Effect of Membrane Pore Size on Membrane Fouling of Corundum Ceramic Membrane in MBR
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Ceramic Membranes
2.2. Operation of the Laboratory-Scale MBR
2.3. Characterization of the Ceramic Membranes
2.4. Evaluation of Membrane Fouling Resistance
2.5. Extraction and Analysis of Membrane Surface Foulants
2.6. Microbial Community Analysis
3. Results and Discussion
3.1. Characteristics of the Corundum Membranes
3.2. MBR Performance with Different Ceramic Membranes
3.3. Effect of Membrane Pore Size on Membrane Fouling
3.3.1. Changes in TMP and Membrane Fouling Resistance
3.3.2. Analysis of Cake Layer Foulants
3.3.3. Fouled Membrane Morphology Analysis
3.3.4. Microbial Community Analysis
4. Conclusions
- (1)
- With the increase of corundum grain size, the mean membrane pore size, porosity and pure water flux were shown to be increased. Correspondingly, the uniformity of pore size distribution was decreased, with the appearance of macropore defects.
- (2)
- C7, with a medium pore size (0.63 μm), exhibited the lowest TMP development rate. It was interesting that with the increase of membrane pore size, cake layer fouling became more dominant in the total membrane fouling of the ceramic membrane.
- (3)
- The content of protein, polysaccharide and DOC accumulated on the membrane surface of C7 was substantially lower than that on the other three membranes, further demonstrating the antifouling ability of the C7 membrane.
- (4)
- Compared with the other three membranes, C7 had a lower relative abundance of Bacteroidetes and Firmicutes at the phylum level and a lower relative abundance of Flavobacteria and Bacilli at the class level, which could slow down the formation and development of biofouling on the membrane surface.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, D.; Tao, J.; Fan, F.; Xu, R.; Meng, F. A novel pilot-scale IFAS-MBR system with low aeration for municipal wastewater treatment: Linkages between nutrient removal and core functional microbiota. Sci. Total Environ. 2021, 776, 145858. [Google Scholar] [CrossRef]
- Li, S.; Guo, Y.; Zhang, X.; Feng, L.; Yong, X.; Xu, J.; Liu, Y.; Huang, X. Advanced nitrogen and phosphorus removal by the symbiosis of PAOs, DPAOs and DGAOs in a pilot-scale A2O/A+MBR process with a low C/N ratio of influent. Water Res. 2023, 229, 119459. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Lai, B.; Yang, H.; Rong, H.; Liang, H.; Qu, F. In situ probing methanogenesis in anaerobic wastewater treatment using front-face excitation-emission matrix (FF-EEM) fluorescence. J. Clean. Prod. 2023, 387, 135734. [Google Scholar] [CrossRef]
- Regula, C.; Carretier, E.; Wyart, Y.; Gésan-Guiziou, G.; Vincent, A.; Boudot, D.; Moulin, P. Chemical cleaning/disinfection and ageing of organic UF membranes: A review. Water Res. 2014, 56, 325–365. [Google Scholar] [CrossRef]
- Li, K.; Xu, W.; Wen, G.; Zhou, Z.; Han, M.; Zhang, S.; Huang, T. Aging of polyvinylidene fluoride (PVDF) ultrafiltration membrane due to ozone exposure in water treatment: Evolution of membrane properties and performance. Chemosphere 2022, 308, 136520. [Google Scholar] [CrossRef]
- Dong, Z.; Shang, W.; Dong, W.; Zhao, L.; Li, M.; Wang, R.; Sun, F. Suppression of membrane fouling in the ceramic membrane bioreactor (CMBR) by minute electric field. Biores. Technol. 2018, 270, 113–119. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Liu, Z.; Zhang, X. Integration of ferrate (VI) pretreatment and ceramic membrane reactor for membrane fouling mitigation in reclaimed water treatment. J. Membr. Sci. 2018, 552, 315–325. [Google Scholar] [CrossRef]
- Fan, Y.; Zhou, Y.; Feng, Y.; Wang, P.; Li, X.; Shih, K. Fabrication of reactive flat-sheet ceramic membranes for oxidative degradation of ofloxacin by peroxymonosulfate. J. Membr. Sci. 2020, 611, 118302. [Google Scholar] [CrossRef]
- Yue, X.; Koh, Y.K.K.; Ng, H.Y. Membrane fouling mitigation by NaClO-assisted backwash in anaerobic ceramic membrane bioreactors for the treatment of domestic wastewater. Biores. Technol. 2018, 268, 622–632. [Google Scholar] [CrossRef]
- Zhang, X.; Devanadera, M.C.E.; Roddick, F.A.; Fan, L.; Dalida, M.L.P. Impact of algal organic matter released from Microcystis aeruginosa and Chlorella sp. on the fouling of a ceramic microfiltration membrane. Water Res. 2016, 103, 391–400. [Google Scholar] [CrossRef]
- Sun, H.; Liu, H.; Wang, S.; Cheng, F.; Liu, Y. Ceramic membrane fouling by dissolved organic matter generated during on-line chemical cleaning with ozone in MBR. Water Res. 2018, 146, 328–336. [Google Scholar] [CrossRef]
- Shang, R.; Vuong, F.; Hu, J.; Li, S.; Kemperman, A.J.B.; Nijmeijer, K.; Cornelissen, E.R.; Heijman, S.G.J.; Rietveld, L.C. Hydraulically irreversible fouling on ceramic MF/UF membranes: Comparison of fouling indices, foulant composition and irreversible pore narrowing. Sep. Purif. Technol. 2015, 147, 303–310. [Google Scholar] [CrossRef] [Green Version]
- Kimura, K.; Uchida, H. Intensive membrane cleaning for MBRs equipped with flat-sheet ceramic membranes: Controlling negative effects of chemical reagents used for membrane cleaning. Water Res. 2019, 150, 21–28. [Google Scholar] [CrossRef]
- Choi, J.H.; Ng, H.Y. Effect of membrane type and material on performance of a submerged membrane bioreactor. Chemosphere 2008, 71, 853–859. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Ong, S.L.; Ng, H.Y. Comparison of fouling characteristics in different pore-sized submerged ceramic membrane bioreactors. Water Res. 2010, 44, 5907–5918. [Google Scholar] [CrossRef]
- Sano, T.; Kawagoshi, Y.; Kokubo, I.; Ito, H.; Ishida, K.; Sato, A. Direct and indirect effects of membrane pore size on fouling development in a submerged membrane bioreactor with a symmetric chlorinated poly (vinyl chloride) flat-sheet membrane. J. Environ. Chem. Eng. 2022, 10, 107023. [Google Scholar] [CrossRef]
- Chang, I.S.; Gander, M.; Jefferson, B.; Judd, S. Low-cost membranes for use in a submerged MBR. Process Saf. Environ. Prot. 2001, 79, 183–188. [Google Scholar] [CrossRef]
- Miyoshi, T.; Yuasa, K.; Ishigami, T.; Rajabzadeh, S.; Kamio, E.; Ohmukai, Y.; Saeki, D.; Ni, J.; Matsuyama, H. Effect of membrane polymeric materials on relationship between surface pore size and membrane fouling in membrane bioreactors. Appl. Surf. Sci. 2015, 330, 351–357. [Google Scholar] [CrossRef] [Green Version]
- Nittami, T.; Hitomi, T.; Matsumoto, K.; Nakamura, K.; Ikeda, T.; Setoguchi, Y.; Motoori, M. Comparison of polytetrafluoroethylene flat-sheet membranes with different pore sizes in application to submerged membrane bioreactor. Membranes 2012, 2, 228–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, J.; Pan, H.; Bai, Z.; Huang, R.; Zheng, X.; Gao, S. Alleviated membrane fouling of corundum ceramic membrane in MBR: As compared with alumina membrane. J. Environ. Chem. Eng. 2022, 10, 107023. [Google Scholar] [CrossRef]
- Zhang, X.; Pan, J.H.; Du, A.J.; Fu, W.; Sun, D.D.; Leckie, J.O. Combination of one-dimensional TiO2 nanowire photocatalytic oxidation with microfiltration for water treatment. Water Res. 2009, 43, 1179–1186. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Tian, J.; Zhao, Z.; Shi, W.; Liu, D.; Cui, F. Membrane fouling of forward osmosis (FO) membrane for municipal wastewater treatment: A comparison between direct FO and OMBR. Water Res. 2016, 104, 330–339. [Google Scholar] [CrossRef]
- Boumaza, A.; Favaro, L.; Lédion, J.; Sattonnay, G.; Brubach, J.B.; Berthet, P.; Huntz, A.M.; Roy, P.; Tétot, R. Transition alumina phases induced by heat treatment of boehmite: An X-ray diffraction and infrared spectroscopy study. J. Solid State Chem. 2009, 182, 1171–1176. [Google Scholar] [CrossRef]
- Huang, J.; Chen, H.; Zhou, T.; Qi, R.; Zhang, H. Alumina separation layer with uniform pore size applied on a support with broad pore size distribution. Ceram. Int. 2022, 48, 32513–32523. [Google Scholar] [CrossRef]
- Monclus, H.; Sipma, J.; Ferrero, G.; Rodriguez-Roda, I.; Comas, J. Biological nutrient removal in an MBR treating municipal wastewater with special focus on biological phosphorus removal. Biores. Technol. 2010, 101, 3984–3991. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Wang, X.; Li, X. An innovative membrane bioreactor (MBR) system for simultaneous nitrogen and phosphorus removal. Process Biochem. 2013, 48, 1749–1756. [Google Scholar] [CrossRef] [Green Version]
- Bi, D.; Guo, X.; Chen, D. Phosphorus release mechanisms during digestion of EBPR sludge under anaerobic, anoxic and aerobic conditions. Water Sci. Technol. 2013, 67, 1953–1959. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, Z.; Zhu, C.; Wang, Q.; Tang, J.; Wu, Z. A forward osmosis membrane system for the post-treatment of MBR-treated landfill leachate. J. Membr. Sci. 2014, 471, 192–200. [Google Scholar] [CrossRef]
- Linares, R.V.; Li, Z.; Abu-Ghdaib, M.; Wei, C.H.; Amy, G.; Vrouwenvelder, J.S. Water harvesting from municipal wastewater via osmotic gradient: An evaluation of process performance. J. Membr. Sci. 2013, 447, 50–56. [Google Scholar] [CrossRef]
- Xue, W.; Tobino, T.; Nakajima, F.; Yamamoto, K. Seawater-driven forward osmosis for enriching nitrogen and phosphorous in treated municipal wastewater: Effect of membrane properties and feed solution chemistry. Water Res. 2015, 69, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Liu, H.; Han, J.; Zhang, X.; Cheng, F.; Liu, Y. Chemical cleaning-associated generation of dissolved organic matter and halogenated byproducts in ceramic MBR: Ozone versus hypochlorite. Water Res. 2018, 140, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Baker, A. Fluorescence excitation-Emission matrix characterization of some sewage-impacted rivers. Environ. Sci. Technol. 2001, 35, 948–953. [Google Scholar] [CrossRef]
- Bai, Z.; Gao, S.; Yu, H.; Liu, X.; Tian, J. Layered metal oxides loaded ceramic membrane activating peroxymonosulfate for mitigation of NOM membrane fouling. Water Res. 2022, 222, 118928. [Google Scholar] [CrossRef]
- Chen, R.; Nie, Y.; Hu, Y.; Miao, R.; Utashiro, T.; Li, Q.; Xu, M.; Li, Y.Y. Fouling behaviour of soluble microbial products and extracellular polymeric substances in a submerged anaerobic membrane bioreactor treating low-strength wastewater at room temperature. J. Membr. Sci. 2017, 531, 1–9. [Google Scholar] [CrossRef]
- Sweity, A.; Ying, W.; Ali-Shtayeh, M.S.; Yang, F.; Bick, A.; Oron, G.; Herzberg, M. Relation between EPS adherence, viscoelastic properties, and MBR operation: Biofouling study with QCM-D. Water Res. 2011, 45, 6430–6440. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Wu, C.; Huang, J.; Li, H.; Zhou, R. Eubacterial and archaeal community characteristics in the man-made pit mud revealed by combined PCR-DGGE and FISH analyses. Food Res. Int. 2014, 62, 1047–1053. [Google Scholar] [CrossRef]
- Tang, B.; Yu, C.; Bin, L.; Zhao, Y.; Feng, X.; Huang, S.; Fu, F.; Ding, J.; Chen, C.; Li, P. Essential factors of an integrated moving bed biofilm reactor–membrane bioreactor: Adhesion characteristics and microbial community of the biofilm. Biores. Technol. 2016, 211, 574–583. [Google Scholar] [CrossRef] [PubMed]
- Atabek, A.; Camesano, T.A. Atomic force microscopy study of the effect of lipopolysaccharides and extracellular polymers on adhesion of Pseudomonas aeruginosa. J. Bacteriol. 2007, 189, 8503–8509. [Google Scholar] [CrossRef] [Green Version]
- Ishizaki, S.; Fukushima, T.; Ishii, S.; Okabe, S. Membrane fouling potentials and cellular properties of bacteria isolated from fouled membranes in a MBR treating municipal wastewater. Water Res. 2016, 100, 448–457. [Google Scholar] [CrossRef] [Green Version]
- Gao, D.W.; Wang, X.L.; Xing, M. Dynamic variation of microbial metabolites and community involved in membrane fouling in A/O-MBR. J. Membr. Sci. 2014, 458, 157–163. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhou, Z.; Cheng, C.; Wang, Z.; Pang, H.; Jiang, L.; Jiang, L.M. Effects of packing carriers and ultrasonication on membrane fouling and sludge properties of anaerobic side-stream reactor coupled membrane reactors for sludge reduction. J. Membr. Sci. 2019, 581, 312–320. [Google Scholar] [CrossRef]
- Meng, F.; Shi, B.; Yang, F.; Zhang, H. Effect of hydraulic retention time on membrane fouling and biomass characteristics in submerged membrane bioreactors. Bioprocess Biosyst. Eng. 2007, 30, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Karunakaran, E.; Biggs, C.A. Mechanisms of Bacillus cereus biofilm formation: An investigation of the physicochemical characteristics of cell surfaces and extracellular proteins. Appl. Microbiol. Biotechnol. 2011, 89, 1161–1175. [Google Scholar] [CrossRef] [PubMed]
Membrane Samples | Mean Pore Size (μm) | Porosity (%) | Pure Water Flux (L/(m2∙h∙bar)) | Crystallite Size (nm) |
---|---|---|---|---|
C5 | 0.50 | 41.43 | 2111.67 | 722 |
C7 | 0.63 | 45.44 | 6016.20 | 749 |
C13 | 0.80 | 46.31 | 8309.16 | 758 |
C20 | 1.02 | 47.60 | 15,193.08 | 951 |
Sample | Number | OTUs | Shannon | Chao 1 | Simpson | Coverage |
---|---|---|---|---|---|---|
C5 | 36,026 | 768.0 | 3.78 | 946.93 | 0.07 | 0.99 |
C7 | 33,600 | 787.0 | 3.99 | 944.50 | 0.06 | 0.99 |
C13 | 35,726 | 733.0 | 3.78 | 938.15 | 0.06 | 0.99 |
C20 | 39,868 | 749.0 | 2.97 | 924.47 | 0.17 | 0.99 |
ML | 29,814 | 380.0 | 0.78 | 380.0 | 0.03 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, R.; Pan, H.; Zheng, X.; Fan, C.; Si, W.; Bao, D.; Gao, S.; Tian, J. Effect of Membrane Pore Size on Membrane Fouling of Corundum Ceramic Membrane in MBR. Int. J. Environ. Res. Public Health 2023, 20, 4558. https://doi.org/10.3390/ijerph20054558
Huang R, Pan H, Zheng X, Fan C, Si W, Bao D, Gao S, Tian J. Effect of Membrane Pore Size on Membrane Fouling of Corundum Ceramic Membrane in MBR. International Journal of Environmental Research and Public Health. 2023; 20(5):4558. https://doi.org/10.3390/ijerph20054558
Chicago/Turabian StyleHuang, Rui, Hui Pan, Xing Zheng, Chao Fan, Wenyan Si, Dongguan Bao, Shanshan Gao, and Jiayu Tian. 2023. "Effect of Membrane Pore Size on Membrane Fouling of Corundum Ceramic Membrane in MBR" International Journal of Environmental Research and Public Health 20, no. 5: 4558. https://doi.org/10.3390/ijerph20054558
APA StyleHuang, R., Pan, H., Zheng, X., Fan, C., Si, W., Bao, D., Gao, S., & Tian, J. (2023). Effect of Membrane Pore Size on Membrane Fouling of Corundum Ceramic Membrane in MBR. International Journal of Environmental Research and Public Health, 20(5), 4558. https://doi.org/10.3390/ijerph20054558