Comprehensive Dynamic Influence of Multiple Meteorological Factors on the Detection Rate of Bacterial Foodborne Diseases under Spatio-Temporal Heterogeneity
Abstract
:1. Introduction
2. Methodology
2.1. Study Area and Data Sources
2.2. Methodological Framework
2.3. Multivariate Time Series Analysis
2.4. Spatio-Temporal Scanning Statistics
2.5. Principal Component Analysis to Determine the Effects of Meteorological Factors
2.6. Vector Autoregressive (VAR) Model
3. Results
3.1. Multivariate Time Series Correlation Analysis
3.2. Spatio-Temporal Scanning Statistics of the Detection Rate of the V. parahaemolyticus
3.3. VAR Model Fitting and Prediction
3.4. Impulse Response Analysis of V. parahaemolyticus Detection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoffmann, S.; Scallan, E. Chapter 2—Epidemiology, Cost, and Risk Analysis of Foodborne Disease. In Foodborne Diseases, 3rd ed.; Dodd, C.E.R., Aldsworth, T., Stein, R.A., Cliver, D.O., Riemann, H.P., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 31–63. [Google Scholar]
- Todd, E.C.D. Costs of acute bacterial foodborne disease in Canada and the United States. Int. J. Food Microbiol. 1989, 9, 313–326. [Google Scholar] [CrossRef]
- Buzby, J.C.; Roberts, T.; Lin, C.-T.J.; MacDonald, J.M. Bacterial Foodborne Disease: Medical Costs and Productivity Losses; Agricultural Economics Report No. 741; Food and Consumer Economics Division, Economic Research Service, U.S. Department of Agriculture: Washington, DC, USA, 1996.
- World Health Organization. WHO Estimates of the Global Burden of Foodborne Diseases: Foodborne Disease Burden Epidemiology Reference Group 2007–2015; World Health Organization: Geneva, Switzerland, 2015.
- Toyofuku, H. Burden of Foodborne Diseases in Western Pacific Region. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Li, W.; Pires, S.M.; Liu, Z.; Ma, X.; Liang, J.; Jiang, Y.; Chen, J.; Liang, J.; Wang, S.; Wang, L.; et al. Surveillance of foodborne disease outbreaks in China, 2003–2017. Food Control 2020, 118, 107359. [Google Scholar] [CrossRef]
- Adley, C.C.; Ryan, M.P. Chapter 1—The Nature and Extent of Foodborne Disease. In Antimicrobial Food Packaging; Barros-Velázquez, J., Ed.; Academic Press: San Diego, CA, USA, 2016; pp. 1–10. [Google Scholar]
- Hernández-Cortez, C.; Palma-Martínez, I.; Gonzalez-Avila, L.U.; Guerrero-Mandujano, A.; Solís, R.C.; Castro-Escarpulli, G. Food poisoning caused by bacteria (food toxins). In Poisoning: From specific Toxic Agents to Novel Rapid and Simplified Techniques for Analysis; Malangu, N., Ed.; InTech: Croatia, 2017; pp. 33–72. [Google Scholar]
- Jiang, C.; Shaw, K.S.; Upperman, C.R.; Blythe, D.; Mitchell, C.; Murtugudde, R.; Sapkota, A.R.; Sapkota, A. Climate change, extreme events and increased risk of salmonellosis in Maryland, USA: Evidence for coastal vulnerability. Environ. Int. 2015, 83, 58–62. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Zhao, K.; Shi, L.; Wen, L.; Yang, H.; Cheng, J.; Wang, X.; Su, H. Daily temperature change in relation to the risk of childhood bacillary dysentery among different age groups and sexes in a temperate city in China. Public Health 2016, 131, 20–26. [Google Scholar] [CrossRef]
- Morgado, M.E.; Jiang, C.; Zambrana, J.; Upperman, C.R.; Mitchell, C.; Boyle, M.; Sapkota, A.R.; Sapkota, A. Climate change, extreme events, and increased risk of salmonellosis: Foodborne diseases active surveillance network (FoodNet), 2004–2014. Environ. Health 2021, 20, 105. [Google Scholar] [CrossRef]
- Mun, S.G. The effects of ambient temperature changes on foodborne illness outbreaks associated with the restaurant industry. Int. J. Hosp. Manag. 2020, 85, 102432. [Google Scholar] [CrossRef]
- Liu, C.; Hofstra, N.; Franz, E. Impacts of climate change on the microbial safety of pre-harvest leafy green vegetables as indicated by Escherichia coli O157 and Salmonella spp. Int. J. Food Microbiol. 2013, 163, 119–128. [Google Scholar] [CrossRef]
- Zhang, Y.; Bi, P.; Hiller, J.E. Climate variations and Salmonella infection in Australian subtropical and tropical regions. Sci. Total Environ. 2010, 408, 524–530. [Google Scholar] [CrossRef]
- Semenza, J.C.; Menne, B. Climate change and infectious diseases in Europe. Lancet Infect. Dis. 2009, 9, 365–375. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, Y.; Ding, G.; Liu, Q.; Zhou, M.; Li, X.; Jiang, B. Meteorological variables and bacillary dysentery cases in Changsha City, China. Am. J. Trop. Med. Hyg. 2014, 90, 697–704. [Google Scholar] [CrossRef]
- Wang, P.; Goggins, W.B.; Chan, E.Y.Y. Associations of Salmonella hospitalizations with ambient temperature, humidity and rainfall in Hong Kong. Environ. Int. 2018, 120, 223–230. [Google Scholar] [CrossRef]
- Baker-Austin, C.; Trinanes, J.A.; Salmenlinna, S.; Löfdahl, M.; Siitonen, A.; Taylor, N.G.; Martinez-Urtaza, J. Heat Wave-Associated Vibriosis, Sweden and Finland, 2014. Emerg. Infect. Dis. 2016, 22, 1216–1220. [Google Scholar] [CrossRef]
- Ndraha, N.; Hsiao, H.-I. The risk assessment of Vibrio parahaemolyticus in raw oysters in Taiwan under the seasonal variations, time horizons, and climate scenarios. Food Control 2019, 102, 188–196. [Google Scholar] [CrossRef]
- Fleury, M.; Charron, D.F.; Holt, J.D.; Allen, O.B.; Maarouf, A.R. A time series analysis of the relationship of ambient temperature and common bacterial enteric infections in two Canadian provinces. Int. J. Biometeorol. 2006, 50, 385–391. [Google Scholar] [CrossRef]
- Kim, Y.S.; Park, K.H.; Chun, H.S.; Choi, C.; Bahk, G.J. Correlations between climatic conditions and foodborne disease. Food Res. Int. 2015, 68, 24–30. [Google Scholar] [CrossRef]
- Aik, J.; Heywood, A.E.; Newall, A.T.; Ng, L.-C.; Kirk, M.D.; Turner, R. Climate variability and salmonellosis in Singapore—A time series analysis. Sci. Total Environ. 2018, 639, 1261–1267. [Google Scholar] [CrossRef]
- Wang, P.; Goggins, W.B.; Chan, E.Y.Y. A time-series study of the association of rainfall, relative humidity and ambient temperature with hospitalizations for rotavirus and norovirus infection among children in Hong Kong. Sci. Total Environ. 2018, 643, 414–422. [Google Scholar] [CrossRef]
- Simpson, R.B.; Zhou, B.; Naumova, E.N. Seasonal synchronization of foodborne outbreaks in the United States, 1996-2017. Sci. Rep. 2020, 10, 17500. [Google Scholar] [CrossRef]
- Rojas, F.; Ibacache-Quiroga, C. A forecast model for prevention of foodborne outbreaks of non-typhoidal salmonellosis. PeerJ 2020, 8, e10009. [Google Scholar] [CrossRef]
- Aik, J.; Turner, R.M.; Kirk, M.D.; Heywood, A.E.; Newall, A.T. Evaluating food safety management systems in Singapore: A controlled interrupted time-series analysis of foodborne disease outbreak reports. Food Control 2020, 117, 107324. [Google Scholar] [CrossRef]
- Park, M.S.; Park, K.H.; Bahk, G.J. Combined influence of multiple climatic factors on the incidence of bacterial foodborne diseases. Sci. Total Environ. 2018, 610–611, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Gu, X.; Wang, L.; Zhou, Y.; Huang, Z.; Xu, C.; Cheng, C. Spatiotemporal variations in the incidence of bacillary dysentery and long-term effects associated with meteorological and socioeconomic factors in China from 2013 to 2017. Sci. Total Environ. 2021, 755, 142626. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.J.; Yu, C.; Jia, P. Spatiobehavioral Characteristics - Defining the Epidemiology of New Contagious Diseases at the Earliest Moment Possible. Trends Parasitol. 2021, 37, 179–181. [Google Scholar] [CrossRef] [PubMed]
- Xiao, G.; Xu, C.; Wang, J.; Yang, D.; Wang, L. Spatial–temporal pattern and risk factor analysis of bacillary dysentery in the Beijing–Tianjin–Tangshan urban region of China. BMC Public Health 2014, 14, 998. [Google Scholar] [CrossRef] [Green Version]
- Bian, W.; Hou, H.; Chen, J.; Zhou, B.; Xia, J.; Xie, S.; Liu, T. Evaluating the Spatial Risk of Bacterial Foodborne Diseases Using Vulnerability Assessment and Geographically Weighted Logistic Regression. Remote Sens. 2022, 14, 3613. [Google Scholar] [CrossRef]
- Du, Y.; Wang, H.; Cui, W.; Zhu, H.; Guo, Y.; Dharejo, F.A.; Zhou, Y. Foodborne disease risk prediction using multigraph structural long short-term memory networks: Algorithm design and validation study. JMIR Med. Inform. 2021, 9, e29433. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, J.; Zhang, R.; Zhang, H.; Qi, X.; He, Y.; Chen, J. An 11-Year Analysis of Bacterial Foodborne Disease Outbreaks in Zhejiang Province, China. Foods 2022, 11, 2382. [Google Scholar] [CrossRef]
- Rao, H.; Shi, X.; Zhang, X. Using the Kulldorff’s scan statistical analysis to detect spatio-temporal clusters of tuberculosis in Qinghai Province, China, 2009–2016. BMC Infect. Dis. 2017, 17, 578. [Google Scholar] [CrossRef] [Green Version]
- Kulldorff, M.; Heffernan, R.; Hartman, J.; Assuncao, R.; Mostashari, F. A space-time permutation scan statistic for disease outbreak detection. PLoS Med. 2005, 2, 216–224. [Google Scholar] [CrossRef] [Green Version]
- Mostashari, F.; Kulldorff, M.; Hartman, J.J.; Miller, J.R.; Kulasekera, V. Dead bird clusters as an early warning system for West Nile virus activity. Emerg. Infect. Dis. 2003, 9, 641–646. [Google Scholar] [CrossRef]
- Huang, L.; Kulldorff, M.; Gregorio, D. A Spatial Scan Statistic for Survival Data. Biometrics 2007, 63, 109–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Praene, J.P.; Malet-Damour, B.; Radanielina, M.H.; Fontaine, L.; Rivière, G. GIS-based approach to identify climatic zoning: A hierarchical clustering on principal component analysis. Build. Environ. 2019, 164, 106330. [Google Scholar] [CrossRef] [Green Version]
- Wang, E.Z.J. Vector Autoregressive Models for Multivariate Time Series. In Modeling Financial Time Series with S-PLUS®; Zivot, E., Wang, J., Eds.; Springer: New York, NY, USA, 2006; pp. 385–429. [Google Scholar]
- Yaya, O.S.; Ogbonna, A.E.; Mudida, R. Hysteresis of unemployment rates in Africa: New findings from Fourier ADF test. Qual. Quant. 2019, 53, 2781–2795. [Google Scholar] [CrossRef] [Green Version]
- Lütkepohl, H. Stable Vector Autoregressive Processes. In New Introduction to Multiple Time Series Analysis; Springer: Berlin/Heidelberg, Germany, 2005; pp. 13–68. [Google Scholar]
- Daniels, N.A.; MacKinnon, L.; Bishop, R.; Altekruse, S.; Ray, B.; Hammond, R.M.; Thompson, S.; Wilson, S.; Bean, N.H.; Griffin, P.M.; et al. Vibrio parahaemolyticus Infections in the United States, 1973–1998. J. Infect. Dis. 2000, 181, 1661–1666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lake, I.R.; Gillespie, I.A.; Bentham, G.; Nichols, G.L.; Lane, C.; Adak, G.K.; Threlfall, E.J. A re-evaluation of the impact of temperature and climate change on foodborne illness. Epidemiol. Infect. 2009, 137, 1538–1547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Zhu, Y.; Zhu, Z.; Qu, B. Association between meteorological factors and bacillary dysentery incidence in Chaoyang city, China: An ecological study. BMJ Open 2016, 6, e013376. [Google Scholar] [CrossRef] [Green Version]
- Baker-Austin, C.; Trinanes, J.A.; Taylor, N.G.H.; Hartnell, R.; Siitonen, A.; Martinez-Urtaza, J. Emerging Vibrio risk at high latitudes in response to ocean warming. Nat. Clim. Change 2013, 3, 73–77. [Google Scholar] [CrossRef]
- Baker-Austin, C.; Trinanes, J.A.; Taylor, N.G.H.; Hartnell, R.; Siitonen, A.; Martinez-Urtaza, J. Correction: Corrigendum: Emerging Vibrio risk at high latitudes in response to ocean warming. Nat. Clim. Change 2016, 6, 802. [Google Scholar] [CrossRef] [Green Version]
- Shaw, K.S.; Jacobs, J.M.; Crump, B.C. Impact of Hurricane Irene on Vibrio vulnificus and Vibrio parahaemolyticus concentrations in surface water, sediment, and cultured oysters in the Chesapeake Bay, MD, USA. Front. Microbiol. 2014, 5. [Google Scholar] [CrossRef]
- Misiou, O.; Koutsoumanis, K. Climate change and its implications for food safety and spoilage. Trends Food Sci. Technol. 2022, 126, 142–152. [Google Scholar] [CrossRef]
Variables | Description | n | Minimum | Maximum | Median | Mean | S.D. |
---|---|---|---|---|---|---|---|
Dependent variable | |||||||
DR | Detection rate of V. parahaemolyticus (%) | 261 | 0.00 | 16.79 | 0.99 | 2.70 | 3.70 |
Meteorological characteristic | |||||||
SunHour | Sunshine hours (h) | 261 | 0.34 | 11 | 4.22 | 4.44 | 2.33 |
MaxTemp | Daily maximum temperature (°C) | 261 | 4.63 | 37.24 | 23.62 | 22.48 | 8.08 |
MinTemp | Daily minimum temperature (°C) | 261 | −1.13 | 27.71 | 15.22 | 15.05 | 7.94 |
MeanTemp | Mean temperature (°C) | 261 | 1.44 | 31.91 | 18.68 | 18.2 | 7.94 |
MeanHum | Mean relative humidity (%) | 261 | 55.16 | 93.4 | 77.59 | 77.16 | 7.64 |
MeanWS | Mean wind speed (m/s) | 261 | 1.42 | 3.63 | 2.19 | 2.24 | 0.36 |
Precip | Precipitation (mm) | 261 | 0.00 | 20.77 | 3.61 | 4.48 | 4.08 |
Climate Index | Variables | F1 | F2 | F3 |
---|---|---|---|---|
Precip | X1 | 0.346 | 0.751 | 0.034 |
MeanWS | X2 | −0.042 | −0.049 | 0.997 |
MeanHum | X3 | 0.283 | 0.858 | 0.076 |
MeanTemp | X4 | 0.993 | −0.066 | 0.003 |
MaxTemp | X5 | 0.980 | −0.163 | −0.055 |
MinTemp | X6 | 0.988 | 0.026 | 0.040 |
SunHour | X7 | 0.356 | −0.855 | 0.061 |
Eigenvalue | 3.252 | 2.065 | 1.009 | |
% of variance | 46.454 | 29.505 | 14.418 | |
% of cumulative variance | 46.454 | 75.959 | 90.377 |
Cluster | Duration (Weeks) | Number of Countries | RR | LLR |
---|---|---|---|---|
C1 *** | 29th–40th, 2016 | 23 | 4.610 | 390.316 |
C2 *** | 22nd, 2016–42nd, 2017 | 10 | 3.470 | 372.045 |
C3 *** | 28th–37th, 2016 | 18 | 3.700 | 190.408 |
Non_C | - | 38 | - | - |
Types | Variables | Difference Order | Exogenous | ADF Test t-Statistic | Test Critical Values | Conclusion | ||
---|---|---|---|---|---|---|---|---|
1% | 5% | 10% | ||||||
Detection rate | C1_DR | 0 | None | −2.922 | −2.574 | −1.942 | −1.616 | Steady |
C2_DR | 0 | Constant | −3.882 | −3.456 | −2.873 | −2.573 | Steady | |
C3_DR | 0 | Constant | −4.048 | −3.455 | −2.872 | −2.573 | Steady | |
Non_C_DR | 0 | Constant | −4.934 | −3.455 | −2.872 | −2.573 | Steady | |
Meteorological component | C1_F1 | 0 | None | −7.378 | −2.574 | −1.942 | −1.616 | Steady |
C1_F2 | 0 | None | −11.787 | −2.574 | −1.942 | −1.616 | Steady | |
C1_F3 | 0 | Constant | −14.374 | −3.455 | −2.872 | −2.573 | Steady | |
C2_F1 | 0 | None | −7.894 | −2.574 | −1.942 | −1.616 | Steady | |
C2_F2 | 0 | None | −11.980 | −2.574 | −1.942 | −1.616 | Steady | |
C2_F3 | 0 | Constant | −7.166 | −3.455 | −2.872 | −2.573 | Steady | |
C3_F1 | 0 | None | −5.296 | −2.574 | −1.942 | −1.616 | Steady | |
C3_F2 | 0 | None | −11.859 | −2.574 | −1.942 | −1.616 | Steady | |
C3_F3 | 0 | Constant | −14.696 | −3.994 | −3.427 | −3.137 | Steady | |
Non_C_F1 | 0 | None | −7.831 | −2.574 | −1.942 | −1.616 | Steady | |
Non_C_F2 | 0 | None | −11.811 | −2.574 | −1.942 | −1.616 | Steady | |
Non_C_F3 | 0 | Constant | −14.661 | −3.455 | −2.872 | −2.573 | Steady |
Region | Null Hypothesis | F-Statistic | p-Values | Conclusion |
---|---|---|---|---|
C1 | C1_F1 does not Granger Cause C1_DR *** | 6.66244 | 2 × 10−6 | Reject |
C1_F2 does not Granger Cause C1_DR | 0.73259 | 0.6238 | Accept | |
C1_F3 does not Granger Cause C1_DR * | 2.18704 | 0.0449 | Reject | |
C2 | C2_F1 does not Granger Cause C2_DR *** | 29.2360 | 4 × 10−12 | Reject |
C2_F2 does not Granger Cause C2_DR | 0.96566 | 0.3821 | Accept | |
C2_F3 does not Granger Cause C2_DR | 0.44662 | 0.6403 | Accept | |
C3 | C3_F1 does not Granger Cause C3_DR *** | 5.10501 | 6 × 10−5 | Reject |
C3_F2 does not Granger Cause C3_DR | 1.57484 | 0.1551 | Accept | |
C3_F3 does not Granger Cause C3_DR | 0.30514 | 0.9339 | Accept | |
Non_C | Non_C_F1 does not Granger Cause Non_C_DR*** | 19.4235 | 1 × 10−8 | Reject |
Non_C_F2 does not Granger Cause Non_C_DR | 0.19730 | 0.8211 | Accept | |
Non_C_F3 does not Granger Cause Non_C_DR | 0.42030 | 0.6573 | Accept |
Evaluation Index | C1_DR (6) | C2_DR (2) | C3_DR (6) | Non_C_DR (2) |
---|---|---|---|---|
R-squared | 0.753 | 0.584 | 0.667 | 0.585 |
Adj. R-squared | 0.727 | 0.571 | 0.632 | 0.573 |
AIC | −4.278 | −3.229 | −4.253 | −5.580 |
SC | −3.931 | −3.105 | −3.905 | −5.470 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, X.; Guo, J.; Yao, S.; Liu, T.; Hou, H.; Ren, H. Comprehensive Dynamic Influence of Multiple Meteorological Factors on the Detection Rate of Bacterial Foodborne Diseases under Spatio-Temporal Heterogeneity. Int. J. Environ. Res. Public Health 2023, 20, 4321. https://doi.org/10.3390/ijerph20054321
Qi X, Guo J, Yao S, Liu T, Hou H, Ren H. Comprehensive Dynamic Influence of Multiple Meteorological Factors on the Detection Rate of Bacterial Foodborne Diseases under Spatio-Temporal Heterogeneity. International Journal of Environmental Research and Public Health. 2023; 20(5):4321. https://doi.org/10.3390/ijerph20054321
Chicago/Turabian StyleQi, Xiaojuan, Jingxian Guo, Shenjun Yao, Ting Liu, Hao Hou, and Huan Ren. 2023. "Comprehensive Dynamic Influence of Multiple Meteorological Factors on the Detection Rate of Bacterial Foodborne Diseases under Spatio-Temporal Heterogeneity" International Journal of Environmental Research and Public Health 20, no. 5: 4321. https://doi.org/10.3390/ijerph20054321
APA StyleQi, X., Guo, J., Yao, S., Liu, T., Hou, H., & Ren, H. (2023). Comprehensive Dynamic Influence of Multiple Meteorological Factors on the Detection Rate of Bacterial Foodborne Diseases under Spatio-Temporal Heterogeneity. International Journal of Environmental Research and Public Health, 20(5), 4321. https://doi.org/10.3390/ijerph20054321