Variation in Global Policy Responses to COVID-19: A Bidirectional Analysis
Abstract
:1. Introduction
2. Model, Data and Method
3. Results
3.1. Bidirectional Analysis
3.2. Comparative Analysis
3.2.1. Regional Analysis
3.2.2. Monthly Analysis
3.3. Robustness Check
4. Conclusions and Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Liu, Y.; Morgenstern, C.; Kelly, J.; Lowe, R.; CMMID COVID-19 Working Group; Jit, M. The Impact of Non-pharmaceutical Interventions on SARS-CoV-2 Transmission across 130 Countries and Territories. BMC Med. 2021, 19, 40. [Google Scholar] [CrossRef] [PubMed]
- Hale, T.; Angrist, N.; Goldszmidt, R.; Kira, B.; Petherick, A.; Phillips, T.; Webster, S.; Cameron-Blake, E.; Hallas, L.; Majumdar, S.; et al. A Global Panel Database of Pandemic Policies (Oxford COVID-19 Government Response Tracker). Nat. Hum. Behav. 2021, 5, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Haug, N.; Geyrhofer, L.; Londei, A.; Dervic, E.; Desvars-Larrive, A.; Loreto, V.; Pinior, B.; Thurner, S.; Klimek, P. Ranking the Effectiveness of Worldwide COVID-19 Government Interventions. Nat. Hum. Behav. 2020, 4, 1303–1312. [Google Scholar] [CrossRef] [PubMed]
- Agyapon-Ntra, K.; McSharry, P.E. A Global Analysis of the Effectiveness of Policy Responses to COVID-19. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4193848. (accessed on 18 August 2022).
- Dergiades, T.; Milas, C.; Mossialos, E.; Panagiotidis, T. Effectiveness of Government Policies in Response to the First COVID-19 Outbreak. PLoS Glob. Public Health 2022, 2, e0000242. [Google Scholar] [CrossRef]
- Hale, T.; Angrist, N.; Hale, A.J.; Kira, B.; Majumdar, S.; Petherick, A.; Phillips, T.; Sridhar, D.; Thompson, R.N.; Webster, S.; et al. Government Responses and COVID-19 Deaths: Global Evidence Across Multiple Pandemic Waves. PLoS ONE 2021, 16, e0253116. [Google Scholar] [CrossRef]
- Choi, A.J.; Hean, A.C.; Lee, J.K.; Tran, N.D.; Lin, T.K.; Apollonio, D.E. A Retrospective Global Assessment of Factors Associated With COVID-19 Policies and Health Outcomes. Front. Public Health 2022, 10, 843445. [Google Scholar] [CrossRef]
- Bauer, S.; Contreras, S.; Dehning, J.; Linden, M.; Iftekhar, E.; Mohr, S.B.; Olivera-Nappa, A.; Priesemann, V. Relaxing Restrictions at the Pace of Vaccination Increases Freedom and Guards against further COVID-19 Waves. PLoS Comput. Biol. 2021, 17, e1009288. [Google Scholar] [CrossRef]
- United Nations. The End of the COVID-19 Pandemic Is in Sight. 2022. Available online: https://news.un.org/en/story/2022/09/1126621 (accessed on 22 September 2022).
- CoVariants. Variant: 21A (Delta). Available online: https://covariants.org/variants/21A.Delta (accessed on 29 April 2022).
- Twohig, K.A.; Nyberg, T.; Zaidi, A.; Thelwall, S.; Sinnathamby, M.A.; Aliabadi, S.; Seaman, S.R.; Harris, R.J.; Hope, R.; Lopez-Bernal, J.; et al. Hospital Admission and Emergency Care Attendance Risk for SARS-CoV-2 Delta (B.1.617.2) Compared with Alpha (B.1.1.7) Variants of Concern: A Cohort Study. Lancet Infect. Dis. 2022, 22, 35–42. [Google Scholar] [CrossRef]
- Fall, A.; Eldesouki, R.E.; Sachithanandham, J.; Morris, C.P.; Norton, J.M.; Gaston, D.C.; Forman, M.; Abdullah, O.; Gallagher, N.; Li, M.; et al. The Displacement of the SARS-CoV-2 Variant Delta with Omicron: An Investigation of Hospital Admissions and Upper Respiratory Viral Loads. eBioMedicine 2022, 79, 104008. [Google Scholar] [CrossRef]
- WHO. Statement on the Fourteenth Meeting of the International Health Regulations (2005) Emergency Committee Regarding the Coronavirus Disease (COVID-19) Pandemic. 2023. Available online: https://www.who.int/news/item/30-01-2023-statement-on-the-fourteenth-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-coronavirus-disease-(covid-19)-pandemic (accessed on 9 February 2023).
- Gu, Y. Path to Normality—COVID-19 Vaccine Projections. 2021. Available online: https://covid19-projections.com/path-to-herd-immunity/ (accessed on 18 April 2022).
- Katella, K. Omicron, Delta, Alpha, and More: What to Know about the Coronavirus Variants. 2022. Available online: https://www.yalemedicine.org/news/covid-19-variants-of-concern-omicron (accessed on 29 April 2022).
- Edwards, B.; Barnes, R.; Rehill, P.; Ellen, L.; Zhong, F.; Killigrew, A.; Gonzalez, P.R.; Sheard, E.; Zhu, R.; Philips, T. Variation in Policy Response to COVID-19 across Australian States and Territories. 2022. Available online: https://www.bsg.ox.ac.uk/sites/default/files/2022-06/BSG-WP-2022-046_1.pdf (accessed on 9 February 2023).
- World Economic Forum. How Europe can Exit the COVID-19 Public Health Emergency. 2022. Available online: https://www.weforum.org/agenda/2022/03/how-europe-exit-the-covid-19-pandemic/ (accessed on 9 February 2023).
- Medical X Press. ‘Take Back Life’: More Nations Ease Coronavirus Restrictions. 2022. Available online: https://medicalxpress.com/news/2022-02-life-nations-ease-coronavirus-restrictions.html (accessed on 22 September 2022).
- Bo, Y.; Guo, C.; Lin, C.; Zeng, Y.; Li, H.B.; Zhang, Y.; Hossain, M.S.; Chan, J.; Yeung, D.W.; Kwok, K.O.; et al. Effectiveness of Non-pharmaceutical Interventions on COVID-19 Transmission in 190 Countries from 23 January to 13 April 2020. Int. J. Infect. Dis. 2021, 102, 247–253. [Google Scholar] [CrossRef]
- Poppe, A. Impact of the Healthcare System, Macro Indicator, General Mandatory Quarantine, and Mask Obligation on COVID-19 Cases and Death in Six Latin American Countries: An Interrupted Time Series Study. Front. Public Health 2020, 8, 607832. [Google Scholar] [CrossRef]
- Tabari, P.; Amini, M.; Moghadami, M.; Moosavi, M. International Public Health Responses to COVID-19 Outbreak: A Rapid Review. Iran. J. Med. Sci. 2020, 45, 157–169. [Google Scholar]
- The Lancet. India’s COVID-19 Emergency. Lancet 2021, 397, 1683. [Google Scholar] [CrossRef]
- Liang, L.L.; Kao, C.T.; Ho, H.J.; Wu, C.Y. COVID-19 Case Doubling Time Associated with Non-pharmaceutical Interventions and Vaccination: A Global Experience. J. Glob. Health 2021, 11, 05021. [Google Scholar] [CrossRef]
- Purnomo, E.P.; Nurmandi, A.; Dewi, A.; Rosa, E.M.; Bayu, A.H.; Erviana, R. ASEAN Policy Responses to COVID-19 Pandemic: Adaptation and Experimentation Policy: A Study of ASEAN Countries Policy Volatility for COVID-19 Pandemic. SAGE Open 2022, 12, 1–10. [Google Scholar] [CrossRef]
- Shafi, S.; Mallinson, D.J. Disproportionate Policy Dynamics in Crisis and Uncertainty: An International Comparative Analysis of Policy Responses to COVID-19. Policy Stud. 2022, 43, 1–22. [Google Scholar] [CrossRef]
- Bohloli, H.; Jamshidi, H.R.; Ebraze, A.; Rabbani Khah, F. Combining Government, Non-Pharmaceutical Interventions and Vaccination in Optimal Control COVID-19. Int. J. Healthc. Manag. 2022, 15, 1–9. [Google Scholar] [CrossRef]
- Neogi, S.B.; Pandey, S.; Preetha, G.S.; Swain, S. The Predictors of COVID-19 Mortality Among Health Systems Parameters: An Ecological Study Across 203 Countries. Health Res. Policy Syst. 2022, 20, 75. [Google Scholar] [CrossRef]
- OxCGRT. Codebook for the Oxford Covid-19 Government Response Tracker. 2022. Available online: https://github.com/OxCGRT/covid-policy-tracker/blob/master/documentation/codebook.md (accessed on 29 April 2022).
- CSSE. COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University. 2022. Available online: https://github.com/CSSEGISandData/COVID-19 (accessed on 18 April 2022).
- World Bank. Population Data. 2022. Available online: https://data.worldbank.org/indicator/SP.POP.TOTL (accessed on 29 April 2022).
- Mathieu, E.; Ritchie, H.; Ortiz-Ospina, E.; Roser, M.; Hasell, J.; Appel, C.; Giattino, C.; Rodés-Guirao, L. A Global Database of COVID-19 Vaccinations. Nat. Hum. Behav. 2021, 5, 947–953. [Google Scholar] [CrossRef]
- Wang, C.; Li, H. Public Compliance Matters in Evidence-Based Public Health Policy: Evidence from Evaluating Social Distancing in the First Wave of COVID-19. Int. J. Environ. Res. Public Health 2022, 19, 4033. [Google Scholar] [CrossRef]
- EIU. GHS Index Methodology. 2021. Available online: https://www.ghsindex.org/wp-content/uploads/2021/11/2021_GHSindex_Methodology_FINAL.pdf (accessed on 30 April 2022).
- Abrigo, M.R.M.; Love, I. Estimation of Panel Vector Autoregression in Stata. Stata J. 2016, 16, 778–804. [Google Scholar] [CrossRef] [Green Version]
- Love, I.; Zicchino, L. Financial Development and Dynamic Investment Behavior: Evidence from Panel VAR. Q. Rev. Econ. Financ. 2006, 46, 190–210. [Google Scholar] [CrossRef]
- Choi, I. Unit Root Tests for Panel Data. J. Int. Money Financ. 2001, 20, 249–272. [Google Scholar] [CrossRef]
- Holtz-Eakin, D.; Newey, W.; Rosen, H.S. Estimating Vector Autoregressions with Panel Data. Econometrica 1988, 56, 1371–1395. [Google Scholar] [CrossRef]
- Andrews, D.W.K.; Lu, B. Consistent Model and Moment Selection Procedures for GMM Estimation with Application to Dynamic Panel Data Models. J. Econom. 2001, 101, 123–164. [Google Scholar] [CrossRef]
- Bernal, J.L.; Andrews, N.; Gower, C.M.; Robertson, C.; Stowe, J.; Tessier, E.; Simmons, R.; Cottrell, S.; Roberts, R.; O’Doherty, M.G.; et al. Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca Vaccines on Covid-19 Related Symptoms, Hospital Admissions, and Mortality in Older Adults in England: Test Negative Case-control Study. BMJ 2021, 373, n1088. [Google Scholar] [CrossRef]
- Nasreen, S.; Chung, H.; He, S.; Brown, K.A.; Gubbay, J.B.; Buchan, S.A.; Fell, D.B.; Austin, P.C.; Schwartz, K.L.; Sundaram, M.E.; et al. Effectiveness of COVID-19 Vaccines Against Symptomatic SARS-CoV-2 Infection and Severe Outcomes with Variants of Concern in Ontario. Nat. Microbiol. 2022, 7, 379–385. [Google Scholar] [CrossRef]
- Mahase, E. Covid-19: Novavax Vaccine Efficacy is 86% against UK Variant and 60% against South African Variant. BMJ 2021, 372, n296. [Google Scholar] [CrossRef]
- Baraniuk, C. Covid-19: How Effective are Vaccines against the Delta Variant? BMJ 2021, 374, n1960. [Google Scholar] [CrossRef]
- Petherick, A.; Goldszmidt, R.; Andrade, E.B.; Furst, R.; Hale, T.; Pott, A.; Wood, A. A Worldwide Assessment of Changes in Adherence to COVID-19 Protective Behaviours and Hypothesized Pandemic Fatigue. Nat. Hum. Behav. 2021, 5, 1145–1160. [Google Scholar] [CrossRef]
- COVID-19 Excess Mortality Collaborators. Estimating Excess Mortality due to the COVID-19 Pandemic: A Systematic Analysis of COVID-19-related Mortality, 2020–2021. Lancet 2022, 399, 1513–1536. [Google Scholar] [CrossRef]
- Guaitoli, G.; Pancrazi, R. Covid-19: Regional Policies and Local Infection Risk: Evidence from Italy with a Modelling Study. Lancet Reg. Health Eur. 2021, 8, 100169. [Google Scholar] [CrossRef]
- Chiplunkara, G.; Das, S. Political Institutions and Policy Responses during a Crisis. J. Econ. Behav. Organ. 2021, 185, 647–670. [Google Scholar] [CrossRef]
- Government Offices of Sweden. Strategy in Response to the COVID-19 Pandemic. 2020. Available online: https://www.government.se/articles/2020/04/strategy-in-response-to-the-covid-19-pandemic/ (accessed on 13 July 2022).
- Wolf, Z.B. It’s Time to Start Paying More Attention to COVID-19 Again. 2022. Available online: https://edition.cnn.com/2022/07/13/politics/covid-ba5-omicron-booster-what-matters/index.html (accessed on 14 July 2022).
- Pashkevich, A.; Burghardt, T.E. Let Us Not Forget the Victims of COVID-19 Pandemics Who Did Not Die With the Coronavirus. Front. Public Health 2022, 10, 900100. [Google Scholar] [CrossRef]
Variables | N | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|---|
Stringency Index | 52,226 | 47.063 | 17.973 | 0 | 97.220 |
New Deaths per day | 52,316 | 44.341 | 177.395 | 0 | 4188 |
Fully Vaccinated Percentage | 24,303 | 45.703 | 26.014 | 0.001 | 97.398 |
Health Capacity | 51,850 | 30.966 | 20.277 | 0.500 | 78.900 |
Model | Independent Variables | Dependent Variables | |||
---|---|---|---|---|---|
Stringency | New_Deaths | vacci_fpc | helt_cp | ||
Model 1 | stringency (−1) | 0.087 *** (0.012) | −2.475 *** (0.114) | ||
new_deaths (−1) | 0.001 *** (0.000) | 0.026 *** (0.005) | |||
Model 2 | stringency (−1) | 0.048 (0.042) | −22.603 *** (1.658) | 0.094 (0.064) | |
stringency (−2) | −0.176 *** (0.036) | −22.538 *** (1.649) | 0.925 *** (0.056) | ||
new_deaths (−1) | −0.003 *** (0.001) | −0.042 (0.037) | 0.006 *** (0.001) | ||
new_deaths (−2) | 0.000 (0.001) | 0.124 *** (0.038) | 0.004 *** (0.001) | ||
vacci_fpc (−1) | 0.123 *** (0.018) | −6.883 *** (0.933) | 0.239 *** (0.029) | ||
vacci_fpc (−2) | 0.086 *** (0.014) | −4.644 *** (0.586) | 0.173 *** (0.023) | ||
Model 3 | stringency (−1) | −0.063 *** (0.008) | −0.416 *** (0.096) | 0.403 *** (0.010) | |
stringency (−2) | −0.126 *** (0.008) | −0.415 *** (0.119) | 0.200 *** (0.010) | ||
stringency (−3) | 0.004 (0.008) | 0.025 (0.135) | 0.350 *** (0.012) | ||
new_deaths (−1) | 0.001 *** (0.000) | 0.033 *** (0.006) | 0.003 *** (0.000) | ||
new_deaths (−2) | 0.003 *** (0.001) | 0.050 *** (0.005) | −0.001 * (0.001) | ||
new_deaths (−3) | 0.007 *** (0.000) | 0.079 *** (0.004) | −0.007 *** (0.000) | ||
helt_cp (−1) | 0.099 *** (0.005) | −0.858 *** (0.035) | 0.024 *** (0.006) | ||
helt_cp (−2) | 0.198 *** (0.005) | −0.430 *** (0.035) | 0.128 *** (0.007) | ||
helt_cp (−3) | 0.047 *** (0.005) | −1.155 *** (0.043) | 0.056 *** (0.006) |
Model | Independent Variables | Dependent Variables | |||
---|---|---|---|---|---|
Stringency | new_deaths | vacci_fpc | helt_cp | ||
Model 4 | stringency (−1) | 0.158 *** (0.035) | −16.222 *** (1.356) | 0.042 (0.056) | 0.137 *** (0.046) |
stringency (−2) | −0.095 *** (0.030) | −14.679 *** (1.411) | 0.876 *** (0.045) | 0.244 *** (0.043) | |
new_deaths (−1) | 0.001 (0.001) | −0.117 *** (0.039) | 0.010 *** (0.001) | 0.012 *** (0.001) | |
new_deaths (−2) | −0.002 ** (0.001) | 0.189 *** (0.032) | 0.002 (0.001) | 0.015 *** (0.002) | |
vacci_fpc (−1) | 0.190 *** (0.018) | −2.585 *** (0.904) | 0.233 *** (0.030) | 0.319 *** (0.021) | |
vacci_fpc (−2) | −0.001 (0.019) | −0.397 (0.643) | 0.089 *** (0.029) | 0.118 *** (0.026) | |
helt_cp (−1) | 0.011 (0.017) | −9.027 *** (0.489) | 0.108 *** (0.029) | −0.103 *** (0.027) | |
helt_cp (−2) | 0.266 *** (0.030) | −10.529 *** (1.124) | 0.244 *** (0.047) | 0.078 ** (0.039) |
Regions | Variables | N | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|---|---|
Asia | Stringency Index | 12,268 | 53.865 | 17.180 | 2.78 | 93.52 |
New Deaths per day | 12,499 | 52.279 | 154.306 | 0 | 4100 | |
Fully Vaccinated Percentage | 6771 | 45.788 | 26.153 | 0.029 | 97.398 | |
Health Capacity | 12,200 | 35.695 | 17.606 | 1.8 | 75.6 | |
Europe | Stringency Index | 12,581 | 42.862 | 14.842 | 8.33 | 84.26 |
New Deaths per day | 12,471 | 54.628 | 147.477 | 0 | 1222 | |
Fully Vaccinated Percentage | 7947 | 55.791 | 19.770 | 0.653 | 91.434 | |
Health Capacity | 12,200 | 48.045 | 15.038 | 13.1 | 78.9 | |
Africa | Stringency Index | 15,088 | 41.365 | 17.049 | 2.78 | 87.04 |
New Deaths per day | 15,548 | 7.525 | 33.455 | 0 | 953 | |
Fully Vaccinated Percentage | 2833 | 13.547 | 16.218 | 0.001 | 81.405 | |
Health Capacity | 15,555 | 14.180 | 11.292 | 0.5 | 45.2 |
Independent Variables | Dependent Variable: Stringency | ||
---|---|---|---|
(1) Asia | (2) Europe | (3) Africa | |
new_deaths (−2) (I) | 0.030 *** (0.007) | 0.004 (0.009) | 0.091 *** (0.011) |
vacci_fpc (−2) (II) | −0.171 *** (0.008) | −0.148 *** (0.012) | −0.451 *** (0.023) |
helt_cp (III) | 0.122 (0.107) | −0.042 (0.103) | 0.527 *** (0.164) |
Interaction (I × II) | −0.000 (0.000) | 0.000 (0.000) | 0.000 (0.001) |
Interaction (I × III) | −0.001 *** (0.000) | 0.000 (0.000) | −0.001 *** (0.000) |
Interaction (I × II × III) | 5.39 × 10−6 * (2.88 × 10−6) | 8.69 × 10−7 (2.83 × 10−6) | −0.000 ** (0.000) |
Constant | 56.097 *** (4.275) | 52.203 *** (5.232) | 38.328 *** (2.991) |
Observations | 6632 | 7680 | 2792 |
Countries | 40 | 40 | 49 |
Months | N | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|---|
2021-06 | 2784 | 52.188 | 17.509 | 2.78 | 92.59 |
2021-07 | 5394 | 50.535 | 17.891 | 0 | 97.22 |
2021-08 | 5394 | 50.861 | 17.595 | 2.78 | 97.22 |
2021-09 | 5220 | 49.616 | 18.119 | 2.78 | 96.3 |
2021-10 | 5394 | 47.264 | 17.278 | 2.78 | 90.74 |
2021-11 | 5220 | 45.482 | 17.347 | 8.33 | 90.74 |
2021-12 | 5394 | 46.104 | 16.762 | 6.48 | 93.52 |
2022-01 | 5425 | 47.678 | 16.875 | 2.78 | 90.74 |
2022-02 | 4893 | 46.415 | 17.868 | 2.78 | 96.3 |
2022-03 | 5309 | 40.489 | 18.461 | 2.78 | 87.5 |
2022-04 | 1799 | 36.086 | 17.944 | 2.78 | 85.19 |
Time | New_Deaths (−2) (I) | Vacci_Fpc (−2) (II) | Helt_Cp (III) | Interaction (I × II) | Interaction (I × III) | Interaction (I × II × III) |
---|---|---|---|---|---|---|
2021-06 | 0.056 *** (0.010) | −0.141 *** (0.030) | −0.070 *** (0.025) | 0.000 (0.001) | −0.001 *** (0.000) | 0.000 (0.000) |
2021-07 | 0.068 *** (0.008) | −0.169 *** (0.017) | −0.075 *** (0.016) | 0.002 ** (0.001) | −0.002 *** (0.000) | −3.36 × 10−6 (0.000) |
2021-08 | 0.048 *** (0.007) | −0.102 *** (0.015) | −0.080 *** (0.017) | 0.001 (0.000) | −0.001 *** (0.000) | −1.64 × 10−6 (5.30 × 10−6) |
2021-09 | 0.075 *** (0.011) | −0.057 *** (0.017) | −0.032 * (0.019) | −0.000 (0.000) | −0.001 *** (0.000) | 5.08 × 10−6 (4.58 × 10−6) |
2021-10 | 0.021 (0.017) | 0.018 (0.017) | 0.003 (0.019) | 0.001 ** (0.001) | −0.000 (0.000) | −0.000 ** (7.63 × 10−6) |
2021-11 | 0.018 (0.016) | 0.039 ** (0.016) | 0.133 *** (0.019) | 0.000 (0.000) | −0.000 (0.000) | 7.67 × 10−7 (7.28 × 10−6) |
2021-12 | −0.007 (0.021) | −0.021 (0.015) | 0.165 *** (0.017) | 0.001 (0.000) | −0.000 (0.000) | −2.11 × 10−6 (7.17 × 10−6) |
2022-01 | 0.056 * (0.031) | −0.019 (0.015) | 0.154 *** (0.017) | 0.001 (0.001) | −0.002 *** (0.001) | 4.34 × 10−6 (8.99 × 10−6) |
2022-02 | 0.097 *** (0.033) | −0.068 *** (0.019) | 0.084 *** (0.020) | −0.000 (0.001) | −0.002 *** (0.001) | 0.000 * (0.000) |
2022-03 | −0.085 *** (0.021) | −0.032 (0.022) | −0.053 ** (0.024) | 0.002 *** (0.000) | 0.002 *** (0.000) | −8.03 × 10−6 (6.73 × 10−6) |
2022-04 | −0.855 *** (0.313) | 0.111 *** (0.039) | −0.152 *** (0.043) | 0.013 *** (0.004) | 0.012 *** (0.004) | −0.000 *** (0.000) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Li, H. Variation in Global Policy Responses to COVID-19: A Bidirectional Analysis. Int. J. Environ. Res. Public Health 2023, 20, 4252. https://doi.org/10.3390/ijerph20054252
Wang C, Li H. Variation in Global Policy Responses to COVID-19: A Bidirectional Analysis. International Journal of Environmental Research and Public Health. 2023; 20(5):4252. https://doi.org/10.3390/ijerph20054252
Chicago/Turabian StyleWang, Caixia, and Huijie Li. 2023. "Variation in Global Policy Responses to COVID-19: A Bidirectional Analysis" International Journal of Environmental Research and Public Health 20, no. 5: 4252. https://doi.org/10.3390/ijerph20054252
APA StyleWang, C., & Li, H. (2023). Variation in Global Policy Responses to COVID-19: A Bidirectional Analysis. International Journal of Environmental Research and Public Health, 20(5), 4252. https://doi.org/10.3390/ijerph20054252