fatigue in hemodialysis patients. J. Phys. Ther. Sci. 2014, 26, 1661. [Google Scholar] [CrossRef] [Green Version]
- Segura-Ortí, E.; Pérez-Domínguez, B.; de Villar, L.O.; Meléndez-Oliva, E.; Martínez-Gramage, J.; García-Maset, R.; Gil-Gómez, J.A. Virtual reality exercise intradialysis to improve physical function: A feasibility randomized trial. Scand. J. Med. Sci. Sport. 2019, 29, 89–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maynard, L.G.; De Menezes, D.L.; Lião, N.S.; De Jesus, E.M.; Andrade, N.L.S.; Santos, J.C.D.; Júnior, W.M.D.S.; Bastos, K.D.A.; Filho, J.A.S.B. Effects of exercise training combined with virtual reality in functionality and health-related quality of life of patients on hemodialysis. Games Health J. 2019, 8, 339–348. [Google Scholar] [CrossRef]
- Zhou, H.; Al-Ali, F.; Kang, G.E.; Hamad, A.I.; Ibrahim, R.A.; Talal, T.K.; Najafi, B. Application of wearables to facilitate virtually supervised intradialytic exercise for reducing depression symptoms. Sensors 2020, 20, 1571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Olmos, F.J.; Gómez-Conesa, A.A.; García-Testal, A.; Ortega-Pérez-De-Villar, L.; Valtueña-Gimeno, N.; Gil-Gómez, J.A.; Garcia-Maset, R.; Segura-Ortí, E. An intradialytic non-immersive virtual reality exercise programme: A crossover randomized controlled trial. Nephrol. Dial. Transplant. 2022, 37, 1366–1374. [Google Scholar] [CrossRef]
- Segura-Ortí, E.; García-Testal, A. Intradialytic virtual reality exercise: Increasing physical activity through technology. Semin. Dial. 2019, 32, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Omonaiye, O.; Smyth, W.; Nagle, C. Impact of virtual reality interventions on haemodialysis patients: A scoping review. J. Ren. Care 2021, 47, 193–207. [Google Scholar] [CrossRef]
- Chan, A.W.; Tetzlaff, J.M.; Altman, D.G.; Laupacis, A.; Gøtzsche, P.C.; Krleža-Jerić, K.; Hróbjartsson, A.; Mann, H.; Dickersin, K.; Berlin, J.A.; et al. SPIRIT 2013 statement: Defining standard protocol items for clinical trials. Ann. Intern. Med. 2013, 158, 200–207. [Google Scholar] [CrossRef] [Green Version]
- Fisher, S.; Ottenbacher, K.J.; Goodwin, J.S.; Graham, J.E.; Ostir, G.V. Short Physical Performance Battery in hospitalized older adults. Aging Clin. Exp. Res. 2009, 21, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Cuenca-Zaldivar, J.N.; Monroy Acevedo, Á.; Fernández-Carnero, J.; Sánchez-Romero, E.A.; Villafañe, J.H.; Barragán Carballar, C. Effects of a multicomponent exercise program on improving frailty in post-COVID-19 older adults after intensive care units: A single-group retrospective cohort study. Biology 2022, 11, 1084. [Google Scholar] [CrossRef]
- Meléndez-Oliva, E. Efecto de un Programa de Ejercicio Combinado de Fuerza y Resistencia Aeróbica Sobre Biomarcadores de Inflamación y Estrés Oxidativo en Pacientes en Hemodiálisis. Unpublished Ph.D. Thesis, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain, 2020. [Google Scholar]
- Hurvitz, E.A.; Richardson, J.K.; Werner, R.A. Unipedal stance testing in the assessment of peripheral neuropathy. Arch. Phys. Med. Rehabil. 2001, 82, 198–204. [Google Scholar] [CrossRef]
- Podsiadlo, J.D.; Bscpt, S.; Richardson, M.D.J. The timed ‘up & go’: A test of basic functional mobilitv for frail elderlv persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [PubMed]
- McIntyre, C.W.; Selby, N.M.; Sigrist, M.; Pearce, L.E.; Mercer, T.H.; Naish, P.F. Patients receiving maintenance dialysis have more severe functionally significant skeletal muscle wasting than patients with dialysis-independent chronic kidney disease. Nephrol. Dial. Transplant. 2006, 21, 2210–2216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Csuka, M.; McCarty, D.J. Simple method for measurement of lower extremity muscle strength. Am. J. Med. 1985, 78, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, S.A.; Naish, P.; Clark, R.; O’Connor, E.; Pursey, V.A.; MacDougall, I.C.; Mercer, T.H.; Koufaki, P. Intra-dialytic exercise training: A pragmatic approach. J. Ren. Care 2014, 40, 219–226. [Google Scholar] [CrossRef]
- Segura-Ortí, E.; Martínez-Olmos, F.J. Test-retest reliability and minimal detectable change scores for sit-to-stand-to-sit tests, the six-minute walk test, the one-leg heel-rise test, and handgrip strength in people undergoing hemodialysis. Phys. Ther. 2011, 91, 1244–1252. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, E.V.; Reboredo, M.M.; Gomes, E.P.; Teixeira, D.R.; Roberti, N.C.; Mendes, J.O.; Oliveira, J.C.A.; Sanders-Pinheiro, H.; Pinheiro, B.V. Physical activity in daily life assessed by an accelerometer in kidney transplant recipients and hemodialysis patients. Transplant. Proc. 2014, 46, 1713–1717. [Google Scholar] [CrossRef] [Green Version]
- Martínez Rolando, L.; Villafañe, J.H.; Cercadillo García, S.; Sanz Argüello, A.; Villanueva Rosa, M.; Sánchez Romero, E.A. Multicomponent exercise program to improve the immediate sequelae of COVID-19: A prospective study with a brief report of 2-year follow-up. Int. J. Environ. Res. Public Health 2022, 19, 12396. [Google Scholar] [CrossRef]
- Yolken, R.H. Enzyme-Linked Immunosorbent Assay (ELISA): A Practical Tool for Rapid Diagnosis of Viruses and Other Infectious Agents. Yale J. Biol. Med. 1980, 53, 85–92. [Google Scholar] [PubMed]
- Rey, R.R.; García-Llana, H.; Górriz, J.L.; Selgas, R. Validación de un cuestionario multidimensional de adaptación a la enfermedad para pacientes renales en diálisis (CMAE-RD) diseñado a partir de un cuestionario para pacientes oncohematológicos. Psicooncología 2020, 17, 149–164. [Google Scholar]
- Spielberger, C.D.; Gorsuch, R.L.; Lushene, R.E. Manual STAI, Cuestionario de Ansiedad Estado-Rasgo, 9th ed.; Tea Ediciones: Madrid, Spain, 2011. [Google Scholar]
- Beck, A.T.; Steer, R.A.; y Brown, G.K. Manual BDI-II. Inventario de Depresión de Beck-II (Adaptación Española; Sanz, J., y Vázquez, C., Eds.; Pearson: Madrid, Spain, 2011. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meléndez-Oliva, E.; Sánchez-Romero, E.A.; Segura-Ortí, E.; Gil-Gómez, J.-A.; Soto-Goñi, X.A.; Poveda-Pagán, E.J. Effect of a Virtual Reality Exercise on Patients Undergoing Haemodialysis: A Randomised Controlled Clinical Trial Research Protocol. Int. J. Environ. Res. Public Health 2023, 20, 4116. https://doi.org/10.3390/ijerph20054116
Meléndez-Oliva E, Sánchez-Romero EA, Segura-Ortí E, Gil-Gómez J-A, Soto-Goñi XA, Poveda-Pagán EJ. Effect of a Virtual Reality Exercise on Patients Undergoing Haemodialysis: A Randomised Controlled Clinical Trial Research Protocol. International Journal of Environmental Research and Public Health. 2023; 20(5):4116. https://doi.org/10.3390/ijerph20054116
Chicago/Turabian StyleMeléndez-Oliva, Erika, Eleuterio A. Sánchez-Romero, Eva Segura-Ortí, José-Antonio Gil-Gómez, Xabier A. Soto-Goñi, and Emilio J. Poveda-Pagán. 2023. "Effect of a Virtual Reality Exercise on Patients Undergoing Haemodialysis: A Randomised Controlled Clinical Trial Research Protocol" International Journal of Environmental Research and Public Health 20, no. 5: 4116. https://doi.org/10.3390/ijerph20054116
APA StyleMeléndez-Oliva, E., Sánchez-Romero, E. A., Segura-Ortí, E., Gil-Gómez, J. -A., Soto-Goñi, X. A., & Poveda-Pagán, E. J. (2023). Effect of a Virtual Reality Exercise on Patients Undergoing Haemodialysis: A Randomised Controlled Clinical Trial Research Protocol. International Journal of Environmental Research and Public Health, 20(5), 4116. https://doi.org/10.3390/ijerph20054116