Relationship between APOE, PER2, PER3 and OX2R Genetic Variants and Neuropsychiatric Symptoms in Patients with Alzheimer’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
Inclusion and Exclusion Criteria
2.2. Molecular Analysis
2.3. Clinical and Neuropsychological Evaluations
2.4. Statistical Analysis
3. Results
3.1. Sociodemographic and Clinical Characteristics
3.2. Description of BPSD in Patients with AD and Cognitively Healthy Controls
3.3. Allelic and Genotypic Frequencies of the Genetic Variants Studied
3.4. Associations between Allelic Variants with BPSD in Patients with AD based on NPI, PHQ-9 and Sleeping Disorders Questionnaire Evaluations
3.5. Gene–Gene Interaction Analysis by MDR
3.6. Potential Synergistic Associations between APOE_ε4 Carrier Status Plus Multilocus Genotype with BPSD in the AD Progression of Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dementia. Available online: https://www.who.int/news-room/fact-sheets/detail/dementia (accessed on 24 December 2022).
- Agüera Ortiz, L.F.; López Álvarez, J.; del Nido Varo, L.; Soria García-Rosel, E.; Pérez Martínez, D.A.; Ismail, Z. Deterioro comportamental leve como antecedente de la demencia: Presentación de los criterios diagnósticos y de la versión española de la escala MBI-C para su valoración. Rev. Neurol. 2017, 65, 327. [Google Scholar] [CrossRef] [Green Version]
- Turró Garriga, O.; López Pousa, S.; Vilalta Franch, J.; Turon Estrada, A.; Pericot Nierga, I.; Lozano Gallego, M.; Hernández Ferràndiz, M.; Soler Cors, O.; Planas Pujol, X.; Monserrat Vila, S.; et al. Estudio longitudinal de la apatía en pacientes con enfermedad de Alzheimer. Rev. Neurol. 2009, 48, 7. [Google Scholar] [CrossRef]
- Taragano, F.E.; Allegri, R.F.; Krupitzki, H.; Sarasola, D.R.; Serrano, C.M.; Loñ, L.; Lyketsos, C.G. Mild Behavioral Impairment and Risk of Dementia: A Prospective Cohort Study of 358 Patients. J. Clin. Psychiatry 2009, 70, 584–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raber, J. Role of Apolipoprotein E in Anxiety. Neural Plast. 2007, 2007, 091236. [Google Scholar] [CrossRef] [Green Version]
- Laganà, V.; Bruno, F.; Altomari, N.; Bruni, G.; Smirne, N.; Curcio, S.; Mirabelli, M.; Colao, R.; Puccio, G.; Frangipane, F.; et al. Neuropsychiatric or Behavioral and Psychological Symptoms of Dementia (BPSD): Focus on Prevalence and Natural History in Alzheimer’s Disease and Frontotemporal Dementia. Front. Neurol. 2022, 13, 832199. [Google Scholar] [CrossRef] [PubMed]
- Pinyopornpanish, K.; Soontornpun, A.; Wongpakaran, T.; Wongpakaran, N.; Tanprawate, S.; Pinyopornpanish, K.; Nadsasarn, A.; Pinyopornpanish, M. Impact of Behavioral and Psychological Symptoms of Alzheimer’s Disease on Caregiver Outcomes. Sci. Rep. 2022, 12, 14138. [Google Scholar] [CrossRef]
- Kwon, C.-Y.; Lee, B. Prevalence of Behavioral and Psychological Symptoms of Dementia in Community-Dwelling Dementia Patients: A Systematic Review. Front. Psychiatry 2021, 12, 741059. [Google Scholar] [CrossRef] [PubMed]
- Wolinsky, D.; Drake, K.; Bostwick, J. Diagnosis and Management of Neuropsychiatric Symptoms in Alzheimer’s Disease. Curr. Psychiatry Rep. 2018, 20, 117. [Google Scholar] [CrossRef]
- Zhao, Q.-F.; Tan, L.; Wang, H.-F.; Jiang, T.; Tan, M.-S.; Tan, L.; Xu, W.; Li, J.-Q.; Wang, J.; Lai, T.-J.; et al. The Prevalence of Neuropsychiatric Symptoms in Alzheimer’s Disease: Systematic Review and Meta-Analysis. J. Affect. Disord. 2016, 190, 264–271. [Google Scholar] [CrossRef]
- Acosta, I.; Borges, G.; Aguirre-Hernandez, R.; Sosa, A.L.; Prince, M. Neuropsychiatric Symptoms as Risk Factors of Dementia in a Mexican Population: A 10/66 Dementia Research Group Study. Alzheimers Dement. 2018, 14, 271–279. [Google Scholar] [CrossRef]
- Pak, V.M.; Onen, S.-H.; Bliwise, D.L.; Kutner, N.G.; Russell, K.L.; Onen, F. Sleep Disturbances in MCI and AD: Neuroinflammation as a Possible Mediating Pathway. Front. Aging Neurosci. 2020, 12, 69. [Google Scholar] [CrossRef] [PubMed]
- Conde-Sala, J.L.; Turró-Garriga, O.; Piñán-Hernández, S.; Portellano-Ortiz, C.; Viñas-Diez, V.; Gascón-Bayarri, J.; Reñé-Ramírez, R. Effects of Anosognosia and Neuropsychiatric Symptoms on the Quality of Life of Patients with Alzheimer’s Disease: A 24-Month Follow-up Study: Anosognosia and Neuropsychiatric Symptoms in AD. Int. J. Geriatr. Psychiatry 2016, 31, 109–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Gao, L.; Gaba, A.; Yu, L.; Cui, L.; Fan, W.; Lim, A.S.P.; Bennett, D.A.; Buchman, A.S.; Hu, K. Circadian Disturbances in Alzheimer’s Disease Progression: A Prospective Observational Cohort Study of Community-Based Older Adults. Lancet Healthy Longev. 2020, 1, e96–e105. [Google Scholar] [CrossRef] [PubMed]
- Ohayon, M.M.; Vecchierini, M.-F. Daytime Sleepiness and Cognitive Impairment in the Elderly Population. Arch. Intern. Med. 2002, 162, 201. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Liu, S.; Yu, X.; Zhao, X.; Ma, L.; Shan, P. High Prevalence of Sleep Disorders and Behavioral and Psychological Symptoms of Dementia in Late-Onset Alzheimer Disease: A Study in Eastern China. Medicine 2019, 98, e18405. [Google Scholar] [CrossRef]
- Hickie, I.B.; Naismith, S.L.; Robillard, R.; Scott, E.M.; Hermens, D.F. Manipulating the Sleep-Wake Cycle and Circadian Rhythms to Improve Clinical Management of Major Depression. BMC Med. 2013, 11, 79. [Google Scholar] [CrossRef] [Green Version]
- Buccellato, F.R.; D’Anca, M.; Serpente, M.; Arighi, A.; Galimberti, D. The Role of Glymphatic System in Alzheimer’s and Parkinson’s Disease Pathogenesis. Biomedicines 2022, 10, 2261. [Google Scholar] [CrossRef]
- Wu, H.; Dunnett, S.; Ho, Y.-S.; Chang, R.C.-C. The Role of Sleep Deprivation and Circadian Rhythm Disruption as Risk Factors of Alzheimer’s Disease. Front. Neuroendocrinol. 2019, 54, 100764. [Google Scholar] [CrossRef]
- Hablitz, L.M.; Plá, V.; Giannetto, M.; Vinitsky, H.S.; Stæger, F.F.; Metcalfe, T.; Nguyen, R.; Benrais, A.; Nedergaard, M. Circadian Control of Brain Glymphatic and Lymphatic Fluid Flow. Nat. Commun. 2020, 11, 4411. [Google Scholar] [CrossRef]
- Parsons, M.J.; Lester, K.J.; Barclay, N.L.; Archer, S.N.; Nolan, P.M.; Eley, T.C.; Gregory, A.M. Polymorphisms in the Circadian Expressed Genes PER3 and ARNTL2 Are Associated with Diurnal Preference and GNβ3 with Sleep Measures. J. Sleep Res. 2014, 23, 595–604. [Google Scholar] [CrossRef] [Green Version]
- Lescai, F.; Chiamenti, A.M.; Codemo, A.; Pirazzini, C.; D’Agostino, G.; Ruaro, C.; Ghidoni, R.; Benussi, L.; Galimberti, D.; Esposito, F.; et al. An APOE Haplotype Associated with Decreased Ε4 Expression Increases the Risk of Late Onset Alzheimer’s Disease. J. Alzheimers Dis. JAD 2011, 24, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Valero, S.; Marquié, M.; De Rojas, I.; Espinosa, A.; Moreno-Grau, S.; Orellana, A.; Montrreal, L.; Hernández, I.; Mauleón, A.; Rosende-Roca, M.; et al. Interaction of Neuropsychiatric Symptoms with APOE Ε4 and Conversion to Dementia in MCI Patients in a Memory Clinic. Sci. Rep. 2020, 10, 20058. [Google Scholar] [CrossRef] [PubMed]
- Mou, C.; Han, T.; Wang, M.; Jiang, M.; Liu, B.; Hu, J. Correlation of Polymorphism of APOE and LRP Genes to Cognitive Impairment and Behavioral and Psychological Symptoms of Dementia in Alzheimer’s Disease and Vascular Dementia. Int. J. Clin. Exp. Med. 2015, 8, 21679–21683. [Google Scholar]
- Alachkar, A.; Lee, J.; Asthana, K.; Vakil Monfared, R.; Chen, J.; Alhassen, S.; Samad, M.; Wood, M.; Mayer, E.A.; Baldi, P. The Hidden Link between Circadian Entropy and Mental Health Disorders. Transl. Psychiatry 2022, 12, 281. [Google Scholar] [CrossRef] [PubMed]
- Dewandre, D.; Atienza, M.; Sanchez-Espinosa, M.P.; Cantero, J.L. Effects of PER3 Clock Gene Polymorphisms on Aging-Related Changes of the Cerebral Cortex. Brain Struct. Funct. 2018, 223, 597–607. [Google Scholar] [CrossRef]
- Eriksson, K.S.; Sergeeva, O.A.; Haas, H.L.; Selbach, O. Orexins/Hypocretins and Aminergic Systems. Acta Physiol. 2010, 198, 263–275. [Google Scholar] [CrossRef]
- Mamdani, F.; Weber, M.D.; Bunney, B.; Burke, K.; Cartagena, P.; Walsh, D.; Lee, F.S.; Barchas, J.; Schatzberg, A.F.; Myers, R.M.; et al. Identification of Potential Blood Biomarkers Associated with Suicide in Major Depressive Disorder. Transl. Psychiatry 2022, 12, 159. [Google Scholar] [CrossRef]
- Lavebratt, C.; Sjöholm, L.K.; Partonen, T.; Schalling, M.; Forsell, Y. PER2 Variantion Is Associated with Depression Vulnerability. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2010, 153, 570–581. [Google Scholar] [CrossRef]
- Liu, H.-C.; Hu, C.-J.; Tang, Y.-C.; Chang, J.-G. A Pilot Study for Circadian Gene Disturbance in Dementia Patients. Neurosci. Lett. 2008, 435, 229–233. [Google Scholar] [CrossRef]
- McCarthy, M.J.; Wei, H.; Marnoy, Z.; Darvish, R.M.; McPhie, D.L.; Cohen, B.M.; Welsh, D.K. Genetic and Clinical Factors Predict Lithium’s Effects on PER2 Gene Expression Rhythms in Cells from Bipolar Disorder Patients. Transl. Psychiatry 2013, 3, e318. [Google Scholar] [CrossRef] [Green Version]
- Yegin, Z.; Sarisoy, G.; Erguner Aral, A.; Koc, H. For Whom the Circadian Clock Ticks? Investigation of PERIOD and CLOCK Gene Variants in Bipolar Disorder. Chronobiol. Int. 2021, 38, 1109–1119. [Google Scholar] [CrossRef]
- Araújo Pereira, P.; Alvim-Soares, A.; Aparecida Camargos Bicalho, M.; Nunes de Moraes, E.; Malloy-Diniz, L.; Jardim de Paula, J.; Aurélio Romano-Silva, M.; Marques Miranda, D. Lack of Association between Genetic Polymorphism of Circadian Genes (PER2, PER3, CLOCK and OX2R) with Late Onset Depression and Alzheimer’s Disease in a Sample of a Brazilian Population (Circadian Genes, Late-Onset Depression and Alzheimer’s Disease). Curr. Alzheimer Res. 2016, 13, 1397–1406. [Google Scholar] [CrossRef]
- Um, Y.H.; Lim, H.K. Orexin and Alzheimer’s Disease: A New Perspective. Psychiatry Investig. 2020, 17, 621–626. [Google Scholar] [CrossRef]
- Liguori, C. Orexin and Alzheimer’s Disease. Curr. Top. Behav. Neurosci. 2017, 33, 305–322. [Google Scholar] [CrossRef]
- Davies, J.; Chen, J.; Pink, R.; Carter, D.; Saunders, N.; Sotiriadis, G.; Bai, B.; Pan, Y.; Howlett, D.; Payne, A.; et al. Orexin Receptors Exert a Neuroprotective Effect in Alzheimer’s Disease (AD) via Heterodimerization with GPR103. Sci. Rep. 2015, 5, 12584. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.-K.; Peng, X.-D.; Li, Y.-H.; Wang, Z.-R.; Chang-quan, H.; Hui, W.; Liu, Q.-X. The Polymorphism of CLOCK Gene 3111T/C C>T Is Associated With Susceptibility of Alzheimer Disease in Chinese Population. J. Investig. Med. 2013, 61, 1084–1087. [Google Scholar] [CrossRef]
- Bessi, V.; Balestrini, J.; Bagnoli, S.; Mazzeo, S.; Giacomucci, G.; Padiglioni, S.; Piaceri, I.; Carraro, M.; Ferrari, C.; Bracco, L.; et al. Influence of ApoE Genotype and Clock T3111C Interaction with Cardiovascular Risk Factors on the Progression to Alzheimer’s Disease in Subjective Cognitive Decline and Mild Cognitive Impairment Patients. J. Pers. Med. 2020, 10, 45. [Google Scholar] [CrossRef] [PubMed]
- Hastings, M.H.; Goedert, M. Circadian Clocks and Neurodegenerative Diseases: Time to Aggregate? Curr. Opin. Neurobiol. 2013, 23, 880–887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Huang, C.; You, C.; Wang, Z.-R.; Si-qing, H. Polymorphism of CLOCK Gene Rs 4580704 C>G Is Associated with Susceptibility of Alzheimer’s Disease in a Chinese Population. Arch. Med. Res. 2013, 44, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Huang, C.-Q.; Hu, X.-Y.; Li, S.-B.; Zhang, X.-M. Functional CLOCK Gene Rs1554483 G/C Polymorphism Is Associated with Susceptibility to Alzheimer’s Disease in the Chinese Population. J. Int. Med. Res. 2013, 41, 340–346. [Google Scholar] [CrossRef]
- Liguori, C.; Nuccetelli, M.; Izzi, F.; Sancesario, G.; Romigi, A.; Martorana, A.; Amoroso, C.; Bernardini, S.; Marciani, M.G.; Mercuri, N.B.; et al. Rapid Eye Movement Sleep Disruption and Sleep Fragmentation Are Associated with Increased Orexin-A Cerebrospinal-Fluid Levels in Mild Cognitive Impairment Due to Alzheimer’s Disease. Neurobiol. Aging 2016, 40, 120–126. [Google Scholar] [CrossRef]
- Liguori, C.; Mercuri, N.B.; Nuccetelli, M.; Izzi, F.; Bernardini, S.; Placidi, F. Cerebrospinal Fluid Orexin Levels and Nocturnal Sleep Disruption in Alzheimer’s Disease Patients Showing Neuropsychiatric Symptoms. J. Alzheimers Dis. 2018, 66, 993–999. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Publishing: Washington, DC, USA, 2013. [Google Scholar]
- Duarte Ayala, R.E.; Velasco Rojano, Á.E. Validación psicométrica del índice de Barthel en adultos mayores mexicanos. Horiz. Sanit. 2022, 21, 113–120. [Google Scholar] [CrossRef]
- Aguilar-Navarro, S.G.; Mimenza-Alvarado, A.J.; Palacios-García, A.A.; Samudio-Cruz, A.; Gutiérrez-Gutiérrez, L.A.; Ávila-Funes, J.A. Validity and Reliability of the Spanish Version of the Montreal Cognitive Assessment (MoCA) for the Detection of Cognitive Impairment in Mexico. Rev. Colomb. Psiquiatr. Engl. Ed. 2018, 47, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Familiar, I.; Ortiz-Panozo, E.; Hall, B.; Vieitez, I.; Romieu, I.; Lopez-Ridaura, R.; Lajous, M. Factor Structure of the Spanish Version of the Patient Health Questionnaire-9 in Mexican Women. Int. J. Methods Psychiatr. Res. 2015, 24, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J. The Neuropsychiatric Inventory: Development and Applications. J. Geriatr. Psychiatry Neurol. 2020, 33, 73–84. [Google Scholar] [CrossRef]
- Valencia-Flores, M.; Santiago-Ayala, V.; Valencia-Flores, C.; Reyes-Silva, J.S.; Gómez-Valle, R.M. Cuestionario de Trastornos Del Dormir Para El Adulto Mayor, UNAM, INSTITUTO NACIONAL DE CIENCIAS MÉDICAS Y NUTRICIÓN SALVADOR ZUBIRÁN Departamento de Neurología y Psiquiatría, Clínica de Trastornos del Dormir. 2023; in preparation. [Google Scholar]
- Xu, H.-M.; Xu, L.-F.; Hou, T.-T.; Luo, L.-F.; Chen, G.-B.; Sun, X.-W.; Lou, X.-Y. GMDR: Versatile Software for Detecting Gene-Gene and Gene-Environ-Ment Interactions Underlying Complex Traits. Curr. Genomics 2016, 17, 396–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING V11: Protein-Protein Association Networks with Increased Coverage, Supporting Functional Discovery in Genome-Wide Experimental Datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [Green Version]
- Luppa, M.; Sikorski, C.; Luck, T.; Ehreke, L.; Konnopka, A.; Wiese, B.; Weyerer, S.; König, H.-H.; Riedel-Heller, S.G. Age- and Gender-Specific Prevalence of Depression in Latest-Life-Systematic Review and Meta-Analysis. J. Affect. Disord. 2012, 136, 212–221. [Google Scholar] [CrossRef]
- D’Hyver de las Deses, C. Alteraciones del sueño en personas adultas mayores. Rev. Fac. Med. México 2018, 61, 33–45. [Google Scholar]
- Sun, Y.-Y.; Wang, Z.; Zhou, H.-Y.; Huang, H.-C. Sleep-Wake Disorders in Alzheimer’s Disease: A Review. ACS Chem. Neurosci. 2022, 13, 1467–1478. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-S.; Ouyang, P.; Yeh, Y.-C.; Lai, C.-L.; Liu, C.-K.; Yen, C.-F.; Ko, C.-H.; Yen, J.-Y.; Liu, G.-C.; Juo, S.-H.H. Apolipoprotein E Polymorphism and Behavioral and Psychological Symptoms of Dementia in Patients with Alzheimer Disease. Alzheimer Dis. Assoc. Disord. 2012, 26, 135. [Google Scholar] [CrossRef] [PubMed]
- Cho, C.-H.; Lee, H.-J.; Woo, H.G.; Choi, J.-H.; Greenwood, T.A.; Kelsoe, J.R. CDH13 and HCRTR2 May Be Associated with Hypersomnia Symptom of Bipolar Depression: A Genome-Wide Functional Enrichment Pathway Analysis. Psychiatry Investig. 2015, 12, 402. [Google Scholar] [CrossRef] [Green Version]
- Bellanti, F.; Iannelli, G.; Blonda, M.; Tamborra, R.; Villani, R.; Romano, A.; Calcagnini, S.; Mazzoccoli, G.; Vinciguerra, M.; Gaetani, S.; et al. Alterations of Clock Gene RNA Expression in Brain Regions of a Triple Transgenic Model of Alzheimer’s Disease. J. Alzheimers Dis. 2017, 59, 615–631. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Cheng, L.; Zhao, Y. Resetting the Circadian Clock of Alzheimer’s Mice via GLP-1 Injection Combined with Time-Restricted Feeding. Front. Physiol. 2022, 13, 911437. [Google Scholar] [CrossRef] [PubMed]
- Song, H.-M.; Cho, C.-H.; Lee, H.-J.; Moon, J.H.; Kang, S.-G.; Yoon, H.-K.; Park, Y.-M.; Kim, L. Association of CLOCK, ARNTL, PER2, and GNB3 Polymorphisms with Diurnal Preference in a Korean Population. Chronobiol. Int. 2016, 33, 1455–1463. [Google Scholar] [CrossRef]
- Pedrazzoli, M.; Secolin, R.; Esteves, L.O.B.; Pereira, D.S.; Koike, B.D.V.; Louzada, F.M.; Lopes-Cendes, I.; Tufik, S. Interactions of Polymorphisms in Different Clock Genes Associated with Circadian Phenotypes in Humans. Genet. Mol. Biol. 2010, 33, 627–632. [Google Scholar] [CrossRef] [Green Version]
- Drogos, L.L.; Gill, S.J.; Tyndall, A.V.; Raneri, J.K.; Parboosingh, J.S.; Naef, A.; Guild, K.D.; Eskes, G.; Hanly, P.J.; Poulin, M.J. Evidence of Association between Sleep Quality and APOE Ε4 in Healthy Older Adults: A Pilot Study. Neurology 2016, 87, 1836–1842. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-C.; Lung, F.-W. The Role of PGC-1 and Apoε4 in Insomnia. Psychiatr. Genet. 2012, 22, 82–87. [Google Scholar] [CrossRef]
- Gottlieb, D.J.; DeStefano, A.L.; Foley, D.J.; Mignot, E.; Redline, S.; Givelber, R.J.; Young, T. APOE Ε4 Is Associated with Obstructive Sleep Apnea/Hypopnea: The Sleep Heart Health Study. Neurology 2004, 63, 664–668. [Google Scholar] [CrossRef]
- Kadotani, H.; Kadotani, T.; Young, T.; Peppard, P.E.; Finn, L.; Colrain, I.M.; Murphy, G.M.; Mignot, E. Association between Apolipoprotein E Epsilon4 and Sleep-Disordered Breathing in Adults. JAMA 2001, 285, 2888–2890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gozal, D.; Capdevila, O.S.; Kheirandish-Gozal, L.; Crabtree, V.M. APOE Epsilon 4 Allele, Cognitive Dysfunction, and Obstructive Sleep Apnea in Children. Neurology 2007, 69, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Blackman, J.; Love, S.; Sinclair, L.; Cain, R.; Coulthard, E. APOE Ε4, Alzheimer’s Disease Neuropathology and Sleep Disturbance, in Individuals with and without Dementia. Alzheimers Res. Ther. 2022, 14, 47. [Google Scholar] [CrossRef]
- Gallone, S.; Boschi, S.; Rubino, E.; De Martino, P.; Scarpini, E.; Galimberti, D.; Fenoglio, C.; Acutis, P.L.; Maniaci, M.G.; Pinessi, L.; et al. Is HCRTR2 a Genetic Risk Factor for Alzheimer’s Disease? Dement. Geriatr. Cogn. Disord. 2014, 38, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Seripa, D.; D’Onofrio, G.; Panza, F.; Cascavilla, L.; Masullo, C.; Pilotto, A. The Genetics of the Human APOE Polymorphism. Rejuvenation Res. 2011, 14, 491–500. [Google Scholar] [CrossRef]
- Tudorache, I.F.; Trusca, V.G.; Gafencu, A.V. Apolipoprotein E-A Multifunctional Protein with Implications in Various Pathologies as a Result of Its Structural Features. Comput. Struct. Biotechnol. J. 2017, 15, 359–365. [Google Scholar] [CrossRef]
- Lee, H.-J.; Kim, L.; Kang, S.-G.; Yoon, H.-K.; Choi, J.-E.; Park, Y.-M.; Kim, S.J.; Kripke, D.F. PER2 Variation Is Associated with Diurnal Preference in a Korean Young Population. Behav. Genet. 2011, 41, 273–277. [Google Scholar] [CrossRef] [Green Version]
- Forbes, E.E.; Dahl, R.E.; Almeida, J.R.C.; Ferrell, R.E.; Nimgaonkar, V.L.; Mansour, H.; Sciarrillo, S.R.; Holm, S.M.; Rodriguez, E.E.; Phillips, M.L. PER2 Rs2304672 Polymorphism Moderates Circadian-Relevant Reward Circuitry Activity in Adolescents. Biol. Psychiatry 2012, 71, 451–457. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhao, M.; Li, P.; Wu, C.; Lv, Y.; Jiang, Y. Gene-Environment Interaction between Circadian Clock Gene Polymorphisms and Job Stress on the Risk of Sleep Disturbances. Psychopharmacology 2022, 239, 3337–3344. [Google Scholar] [CrossRef]
- Hida, A.; Kitamura, S.; Katayose, Y.; Kato, M.; Ono, H.; Kadotani, H.; Uchiyama, M.; Ebisawa, T.; Inoue, Y.; Kamei, Y.; et al. Screening of Clock Gene Polymorphisms Demonstrates Association of a PER3 Polymorphism with Morningness–Eveningness Preference and Circadian Rhythm Sleep Disorder. Sci. Rep. 2014, 4, 6309. [Google Scholar] [CrossRef] [Green Version]
- Ebisawa, T.; Uchiyama, M.; Kajimura, N.; Mishima, K.; Kamei, Y.; Katoh, M.; Watanabe, T.; Sekimoto, M.; Shibui, K.; Kim, K.; et al. Association of Structural Polymorphisms in the Human Period3 Gene with Delayed Sleep Phase Syndrome. EMBO Rep. 2001, 2, 342–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viola, A.U.; Archer, S.N.; James, L.M.; Groeger, J.A.; Lo, J.C.Y.; Skene, D.J.; von Schantz, M.; Dijk, D.-J. PER3 Polymorphism Predicts Sleep Structure and Waking Performance. Curr. Biol. CB 2007, 17, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Dijk, D.-J.; Archer, S.N. PERIOD3, Circadian Phenotypes, and Sleep Homeostasis. Sleep Med. Rev. 2010, 14, 151–160. [Google Scholar] [CrossRef]
- Maire, M.; Reichert, C.F.; Gabel, V.; Viola, A.U.; Strobel, W.; Krebs, J.; Landolt, H.P.; Bachmann, V.; Cajochen, C.; Schmidt, C. Sleep Ability Mediates Individual Differences in the Vulnerability to Sleep Loss: Evidence from a PER3 Polymorphism. Cortex J. Devoted Study Nerv. Syst. Behav. 2014, 52, 47–59. [Google Scholar] [CrossRef]
- Hasan, S.; van der Veen, D.R.; Winsky-Sommerer, R.; Hogben, A.; Laing, E.E.; Koentgen, F.; Dijk, D.-J.; Archer, S.N. A Human Sleep Homeostasis Phenotype in Mice Expressing a Primate-Specific PER3 Variable-Number Tandem-Repeat Coding-Region Polymorphism. FASEB J. 2014, 28, 2441–2454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Firouzabadi, N.; Navabzadeh, N.; Moghimi-Sarani, E.; Haghnegahdar, M. Orexin/Hypocretin Type 2 Receptor (HCRTR2) Gene as a Candidate Gene in Sertraline-Associated Insomnia in Depressed Patients. Neuropsychiatr. Dis. Treat. 2020, 16, 1121–1128. [Google Scholar] [CrossRef]
- Hu, Y.; Shmygelska, A.; Tran, D.; Eriksson, N.; Tung, J.Y.; Hinds, D.A. GWAS of 89,283 Individuals Identifies Genetic Variants Associated with Self-Reporting of Being a Morning Person. Nat. Commun. 2016, 7, 10448. [Google Scholar] [CrossRef] [Green Version]
Characteristic | Patients | Controls | |||
---|---|---|---|---|---|
(n = 31) | (n = 31) | ||||
Frequency | % | Frequency | % | ||
Gender | Female | 15 | 49 | 16 | 52 |
Male | 16 | 51 | 15 | 48 | |
Education | Elementary/Middle school | 10 | 32 | 9 | 29 |
High school | 8 | 26 | 11 | 35 | |
University | 13 | 42 | 11 | 36 | |
Comorbidities | None | 12 | 39 | 10 | 32 |
Vascular 1 | 8 | 26 | 9 | 29 | |
High cholesterol | 1 | 3 | 1 | 3 | |
Multiple pathologies 2 | 8 | 26 | 4 | 13 | |
Other | 2 | 6 | 7 | 23 | |
Medication 4 | Antidementia drugs | - | 69 | - | 0 |
Vascular | - | 50 | - | 36 | |
SSRIs/Antipsychotic | - | 66 | - | 3 | |
Polypharmacy 3 | - | 53 | - | 19 | |
Antipsychotic and Antidementia drugs | - | 57 | - | 0 | |
Dependence level | Total/Complete | 2 | 6 | 0 | 0 |
Severe | 3 | 10 | 0 | 0 | |
Moderate | 4 | 13 | 0 | 0 | |
Low | 15 | 48 | 0 | 0 | |
Independent | 7 | 23 | 31 | 100 | |
Age (in years) | ME | SD | ME | SD | |
73.40 | 8.76 | 69.16 | 8.27 | ||
MoCA score | 6.78 | 6.20 | 26.81 | 1.85 | |
Age at onset of AD (years) | 67.5 | 8.96 | NA | NA |
Allelic Variants | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
rs9370399 (f = 0.37) | rs2653349 (f = 0.94) | rs2304672 (f = 0.05) | rs57875989 (f = 0.19) | rs228697 (f = 0.11) | rs429358 ⚕ (f = 0.16) | ||||||||
AAF | p Value | AAF | p Value | AAF | p Value | AAF | p Value | AAF | p Value | AAF | p Value | ||
PHQ-9 | Depression | 0.369 | 1.00 | 0.913 | 1.000 | 0.956 | 1.000 | 0.195 | 1.000 | 0.108 | 1.000 | 0.195 | 1.000 |
NPI | Delusions | 0.368 | 0.597 | 0.941 | 1.000 | 0.941 | 1.000 | 0.147 | 0.349 | 0.088 | 1.000 | 0.264 | 0.192 |
Hallucination | 0.333 | 0.788 | 0.958 | 1.000 | 0.958 | 1.000 | 0.208 | 1.000 | 0.125 | 0.669 | 0.208 | 1.000 | |
Agitation | 0.357 | 0.784 | 0.952 | 0.588 | 0.928 | 0.545 | 0.190 | 1.000 | 0.142 | 0.164 | 0.190 | 1.000 | |
Depression | 0.369 | 0.778 | 0.954 | 0.573 | 0.954 | 1.000 | 0.159 | 0.305 | 0.113 | 0.662 | 0.204 | 1.000 | |
Anxiety | 0.400 | 0.508 | 0.920 | 0.578 | 0.960 | 0.482 | 0.200 | 1.000 | 0.100 | 1.000 | 0.140 | 0.029 * | |
Euphoria | 0.350 | 1.000 | 0.900 | 0.588 | 0.900 | 0.241 | 0.200 | 1.000 | 0.200 | 0.079 | 0.150 | 0.735 | |
Apathy | 0.384 | 0.731 | 0.942 | 0.515 | 0.942 | 1.000 | 0.173 | 0.391 | 0.115 | 0.577 | 0.173 | 0.391 | |
Disinhibition | 0.369 | 1.000 | 0.925 | 1.000 | 0.925 | 0.546 | 0.175 | 0.740 | 0.125 | 0.449 | 0.200 | 1.000 | |
Irritability | 0.413 | 0.369 | 0.913 | 0.565 | 0.934 | 0.562 | 0.152 | 0.268 | 0.130 | 0.325 | 0.2174 | 0.714 | |
Aberrant motor behavior | 0.361 | 1.000 | 0.944 | 1.000 | 0.916 | 0.258 | 0.111 | 0.101 | 0.115 | 0.689 | 0.194 | 1.000 | |
Sleep | 0.404 | 0.575 | 0.928 | 1.000 | 0.952 | 1.000 | 0.238 | 0.306 | 0.119 | 0.654 | 0.142 | 0.177 | |
Appetite | 0.369 | 0.778 | 0.977 | 0.70 | 0.954 | 1.000 | 0.181 | 0.090 | 1.000 | 0.227 | 0.481 | ||
Sleeping Disorders Questionnaire | Insomnia | 0.409 | 0.396 | 0.955 | 0.313 | 0.955 | 1.000 | 0.227 | 0.481 | 0.113 | 0.662 | 0.159 | 0.305 |
OSA | 0.404 | 0.575 | 0.928 | 1.000 | 0.952 | 1.00 | 0.190 | 1.000 | 0.142 | 0.164 | 0.166 | 0.500 | |
RSL | 0.500 | 0.425 | 0.750 | 0.077 | 0.923 | 1.000 | 0.125 | 1.000 | 0.250 | 0.168 | 0.250 | 0.642 | |
Hypersomnia | 0.230 | 0.046 * | 1.000 | 0.132 | 0.961 | 0.567 | 0.230 | 0.528 | 0.192 | 0.074 | 0.153 | 0.746 | |
RBD | 0.500 | 0.661 | 1.000 | 1.000 | 1.000 | 1.000 | 0.166 | 1.000 | 0.166 | 0.472 | 0.333 | 0.328 | |
Parasomnia | 0.346 | 0.794 | 1.000 | 1.000 | 0.961 | 1.000 | 0.192 | 1.000 | 0.153 | 0.227 | 0.192 | 1.000 | |
CRSWD | 0.208 | 0.031 * | 1.000 | 0.151 | 0.958 | 1.000 | 0.250 | 0.511 | 0.208 | 0.028 * | 0.166 | 0.670 | |
PLMD | 0.333 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.166 | 1.000 | 0.166 | 0.472 | 0.333 | 0.328 | |
Genetic association | |||||||||||||
NPI | Genetic Variant | p Value | OR Value | CI 95% | |||||||||
Anxiety | rs429358 | 0.029 | 0.223 | 0.056–0.923 | |||||||||
Sleeping Disorders Questionnaire | |||||||||||||
Hypersomnia | rs9370399 | 0.046 | 0.335 | 0.109–1.030 | |||||||||
CRSWD | rs9370399 | 0.031 | 0.292 | 0.090–0.945 | |||||||||
rs228697 | 0.028 | 9.736 | 1.060–89.398 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lozano-Tovar, S.; Rodríguez-Agudelo, Y.; Dávila-Ortiz de Montellano, D.J.; Pérez-Aldana, B.E.; Ortega-Vázquez, A.; Monroy-Jaramillo, N. Relationship between APOE, PER2, PER3 and OX2R Genetic Variants and Neuropsychiatric Symptoms in Patients with Alzheimer’s Disease. Int. J. Environ. Res. Public Health 2023, 20, 4412. https://doi.org/10.3390/ijerph20054412
Lozano-Tovar S, Rodríguez-Agudelo Y, Dávila-Ortiz de Montellano DJ, Pérez-Aldana BE, Ortega-Vázquez A, Monroy-Jaramillo N. Relationship between APOE, PER2, PER3 and OX2R Genetic Variants and Neuropsychiatric Symptoms in Patients with Alzheimer’s Disease. International Journal of Environmental Research and Public Health. 2023; 20(5):4412. https://doi.org/10.3390/ijerph20054412
Chicago/Turabian StyleLozano-Tovar, Susana, Yaneth Rodríguez-Agudelo, David José Dávila-Ortiz de Montellano, Blanca Estela Pérez-Aldana, Alberto Ortega-Vázquez, and Nancy Monroy-Jaramillo. 2023. "Relationship between APOE, PER2, PER3 and OX2R Genetic Variants and Neuropsychiatric Symptoms in Patients with Alzheimer’s Disease" International Journal of Environmental Research and Public Health 20, no. 5: 4412. https://doi.org/10.3390/ijerph20054412
APA StyleLozano-Tovar, S., Rodríguez-Agudelo, Y., Dávila-Ortiz de Montellano, D. J., Pérez-Aldana, B. E., Ortega-Vázquez, A., & Monroy-Jaramillo, N. (2023). Relationship between APOE, PER2, PER3 and OX2R Genetic Variants and Neuropsychiatric Symptoms in Patients with Alzheimer’s Disease. International Journal of Environmental Research and Public Health, 20(5), 4412. https://doi.org/10.3390/ijerph20054412