Comparative Analysis of the Implementation of Support Vector Machines and Long Short-Term Memory Artificial Neural Networks in Municipal Solid Waste Management Models in Megacities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Basic Concepts of the Algorithms Used in this Study
2.1.1. Artificial Neural Network (ANN) and Long Short-Term Memory Network (LSTM)
- Xi(t) is the input value at time t
- Wij(t) is the weight of neural input at time t
- bij is the bias
- F is a transfer function
- y(t) is the output value at time t
2.1.2. Support Vector Machines (SVMs)
2.2. Description of the Study Area
2.3. Methodological Model
- Data review and standardization;
- Forecast of urban solid waste generation performed by LSTM and SVM;
- Proposal of scenarios for methodological development: E1–E9;
- Inclusion of transportation and treatment costs of solid waste for each scenario;
- Modeling the developed methodology integrated into LSTM and SVM;
- Results analysis.
- the city’s population;
- solid waste generation by collection area;
- the city’s socio-economic stratification;
- transportation expenses;
- possible waste treatment costs.
- -
- the monthly average of tons collected and transported in the immediately preceding year (tons/month), as well as
- -
- the distance to the final disposal site, transfer station or treatment plant (km).
3. Results
- Scenario 1—The waste is disposed of at the Doña Juana landfill as is currently carried out (Distance 1). This scenario considers the potential revenue obtained from the sale of byproducts from the primary treatment process;
- Scenario 2—The waste is disposed of at a second landfill (Nuevo Mondoñedo), located at Distance 2. This landfill site is still not licensed and depends on the results of feasibility and environmental studies (Figure 10).
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Solano Meza, J.K.; Rodrigo-Ilarri, J.; Romero Hernández, C.P.; Rodrigo-Clavero, M.E. Analytical Methodology for the Identification of Critical Zones on the Generation of Solid Waste in Large Urban Areas. Int. J. Environ. Res. Public Health 2020, 17, 1196. [Google Scholar] [CrossRef] [Green Version]
- Vitorino de Souza Melaré, A.; Montenegro González, S.; Faceli, K.; Casadei, V. Technologies and decision support systems to aid solid-waste management: A systematic review. Waste Manag. 2017, 59, 567–584. [Google Scholar] [CrossRef]
- Kolekar, K.A.; Hazra, T.; Chakrabarty, S.N. A Review on Prediction of Municipal Solid Waste Generation Models. Procedia Environ. Sci. 2016, 35, 238–244. [Google Scholar] [CrossRef]
- Wang, D.; Yuan, Y.; Ben, Y.; Luo, H.; Guo, H. Long short-term memory neural network and improved particle swarm optimization–based modeling and scenario analysis for municipal solid waste generation in Shanghai, China. Environ. Sci. Pollut. Res. 2022, 29, 69472–69490. [Google Scholar] [CrossRef]
- Abdallah, M.; Abu Talib, M.; Feroz, S.; Nasir, Q.; Abdalla, H.; Mahfood, B. Artificial intelligence applications in solid waste management: A systematic research review. Waste Manag. 2020, 109, 231–246. [Google Scholar] [CrossRef]
- Singh, A. Solid waste management through the applications of mathematical models. Resour. Conserv. Recycl. 2019, 151, 104503. [Google Scholar] [CrossRef]
- Yetilmezsoy, K.; Ozkaya, B.; Cakmakci, M. Artificial intelligence-based prediction models for environmental engineering. Neural Netw. World 2011, 21, 193–218. [Google Scholar] [CrossRef] [Green Version]
- Ihsanullah, I.; Alam, G.; Jamal, A.; Shaik, F. Recent advances in applications of artificial intelligence in solid waste management: A review. Chemosphere 2022, 390, 136631. [Google Scholar] [CrossRef]
- Singh, D.; Satija, A. Prediction of municipal solid waste generation for optimum planning and management with artificial neural network—Case study: Faridabad City in Haryana State (India). Int. J. Syst. Assur. Eng. Manag. 2018, 9, 91–97. [Google Scholar] [CrossRef]
- Xia, W.; Jiang, Y.; Chen, X.; Zhao, R. Application of machine learning algorithms in municipal solid waste management: A mini review. Waste Manag. Res. 2021, 40, 609–624. [Google Scholar] [CrossRef]
- Rimaityté, I.; Ruzgas, T.; Denafas, G.; Racys, V.; Martuzevicius, D. Application and evaluation of forecasting methods for municipal solid waste generation in an eastern-European city. Waste Manag. Res. 2017, 30, 89–98. [Google Scholar] [CrossRef]
- Xu, A.; Chang, H.; Xu, Y.; Li, R.; Li, X.; Zhao, Y. Applying artificial neural networks (ANNs) to solve solid waste-related issues: A critical review. Waste Manag. 2021, 124, 385–402. [Google Scholar] [CrossRef]
- Goel, S.; Ranjan, V.P.; Bardhan, B.; Hazra, T. Forecasting Solid Waste Generation Rates. In Modelling Trends in Solid and Hazardous Waste Management; Springer: Singapore, 2017. [Google Scholar] [CrossRef]
- Ibrahim, D. An overview of soft computing. Procedia Comput. Sci. 2016, 102, 34–38. [Google Scholar] [CrossRef] [Green Version]
- Adeleke, O.; Akinlabi, S.A.; Jen, T.C.; Dunmade, I. Application of artificial neural networks for predicting the physical composition of municipal solid waste: An assessment of the impact of seasonal variation. Waste Manag. Res. 2021, 39, 1058–1068. [Google Scholar] [CrossRef]
- Wu, F.; Niu, D.; Dai, S.; Wu, B. New insights into regional differences of the predictions of municipal solid waste generation rates using artificial neural networks. Waste Manag. 2020, 107, 182–190. [Google Scholar] [CrossRef]
- Golbaz, S.; Nabizadeh, R.; Sajadi, H.S. Comparative study of predicting hospital solid waste generation using multiple linear regression and artificial intelligence. J. Environ. Health Sci. Eng. 2019, 17, 41–51. [Google Scholar] [CrossRef]
- Sodanil, M.; Chatthong, P. Artificial neural network-based time series analysis forecasting for the amount of solid waste in Bangkok. In Proceedings of the Ninth International Conference on Digital Information Management (ICDIM 2014), Phitsanulok, Thailand, 29 September–1 October 2014; pp. 16–20. [Google Scholar] [CrossRef]
- Dixon, B.; Candade, N. Multispectral landuse classification using neural networks and support vector machines: One or the other, or both? Int. J. Remote Sens. 2007, 29, 1185–1206. [Google Scholar] [CrossRef]
- Hasituya; Chen, Z.; Wang, L.; Wu, W.; Jiang, Z.; Li, H. Monitoring Plastic-Mulched Farmland by Landsat-8 OLI Imagery Using Spectral and Textural Features. Remote Sens. 2016, 8, 353. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, V.K.; Dahiya, K.; Sharma, A. Problem formulations and solvers in linear SVM: A review. Artif. Intell. Rev. 2019, 52, 803–855. [Google Scholar] [CrossRef]
- Li, P.; Kwon, H.; Sun, L.; Lall, U.; Kao, J. A modified support vector machine based prediction model on streamflow at the Shihmen Reservoir, Taiwan. Int. J. Climatol. 2010, 30, 1256–1268. [Google Scholar] [CrossRef]
- Leong, W.C.; Kelani, R.O.; Ahmad, Z. Prediction of air pollution index (API) using support vector machine (SVM). J. Environ. Chem. Eng. 2020, 8, 103208. [Google Scholar] [CrossRef]
- Zhu, S.; Chen, H.; Wang, M.; Guo, X.; Lei, Y.; Jin, G. Plastic solid waste identification system based on near infrared spectroscopy in combination with support vector machine. Adv. Ind. Eng. Polym. Res. 2019, 2, 77–81. [Google Scholar] [CrossRef]
- Lin, G.; Li, L.; Tseng, M.; Liu, H.; Yuan, D.; Tan, R.R. An improved moth-flame optimization algorithm for support vector machine prediction of photovoltaic power generation. J. Clean. Prod. 2020, 253, 119966. [Google Scholar] [CrossRef]
- Yao, W.; Zhang, C.; Hao, H.; Wang, X.; Li, X. A support vector machine approach to estimate global solar radiation with the influence of fog and haze. Renew. Energ. 2018, 128, 155–162. [Google Scholar] [CrossRef]
- Tang, W.; Li, Y.; Yu, Y.; Wang, Z.; Xu, T.; Chen, J.; Lin, J.; Li, X. Development of models predicting biodegradation rate rating with multiple linear regression and support vector machine algorithms. Chemosphere 2020, 253, 126666. [Google Scholar] [CrossRef] [PubMed]
- Noori, R.; Abdoli, M.A.; Ghasrodashti, A.A.; Jalili Ghazizade, M. Prediction of municipal solid waste generation with combination of support vector machine and principal component analysis: A case study of Mashhad. Environ. Prog. Sustain. 2018, 28, 249–258. [Google Scholar] [CrossRef]
- Chhay, L.; Reyad, M.A.H.; Suy, R.; Islam, M.R.; Mian, M.M. Municipal solid waste generation in China: Influencing factor analysis and multi-model forecasting. J. Mater. Cycles Waste Manag. 2018, 20, 1761–1770. [Google Scholar] [CrossRef]
- Jahandideh, S.; Jahandideh, S.; Asadabadi, E.B.; Askarian, M.; Movahedi, M.M.; Hosseini, S.; Jahandideh, M. The use of artificial neural networks and multiple linear regression to predict rate of medical waste generation. Waste Manag. 2009, 29, 2874–2879. [Google Scholar] [CrossRef]
- Jalili Ghazi Zade, M.; Noori, R. Prediction of Municipal Solid Waste Generation by Use of Artificial Neural Network: A Case Study of Mashhad. Int. J. Environ. Res. 2008, 2, 13–22. [Google Scholar] [CrossRef]
- Korhonen, P.; Kaila, J. Waste container weighing data processing to create reliable information of household waste generation. Waste Manag. 2015, 39, 15–25. [Google Scholar] [CrossRef]
- Shamshiry, E.; Nadi, B.; Bin Mokhtar, M.; Komoo, I.; Hashim, H.S.; Yahya, N. Forecasting Generation Waste Using Artificial Neural Networks. In Proceedings of the 2011 International Conference on Artificial Intelligence. The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp), Athens, Greece, 1 January 2011. [Google Scholar]
- Shu, H.; Lu, H.; Fan, H.; Chang, M.; Chen, J. Prediction for Energy Content of Taiwan Municipal Solid Waste Using Multilayer Perceptron Neural Networks. J. Air Waste Manag. Assoc. 2006, 56, 852–858. [Google Scholar] [CrossRef]
- You, H.; Ma, Z.; Tang, Y.; Wang, Y.; Yan, J.; Ni, M.; Cen, K.; Huang, Q. Comparison of ANN (MLP), ANFIS, SVM, and RF models for the online classification of heating value of burning municipal solid waste in circulating fluidized bed incinerators. Waste Manag. 2017, 68, 186–197. [Google Scholar] [CrossRef] [PubMed]
- Pan, A.; Yu, L.; Yang, Q. Characteristics and Forecasting of Municipal Solid Waste Generation in China. Sustainability 2019, 11, 1433. [Google Scholar] [CrossRef] [Green Version]
- Sodoke, S.; Amuah, E.E.Y.; Joseph, A.; Osei, J.D.C.; Douti, N.B.; Fei-Baffoe, B.; Anokye, K. Market-based waste segregation and waste bin siting suitability studies using GIS and multi-criteria evaluation in the Kumasi Metropolis. Environ. Chall. 2022, 9, 100655. [Google Scholar] [CrossRef]
- Lu, W. Big data analytics to identify illegal construction waste dumping: A Hong Kong study. Resour. Conserv. Recycl. 2019, 141, 264–272. [Google Scholar] [CrossRef]
- Lu, W.; Chen, X.; Peng, Y.; Shen, L. Benchmarking construction waste management performance using big data. Resour. Conserv. Recycl. 2015, 105, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Samadder, S.R.; Kumar, N.; Singh, C. Estimation of the generation rate of different types of plastic wastes and possible revenue recovery from informal recycling. Waste Manag. 2018, 79, 781–790. [Google Scholar] [CrossRef]
- Rafew, S.M.; Rafizul, I.M. Application of system dynamics model for municipal solid waste management in Khulna city of Bangladesh. Waste Manag. 2021, 129, 1–19. [Google Scholar] [CrossRef]
- Zhang, C.; Dong, H.; Geng, Y.; Liang, H.; Liu, X. Machine learning based prediction for China’s municipal solid waste under the shared socioeconomic pathways. J. Environ. Manag. 2016, 312, 114918. [Google Scholar] [CrossRef]
- Birney, C.; Young, B.; Li, M.; Conner, M.; Specht, J.; Ingwersen, W.W. FLOWSA: A Python Package Attributing Resource Use, Waste, Emissions, and Other Flows to Industries. Appl. Sci. 2022, 12, 5742. [Google Scholar] [CrossRef]
- McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133. [Google Scholar] [CrossRef]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-art in artificial neural network applications: A survey. Heliyon 2018, 4, e00938. [Google Scholar] [CrossRef] [Green Version]
- Puri, M.; Solanki, A.; Padawer, T.; Tipparaju, S.M.; Moreno, W.A.; Pathak, Y. Introduction to Artificial Neural Network (ANN) as a Predictive Tool for Drug Design, Discovery, Delivery, and Disposition: Basic Concepts and Modeling. In Artificial Neural Network for Drug Design, Delivery and Disposition; Puri, M., Pathak, Y., Sutariya, V.K., Tipparaju, S., Moreno, W.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 978-0-12-801559-9. [Google Scholar] [CrossRef]
- Maeda, Y.; Wakamura, M. Simultaneous perturbation learning rule for recurrent neural networks and its FPGA implementation. IEEE Trans. Neural Netw. 2005, 16, 1664–1672. [Google Scholar] [CrossRef] [PubMed]
- Laddach, K.; Langoski, R.; Rutkowski, T.A.; Puchalski, B. An automatic selection of optimal recurrent neural network architecture for processes dynamics modelling purposes. Appl. Soft Comput. 2022, 116, 180375. [Google Scholar] [CrossRef]
- Almutairi, M.S.; Almutairi, K.; Chiroma, H. Hybrid of deep recurrent network and long short term memory for rear-end collision detection in fog based internet of vehicles. Expert Syst. Appl. 2023, 213, 119033. [Google Scholar] [CrossRef]
- Drewil, G.I.; Al-Bahadili, R.J. Air pollution prediction using LSTM deep learning and metaheuristics algorithms. Meas. Sens. 2022, 24, 100546. [Google Scholar] [CrossRef]
- Solano-Meza, J.K. Methodological proposal based on artificial neural networks based on artificial neural networks for the determination of the the optimal management of solid urban waste management: Application in the localities of Suba and Engativá in the city of Bogotá (Colombia) (in Spanish). Ph.D. Thesis, Universitat Politècnica de València, Valencia, Spain, 2021. [Google Scholar]
- Qiu, J.; Wang, B.; Zhou, C. Forecasting stock prices with long-short term memory neural network based on attention mechanism. PLoS ONE 2020, 15, e0227222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebala, G.; Ravi, A.; Churiwala, S. Deep Learning. In An Introduction to Machine Learning; Springer: Cham, Switzerland, 2019; ISBN 978-3-030-15729-6. [Google Scholar] [CrossRef]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995. [Google Scholar]
- Liu, W.; Liang, S.; Qin, X. Weighted p-norm distance t kernel SVM classification algorithm based on improved polarization. Sci. Rep. 2022, 12, 6197. [Google Scholar] [CrossRef]
- Gupta, M.; Pandya, S.D. A Comparative Study on Supervised Machine Learning Algorithm. Int. J. Res. Appl. Sci. Eng. Technol. 2022, 10, 1023–1028. [Google Scholar] [CrossRef]
- Osisanwo, F.Y.; Akinsola, J.E.T.; Awodele, O.; Hinmikaiye, J.O.; Olakanmi, O.; Akinjobi, J. Supervised machine learning algorithms: Classification and comparison. Int. J. Comput. Trends Technol. 2017, 48, 128–138. [Google Scholar] [CrossRef]
- García-Gonzalo, E.; Fernández-Muñiz, Z.; García Nieto, P.J.; Bernardo Sánchez, A.; Menéndez Fernández, M. Hard-Rock Stability Analysis for Span Design in Entry-Type Excavations with Learning Classifiers. Materials 2016, 9, 531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Office of the Mayor of Bogotá. Secretariat of Planning—2016 Population Projections by Locality in Bogotá. Directorate of Macro Studies. Available online: http://www.sdp.gov.co/sites/default/files/boletin69.pdf (accessed on 18 April 2020).
- UAESP. Special Administrative Unit of Public Services. Open Data on Bogotá Sub-Directorate of Collection and Cleaning Services. Available online: https://datosabiertos.bogota.gov.co/dataset/data_set_subdireccion_recolecion_barrido_limpieza (accessed on 10 May 2020).
- Office of the Mayor of Bogotá. Everything You Need to Know about Bogota in 2019. Available online: https://bogota.gov.co/mi-ciudad/turismo/informacion-de-bogota-en-2019 (accessed on 10 May 2020).
- UAESP. Special Administrative Unit of Public Services. Know the Days and Times of Garbage Collection. Available online: http://www.uaesp.gov.co/content/conoce-los-dias-y-horarios-recoleccion-basuras (accessed on 10 May 2020).
- UAESP. Special Administrative Unit of Public Services. Know the Days and Times of Garbage Collection. Available online: http://www.uaesp.gov.co/especiales/Mapa-Operadores-aseo/ (accessed on 24 July 2020).
- UAESP. Special Administrative Unit of Public Services. Know the Days and Times of Garbage Collection. Available online: http://www.uaesp.gov.co/especiales/relleno/ (accessed on 24 July 2020).
- District Planning Secretary. Statistics, Information for Decision Making; Projections by Districts 2005–2030. Available online: http://www.sdp.gov.co/portal/page/portal/PortalSDP/InformacionTomaDecisiones/Estadisticas/ProyeccionPoblacion:Proyecciones%20de%20Poblaci%F3n (accessed on 28 April 2020).
- Special Administrative Unit of Public Services. Final Disposal Report of Urban Solid Waste, Dataset; Final Disposal Area; UAESP: Bogotá, Columbia, 2017.
- National Administrative Department of Statistics (DANE). Socioeconomic Stratification—Frequently Asked Questions. Available online: https://www.dane.gov.co/index.php/servicios-al-ciudadano/116-espanol/informacion-georreferenciada/2421-estratificacion-socioeconomica-preguntas-frecuentes (accessed on 28 April 2020).
- Decree 1077 of 2015, Unique Regulatory Decree of the Housing, City and Territory Sector, the President of the Republic of Colombia (In Spanish). Available online: https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=62512 (accessed on 21 February 2023).
- Ministry of Housing, City and Territory. Republic of Colombia, Commission on the Regulation of Drinking Water and Basic Sanitation, Resolution CRA 853 of 2018. 2018. Available online: https://www.cra.gov.co/documents/RESOLUCION_CRA_853_DE_2018.pdf (accessed on 28 May 2020).
- Office of the Mayor of Bogotá. Decree 652 of 2018. 2018. Available online: https://www.ciudadlimpia.com.co/site/images/Legislacion/Legislacion/Decreto%20652%20de%202018_modifica_documento_linea_base.pdf (accessed on 28 May 2020).
- Bogotá Maps. District Land Registry. Bogotá. Available online: https://mapas.bogota.gov.co/# (accessed on 3 October 2020).
- Kannangara, M.; Dua, R.; Ahmadi, L.; Bensebaa, F. Modeling and prediction of regional municipal solid waste generation and diversion in Canada using machine learning approaches. Waste Manag. 2018, 74, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Solano Meza, J.K.; Orjuela Yepes, D.; Rodrigo-Ilarri, J.; Cassiraga, E. Predictive analysis of urban waste generation for the city of Bogotá, Colombia, through the implementation of decision trees-based machine learning, support vector machines and artificial neural networks. Heliyon 2019, 5, e02810. [Google Scholar] [CrossRef]
- Abbasi, M.; El Hanandeh, A. Forecasting municipal solid waste generation using artificial intelligence modelling approaches. Waste Manag. 2016, 56, 13–22. [Google Scholar] [CrossRef] [PubMed]
ESA | Service Operator Number in Each ESA | Locality by ESA |
---|---|---|
ESA 1 | PROMOAMBIENTAL | Usme, San Cristóbal, Santa Fé, La Candelaria, Chapinero, Usaquén, Sumapaz |
ESA 2 | LIME S.A E.S.P. | Ciudad Bolívar, Bosa, Tunjuelito, Rafael Uribe, Antonio Nariño, Puente Aranda, Teusaquillo, Los Mártires |
ESA 3 | CIUDAD LIMPIA | Fontibón, Kennedy |
ESA 4 | BOGOTÁ LIMPIA | Engativá, Barrios Unidos |
ESA 5 | ÁREA LIMPIA | Suba |
Scenario | MSW Technology (%) | |
---|---|---|
E1 | Incineration | 78% |
Landfilling | 22% | |
E2 | Gasification | 78% |
Landfilling | 22% | |
E3 | Mechanical treatment + anaerobic digestion | 68% |
Landfilling | 32% | |
E4 | Mechanical treatment+ open-air composting | 52% |
Landfill | 48% | |
E5 | Mechanical treatment + closed composting | 68% |
Landfilling | 32% | |
E6 | Source classification + composting | 60% |
Landfilling | 40% | |
E7 | Landfilling + biogas burning | 100% |
E8 | Landfilling + biogas energy generation | 100% |
E9 | Landfill + biogas capture and direct sale | 100% |
Zone | ESA 1 | ESA 2 | ESA 3 | ESA 4 | ESA 5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Method | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE |
SVM | 0.0108 | 0.0820 | 0.0419 | 0.1341 | 0.0110 | 0.0845 | 0.0946 | 0.1996 | 0.0300 | 0.1204 |
LSTM | 0.0383 | 0.1524 | 0.0530 | 0.1800 | 0.0893 | 0.2436 | 0.0886 | 0.2204 | 0.0448 | 0.1716 |
Scenario | Final Disposal Distance 1 (km) | Final Disposal Distance 2 (km) | |||
---|---|---|---|---|---|
ESA 4 | ESA 5 | ESA 4 | ESA 5 | ||
E1 | Incineration | 27.3 | 36.9 | 27.3 | 36.9 |
Landfilling | 21.5 | 32.6 | 35.8 | 51.6 | |
E2 | Gasification | 27.3 | 36.9 | 27.3 | 36.9 |
Landfilling | 21.5 | 32.6 | 35.8 | 51.6 | |
E3 | Mechanical treatment + anaerobic digestion | 35.6 | 45.1 | 35.6 | 45.1 |
Landfilling | 21.5 | 32.6 | 35.8 | 51.6 | |
E4 | Mechanical treatment + open-air composting | 35.6 | 45.1 | 35.6 | 45.1 |
Landfill | 21.5 | 32.6 | 35.8 | 51.6 | |
E5 | Mechanical treatment + closed composting | 35.6 | 45.1 | 35.6 | 45.1 |
Landfilling | 21.5 | 31 | 35.8 | 51.6 | |
E6 | Source classification + composting | 35.6 | 45.1 | 35.6 | 45.1 |
Landfilling | 21.5 | 32.6 | 35.8 | 51.6 | |
E7 | Landfilling + biogas burning | 21.5 | 32.6 | 35.8 | 51.6 |
E8 | Landfilling + biogas energy generation | 21.5 | 32.6 | 35.8 | 51.6 |
E9 | Landfill + biogas capture and direct sale | 21.5 | 32.6 | 35.8 | 51.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solano Meza, J.K.; Orjuela Yepes, D.; Rodrigo-Ilarri, J.; Rodrigo-Clavero, M.-E. Comparative Analysis of the Implementation of Support Vector Machines and Long Short-Term Memory Artificial Neural Networks in Municipal Solid Waste Management Models in Megacities. Int. J. Environ. Res. Public Health 2023, 20, 4256. https://doi.org/10.3390/ijerph20054256
Solano Meza JK, Orjuela Yepes D, Rodrigo-Ilarri J, Rodrigo-Clavero M-E. Comparative Analysis of the Implementation of Support Vector Machines and Long Short-Term Memory Artificial Neural Networks in Municipal Solid Waste Management Models in Megacities. International Journal of Environmental Research and Public Health. 2023; 20(5):4256. https://doi.org/10.3390/ijerph20054256
Chicago/Turabian StyleSolano Meza, Johanna Karina, David Orjuela Yepes, Javier Rodrigo-Ilarri, and María-Elena Rodrigo-Clavero. 2023. "Comparative Analysis of the Implementation of Support Vector Machines and Long Short-Term Memory Artificial Neural Networks in Municipal Solid Waste Management Models in Megacities" International Journal of Environmental Research and Public Health 20, no. 5: 4256. https://doi.org/10.3390/ijerph20054256
APA StyleSolano Meza, J. K., Orjuela Yepes, D., Rodrigo-Ilarri, J., & Rodrigo-Clavero, M. -E. (2023). Comparative Analysis of the Implementation of Support Vector Machines and Long Short-Term Memory Artificial Neural Networks in Municipal Solid Waste Management Models in Megacities. International Journal of Environmental Research and Public Health, 20(5), 4256. https://doi.org/10.3390/ijerph20054256