Prevalence of Diabetic Retinopathy and Use of Common Oral Hypoglycemic Agents Increase the Risk of Diabetic Nephropathy—A Cross-Sectional Study in Patients with Type 2 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Method and Population
2.2. Data Collection and Clinical Definitions
2.3. Amino Acid Quantification and Equipment
2.4. Statistical Analysis
3. Result
3.1. Description of Study Subjects
3.2. Differences in Individual Amino Acids According to the Appearance of DN
3.3. Correlations between Amino Acids and DR and the Impacts of DR on Amino Acids for DN
3.4. Addictive Interaction between Oral Hypoglycemic Drugs and DR
4. Sensitive Analysis
5. Discussion
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Diabetes Federation. E. coli . 2021. Available online: https://www.diabetesatlas.org (accessed on 22 May 2022).
- Goodall, G.; Sarpong, E.M.; Hayes, C.; Valentine, W.J. The consequences of delaying insulin initiation in UK type 2 diabetes patients failing oral hyperglycaemic agents: A modelling study. BMC Endocr. Disord. 2009, 9, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simo-Servat, O.; Hernandez, C.; Simo, R. Diabetic Retinopathy in the Context of Patients with Diabetes. Ophthalmic Res. 2019, 62, 211–217. [Google Scholar] [CrossRef]
- Jiang, S.; Yu, T.; Zhang, Z.; Wang, Y.; Fang, J.; Yang, Y.; Liu, L.; Li, W. Diagnostic Performance of Retinopathy in the Detection of Diabetic Nephropathy in Type 2 Diabetes: A Systematic Review and Meta-Analysis of 45 Studies. Ophthalmic Res. 2019, 62, 68–79. [Google Scholar] [CrossRef]
- Hung, C.C.; Lin, H.Y.; Hwang, D.Y.; Kuo, I.C.; Chiu, Y.W.; Lim, L.M.; Hwang, S.-J.; Chen, H.-C. Diabetic Retinopathy and Clinical Parameters Favoring the Presence of Diabetic Nephropathy could Predict Renal Outcome in Patients with Diabetic Kidney Disease. Sci. Rep. 2017, 7, 1236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, X.; Hou, R.; Li, X.; Qiu, X.-H.; Luo, H.-H.; Liu, S.-L.; Fang, Z.-Z. The Association Between Leucine and Diabetic Nephropathy in Different Gender: A Cross-Sectional Study in Chinese Patients With Type 2 Diabetes. Front. Endocrinol. 2021, 11, 619422. [Google Scholar] [CrossRef] [PubMed]
- Welsh, P.; Rankin, N.; Li, Q.; Mark, P.B.; Wurtz, P.; Ala-Korpela, M.; Marre, M.; Poulter, N.; Hamet, P.; Chalmers, J.; et al. Circulating amino acids and the risk of macrovascular, microvascular and mortality outcomes in individuals with type 2 diabetes: Results from the ADVANCE trial. Diabetologia 2018, 61, 1581–1591. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, M.; Suliman, M.E.; Qureshi, A.R.; Garcia-Lopez, E.; Barany, P.; Heimburger, O.; Stenvinkel, P.; Lindholm, B. Consequences of low plasma histidine in chronic kidney disease patients: Associations with inflammation, oxidative stress, and mortality. Am. J. Clin. Nutr. 2008, 87, 1860–1866. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.H.; Li, J.; Feng, X.F.; Sun, X.Y.; Li, J.; Yang, X.; Fang, Z.-Z. Plasma phenylalanine and tyrosine and their interactions with diabetic nephropathy for risk of diabetic retinopathy in type 2 diabetes. BMJ Open Diabetes Res. Care 2020, 8, e000877. [Google Scholar] [CrossRef]
- Ren, H.; Shao, Y.; Wu, C.; Ma, X.; Lv, C. Wang. Metformin alleviates oxidative stress and enhances autophagy in diabetic kidney disease via AMPK/SIRT1-FoxO1 pathway. Mol. Cell. Endocrinol. 2020, 500, 110628. [Google Scholar] [CrossRef]
- Alghamdi, M.; Al-Mallah, M.; Keteyian, S.; Brawner, C.; Ehrman, J.; Sakr, S. Predicting diabetes mellitus using SMOTE and ensemble machine learning approach: The Henry Ford ExercIse Testing (FIT) project. PLoS ONE 2017, 12, e0179805. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, B.P.; Pham, H.N.; Tran, H.; Nghiem, N.; Nguyen, Q.H.; Do, T.T.; Tran, C.T.; Simpson, C.R. Predicting the onset of type 2 diabetes using wide and deep learning with electronic health records. Comput. Methods Programs Biomed. 2019, 182, 105055. [Google Scholar] [CrossRef]
- Habibi, S.; Ahmadi, M.; Alizadeh, S. Type 2 Diabetes Mellitus Screening and Risk Factors Using Decision Tree: Results of Data Mining. Glob. J. Health Sci. 2015, 7, 304–310. [Google Scholar] [CrossRef] [Green Version]
- Ryden, L.; Standl, E.; Bartnik, M.; Van den Berghe, G.; Betteridge, J.; de Boer, M.J.; Cosentino, F.; Jonsson, B.; Laakso, M.; Malmberg, K.; et al. Guidelines on diabetes, pre-diabetes, and cardiovascular diseases: Executive summary. The Task Force on Diabetes and Cardiovascular Diseases of the European Society of Cardiology (ESC) and of the European Association for the Study of Diabetes (EASD). Eur. Heart J. 2007, 28, 88–136. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Lu, F.C.; Department of Disease Control Ministry of Health, PR China. The guidelines for prevention and control of overweight and obesity in Chinese adults. Biomed. Environ. Sci. 2004, 17, 1–36. [Google Scholar] [PubMed]
- Alberti, K.G.; Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med. 1998, 15, 539–553. [Google Scholar] [CrossRef]
- Faselis, C.; Katsimardou, A.; Imprialos, K.; Deligkaris, P.; Kallistratos, M.; Dimitriadis, K. Microvascular Complications of Type 2 Diabetes Mellitus. Curr. Vasc. Pharmacol. 2020, 18, 117–124. [Google Scholar] [CrossRef]
- Selby, N.M.; Taal, M.W. An updated overview of diabetic nephropathy: Diagnosis, prognosis, treatment goals and latest guidelines. Diabetes Obes. Metab. 2020, 22 (Suppl. S1), 3–15. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Wang, Q.; Gao, P.; Dong, J.; Zhu, Z.; Fang, Y.; Fang, Z.; Sun, X.; Sun, T. A dried blood spot mass spectrometry metabolomic approach for rapid breast cancer detection. Onco Targets Ther. 2016, 9, 1389–1398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Su, X.; Ye, Q.; Guo, X.; Xu, B.; Guan, T.; Chen, A. The predictive value of diabetic retinopathy on subsequent diabetic nephropathy in patients with type 2 diabetes: A systematic review and meta-analysis of prospective studies. Ren. Fail. 2021, 43, 231–240. [Google Scholar] [CrossRef]
- Ahmed, M.H.; Elwali, E.S.; Awadalla, H.; Almobarak, A.O. The relationship between diabetic retinopathy and nephropathy in Sudanese adult with diabetes: Population based study. Diabetes Metab. Syndr. 2017, 11 (Suppl. S1), S333–S336. [Google Scholar] [CrossRef]
- Penno, G.; Solini, A.; Zoppini, G.; Orsi, E.; Zerbini, G.; Trevisan, R.; Gruden, G.; Cavalot, F.; Laviola, L.; Morano, S.; et al. Rate and determinants of association between advanced retinopathy and chronic kidney disease in patients with type 2 diabetes: The Renal Insufficiency And Cardiovascular Events (RIACE) Italian multicenter study. Diabetes Care 2012, 35, 2317–2323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christensen, P.K.; Larsen, S.; Horn, T.; Olsen, S.; Parving, H.H. Renal function and structure in albuminuric type 2 diabetic patients without retinopathy. Nephrol. Dial. Transplant. 2001, 16, 2337–2347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, T.Y.; Choi, P.C.; Szeto, C.C.; To, K.F.; Tang, N.L.; Chan, A.W.; Li, P.K.T.; Lai, F.M.-M. Renal outcome in type 2 diabetic patients with or without coexisting nondiabetic nephropathies. Diabetes Care 2002, 25, 900–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, H.; Zhu, B.; Liu, X.; Jin, J.; Zou, H. Metabolic characterization of diabetic retinopathy: An (1)H-NMR-based metabolomic approach using human aqueous humor. J. Pharm. Biomed. Anal. 2019, 174, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Jiang, D.; Xu, Y.; Peng, F.; Zhao, S.; Li, H.; Jin, D.; Xu, X.; Xia, Z.; Che, M.; et al. High-Coverage Serum Metabolomics Reveals Metabolic Pathway Dysregulation in Diabetic Retinopathy: A Propensity Score-Matched Study. Front. Mol. Biosci. 2022, 9, 822647. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Fang, J.; Chen, F.; Sun, Q.; Xu, X.; Lin, S.-H.; Liu, K. Metabolomic profile of diabetic retinopathy: A GC-TOFMS-based approach using vitreous and aqueous humor. Acta Diabetol. 2019, 57, 41–51. [Google Scholar] [CrossRef]
- de Jager, J.; Kooy, A.; Lehert, P.; Wulffelé, M.G.; van der Kolk, J.; Bets, D.; Verburg, J.; Donker, A.J.M.; Stehouwer, C.D.A. Long term treatment with metformin in patients with type 2 diabetes and risk of vitamin B-12 deficiency: Randomised placebo controlled trial. BMJ 2010, 340, c2181. [Google Scholar] [CrossRef] [Green Version]
- Aroda, V.R.; Edelstein, S.L.; Goldberg, R.B.; Knowler, W.C.; Marcovina, S.M.; Orchard, T.; Bray, G.A.; Schade, D.S.; Temprosa, M.G.; White, N.H.; et al. Long-term Metformin Use and Vitamin B12 Deficiency in the Diabetes Prevention Program Outcomes Study. J. Clin. Endocrinol. Metab. 2016, 101, 1754–1761. [Google Scholar] [CrossRef]
- Iftikhar, R.; Kamran, S.M.; Qadir, A.; Iqbal, Z.; Bin Usman, H. Prevalence of vitamin B12 deficiency in patients of type 2 diabetes mellitus on metformin: A case control study from Pakistan. Pan Afr. Med. J. 2013, 16, 67. [Google Scholar] [CrossRef]
- Bherwani, S.; Ahirwar, A.K.; Saumya, A.; Sandhya, A.; Prajapat, B.; Patel, S.; Jibhkate, S.B.; Singh, R.; Ghotekar, L. The study of association of Vitamin B12 deficiency in type 2 diabetes mellitus with and without diabetic nephropathy in North Indian Population. Diabetes Metab. Syndr. 2017, 11 (Suppl. S1), S365–S368. [Google Scholar] [CrossRef]
- Xu, R.; Fan, Y.; Xiang, J.; Zhan, M. Effect of the folic acid and vitamin B2 on the diabetes mellitus rats with diabetic nephropathy. Wei Sheng Yan Jiu 2012, 41, 911–915. [Google Scholar] [PubMed]
- Looker, H.C.; Fagot-Campagna, A.; Gunter, E.W.; Pfeiffer, C.M.; Narayan, K.M.V.; Knowler, W.C.; Hanson, R.L. Homocysteine as a risk factor for nephropathy and retinopathy in Type 2 diabetes. Diabetologia 2003, 46, 766–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, S.; Xiang, W.; Huang, S.; Zhang, A. Association between homocysteine status and the risk of nephropathy in type 2 diabetes mellitus. Clin. Chim. Acta 2014, 431, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Angelini, A.; Cappuccilli, M.L.; Magnoni, G.; Chiocchini, A.L.C.; Aiello, V.; Napoletano, A.; Iacovella, F.; Troiano, A.; Mancini, R.; Capelli, I.; et al. The link between homocysteine, folic acid and vitamin B12 in chronic kidney disease. G Ital. Nefrol. 2021, 38, 1–17. [Google Scholar]
- Tomino, Y.; Shirato, I.; Horikoshi, S.; Fukui, M.; Yamaguchi, Y.; Yokomatsu, M.; Ebihara, I.; Shimada, N.; Hishiki, T.; Hirano, K.; et al. Effect of acarbose on blood glucose and proteinuria in patients with diabetic nephropathy. Nephron 2000, 85, 190. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.M.; Rosenmann, E. Acarbose treatment and diabetic nephropathy in the Cohen diabetic rat. Horm. Metab. Res. 1990, 22, 511–515. [Google Scholar] [CrossRef]
- Tian, H.; Yang, J.; Xie, Z.; Liu, J. Gliquidone Alleviates Diabetic Nephropathy by Inhibiting Notch/Snail Signaling Pathway. Cell. Physiol. Biochem. 2018, 51, 2085–2097. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.; Chatterjee, S.; Khunti, K. The treatment of type 2 diabetes in the presence of renal impairment: What we should know about newer therapies. Clin. Pharmacol. 2016, 8, 61–81. [Google Scholar] [CrossRef] [Green Version]
- Kofoed-Enevoldsen, A.; Jensen, T.; Borch-Johnsen, K.; Deckert, T. Incidence of retinopathy in type I (insulin-dependent) diabetes: Association with clinical nephropathy. J. Diabet. Complicat. 1987, 1, 96–99. [Google Scholar] [CrossRef]
- Klein, R.; Zinman, B.; Gardiner, R.; Suissa, S.; Donnelly, S.M.; Sinaiko, A.R.; Kramer, M.S.; Goodyer, P.; Moss, S.E.; Strand, T.; et al. The relationship of diabetic retinopathy to preclinical diabetic glomerulopathy lesions in type 1 diabetic patients: The Renin-Angiotensin System Study. Diabetes 2005, 54, 527–533. [Google Scholar] [CrossRef] [Green Version]
- Butt, A.; Mustafa, N.; Fawwad, A.; Askari, S.; Haque, M.S.; Tahir, B.; Basit, A. Relationship between diabetic retinopathy and diabetic nephropathy; A longitudinal follow-up study from a tertiary care unit of Karachi, Pakistan. Diabetes Metab. Syndr. 2020, 14, 1659–1663. [Google Scholar] [CrossRef] [PubMed]
Variables | Total People | DR | Non-DR | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean/Number (SD or %) | Total DR | Non-DN | DN | Pα | Total Non-DR | Non-DN | DN | Pα | |
Mean/Number (SD or %) | Mean/Number (SD or %) | Mean/Number (SD or %) | Mean/Number (SD or %) | Mean/Number (SD or %) | Mean/Number (SD or %) | ||||
Age (years) | 57.24 ± 13.82 | 57.77 ± 9.96 | 57.99 ± 10.27 | 57.44 ± 9.55 | 0.731 | 57.14 ± 14.43 | 56.67 ± 14.53 | 59.96 ± 13.55 | 0.019 |
Male sex | 548 (53.15) | 73 (45.1) | 42 (42.9) | 31 (48.4) | 0.592 | 475 (54.7) | 410 (55.0) | 65 (52.4) | 0.657 |
Weight (kg) | 70.34 ± 13.18 | 68.89 ± 12.09 | 68.70 ± 12.29 | 69.17 ± 11.86 | 0.808 | 70.61 ± 13.36 | 70.30 ± 13.37 | 72.49 ± 13.19 | 0.091 |
Height (cm) | 167.00 [160.00, 172.00] | 164.00 (160.00, 172.00) | 163.00 (158.25, 172.00) | 165.00 (160.00, 171.25) | 0.369 | 167.00 (160.00, 173.00) | 168.00 (160.00, 173.00) | 167.00 (160.00, 172.00) | 0.963 |
BMI (kg/m²) | 25.29 ± 3.85 | 25.09 ± 3.31 | 25.10 ± 3.36 | 25.08 ± 3.27 | 0.981 | 25.33 ± 3.95 | 25.22 ± 3.90 | 26.02 ± 4.16 | 0.035 |
SBP (mmHg) | 140.39 ± 23.99 | 145.60 ± 25.26 | 144.18 ± 22.84 | 147.77 ± 28.62 | 0.379 | 139.42 ± 23.63 | 138.33 ± 23.44 | 145.94 ± 23.83 | 0.001 |
DBP (mmHg) | 82.43 ± 13.50 | 83.04 ± 13.44 | 82.89 ± 13.01 | 83.27 ± 14.16 | 0.862 | 82.32 ± 13.51 | 82.29 ± 13.51 | 82.45 ± 13.58 | 0.904 |
HbA1c (%) | 9.30 (7.70, 11.00) | 9.25 (7.70, 10.90) | 8.90 (7.70, 10.67) | 9.75 (7.77, 11.35) | 0.155 | 9.30 (7.70, 11.00) | 9.30 (7.70, 11.00) | 9.20 (7.60, 10.93) | 0.682 |
Triglyceride (mmol/L) | 1.69 (1.13, 2.39) | 1.69 (1.18, 2.40) | 1.71 (1.18, 2.68) | 1.67 (1.20, 2.22) | 0.766 | 1.69 (1.12, 2.39) | 1.69 (1.11, 2.39) | 1.70 (1.14, 2.41) | 0.648 |
TC (mmol/L) | 4.64 (3.86, 5.29) | 4.81 (4.07, 5.59) | 4.70 (4.00, 5.33) | 4.98 (4.23, 6.25) | 0.048 | 4.61 (3.83, 5.25) | 4.61 (3.82, 5.21) | 4.61 (3.83, 5.34) | 0.633 |
HDL-C (mmol/L) | 1.02 (0.85, 1.25) | 1.04 (0.88, 1.29) | 1.04 (0.89, 1.23) | 1.04 (0.87, 1.38) | 0.517 | 1.01 (0.85, 1.25) | 1.00 (0.84, 1.24) | 1.07 (0.92, 1.28) | 0.020 |
LDL-C (mmol/L) | 2.78 (2.19, 3.36) | 2.87 (2.34, 3.45) | 2.85 (2.34, 3.30) | 2.89 (2.31, 3.76) | 0.438 | 2.77 (2.15, 3.34) | 2.76 (2.16, 3.33) | 2.79 (2.12, 3.38) | 0.430 |
UA | 311.00 (245.95, 381.50) | 314.50 (251.25, 373.02) | 303.00 (250.00, 357.00) | 341.10 (273.75, 391.50) | 0.027 | 310.00 (244.00, 383.00 | 306.70 (242.00, 378.00) | 334.00 (254.75, 395.50) | 0.030 |
Crea | 58.97 (49.02, 73.30) | 56.81 (48.76, 71.37) | 56.81 (46.68, 67.84) | 57.35 (50.39, 81.98) | 0.223 | 59.49 (49.09, 73.55) | 59.00 (49.15, 71.14) | 65.08 (48.87, 89.05) | 0.005 |
Duration of DM | 5 (0, 10) | 13 (6, 20) | 14.5 (6, 20) | 11.5 (5, 18.63) | 0.598 | 4 (0, 10) | 3 (0, 10) | 8 (1, 12) | 0.027 |
Use of Metformin | 358 (34.7) | 51 (31.5) | 23 (23.5) | 28 (43.8) | 0.011 | 307 (35.3) | 263 (35.3) | 44 (35.5) | 0.999 |
Use of Acarbose | 364 (35.3) | 53 (32.7) | 24 (24.5) | 29 (45.3) | 0.010 | 311 (35.8) | 255 (34.2) | 56 (45.2) | 0.024 |
Use of Sulfonylureas | 146 (14.2) | 29 (17.9) | 12 (12.2) | 17 (26.6) | 0.034 | 117 (13.5) | 98 (13.2) | 19 (15.3) | 0.608 |
DN | NDN | p | |
---|---|---|---|
Ala, µmol/L | 122.11 (96.07, 145.55) | 126.06 (99.68, 154.88) | 0.223 |
Asn, µmol/L | 72.02 (61.29, 88.20) | 75.24 (62.00, 89.81) | 0.143 |
Leu, µmol/L | 122.36 (93.65, 149,63) | 127.09 (102.11, 158.23) | 0.013 |
Phe, µmol/L | 42.96 (34.73, 52.11) | 45.83 (37.66, 55.54) | 0.014 |
Lys, µmol/L | 120.43 (83.61, 169.10) | 128.62 (94.60, 176.37) | 0.125 |
Glu, µmol/L | 98.61 (81.76, 118.35) | 97.83 (81.18, 121.61) | 0.685 |
Trp, µmol/L | 44.47 (37.23, 53.40) | 48.26 (38.91, 57.06) | 0.007 |
Tyr, µmol/L | 42.95 (33.37, 52.36) | 46.40 (37.52, 56.81) | <0.001 |
His, µmol/L | 44.61 (33.18, 68.59) | 52.50 (36.01, 80.28) | 0.006 |
Val, µmol/L | 129.61 (107.95, 155.44) | 137.34 (114.52, 162.08) | 0.017 |
Pip, µmol/L | 130.63 (95.81, 176.48) | 126.63 (94.68, 173.57) | 0.690 |
Arg, µmol/L | 10.62 (5.71, 16.25) | 10.52 (5.94, 17.38) | 0.427 |
Gly, µmol/L | 191.63 (150.83, 243.37) | 204.94 (152.85, 269.09) | 0.037 |
Pro, µmol/L | 465.84 (347.03, 602.25) | 435.97 (335.14, 585.28) | 0.284 |
Thr, µmol/L | 23.22 (18.22, 28.95) | 24.78 (19.96, 30.57) | 0.005 |
Cit, µmol/L | 21.95 (16.60, 27.43) | 19.43 (15.16, 25.35) | 0.001 |
Gln, µmol/L | 6.70 (4.91, 9.14) | 6.94 (5.07, 9.28) | 0.555 |
Met, µmol/L | 16.61 (13.66, 21.23) | 17.20 (14.46, 21.17) | 0.112 |
Ser, µmol/L | 49.60 (42.15, 59.64) | 52.13 (43.40, 64.91) | 0.048 |
Orn, µmol/L | 17.49 (13.28, 22.46) | 17.39 (12.91, 23.89) | 0.828 |
Asp, µmol/L | 28.10 (21.41, 35.32) | 28.40 (20.90, 37.87) | 0.914 |
Pip, µmol/L | 130.63 (95.81, 176.48) | 126.63 (94.68, 173.57) | 0.690 |
Cys, µmol/L | 1.21 (0.87, 1.69) | 1.28 (0.95, 1.67) | 0.195 |
DR | No-DR | |||
---|---|---|---|---|
OR (95%CI) | p | OR (95%CI) | p | |
Univariable Model | ||||
His | 0.92 (0.67, 1.27) | 0.619 | 0.79 (0.63, 1) | 0.036 |
0.73 (0.38, 1.4) | 0.339 | 0.74 (0.5, 1.08) | 0.117 | |
Trp | 1.15 (0.84, 1.58) | 0.386 | 0.79 (0.65, 0.97) | 0.022 |
0.85 (0.45, 1.62) | 0.631 | 0.63 (0.43, 0.92) | 0.018 | |
Val | 1.17 (0.85, 1.61) | 0.329 | 0.74 (0.6, 0.91) | 0.004 |
1.18 (0.63, 2.21) | 0.611 | 0.62 (0.42, 0.91) | 0.014 | |
Thr | 0.9 (0.65, 1.24) | 0.513 | 0.7 (0.55, 0.9) | 0.002 |
0.92 (0.49, 1.73) | 0.799 | 0.64 (0.43, 0.93) | 0.021 | |
Multivariable Model | ||||
His | 0.98 (0.68, 1.39) | 0.892 | 0.69 (0.52, 0.9) | 0.003 |
0.73 (0.35, 1.52) | 0.401 | 0.56 (0.37, 0.86) | 0.007 | |
Trp | 1.21 (0.83, 1.74) | 0.323 | 0.74 (0.59, 0.93) | 0.007 |
0.96 (0.46, 2) | 0.92 | 0.51 (0.33, 0.77) | 0.001 | |
Val | 1.27 (0.86, 1.87) | 0.231 | 0.72 (0.57, 0.92) | 0.007 |
1.35 (0.65, 2.79) | 0.416 | 0.59 (0.39, 0.91) | 0.016 | |
Thr | 0.97 (0.68, 1.39) | 0.864 | 0.64 (0.48, 0.85) | <0.001 |
1.02 (0.49, 2.11) | 0.961 | 0.55 (0.36, 0.84) | 0.005 |
OR (95% CI) | p Value | |
---|---|---|
DR vs. No-DR | 3.79 (2.56, 5.62) | <0.001 |
Metformin vs. No-Metformin | 1.51 (1.05, 2.17) | 0.027 |
Acarbose vs. No-Acarbose | 1.87 (1.32, 2.66) | <0.001 |
Sulfonylureas vs. No-Sulfonylureas | 1.81 (1.16, 2.81) | 0.011 |
Additive interaction model of Acarbose and Metformin | ||
No-Acarbose and No-Metformin | Reference | |
No-Acarbose and Metformin | 1.09 (0.63, 1.88) | 0.766 |
Acarbose and No-Metformin | 1.26 (0.84, 1.89) | 0.267 |
Acarbose and Metformin | 1.61 (1.13, 2.29) | 0.008 |
RERI | 0.449 (0.064, 0.834) | |
APAB | 0.273 (0.113, 0.434) | |
S | 3.31 (0.800, 13.697) | |
Additive interaction model of Acarbose and Sulfonylureas | ||
No-Acarbose and No-Sulfonylureas | Reference | |
No-Acarbose and Sulfonylureas | 1.65 (0.84, 3.24) | 0.157 |
Acarbose and No-Sulfonylureas | 1.74 (1.21, 2.51) | 0.003 |
Acarbose and Sulfonylureas | 1.92 (1.36, 2.72) | <0.001 |
RERI | 0.426 (0.062, 0.790) | |
APAB | 0.270 (0.110, 0.431) | |
S | 3.832 (0.563, 26.106) | |
Additive interaction model of Sulfonylureas, Metformin and DR | ||
No-Sulfonylureas and No-Metformin and No-DR | Reference | |
No-Sulfonylureas and No-Metformin and DR | 2.39 (1.69, 3.39) | <0.001 |
No-Sulfonylureas and Metformin and No-DR | 1.79 (1.26, 2.55) | 0.001 |
No-Sulfonylureas and Metformin and DR | 2.18 (1.52, 3.13) | <0.001 |
Sulfonylureas and No-Metformin and No-DR | 1.62 (0.69, 3.79) | 0.282 |
Sulfonylureas and No-Metformin and DR | 2.95 (1.5, 5.81) | 0.003 |
Sulfonylureas and Metformin and No-DR | 2.11 (1.23, 3.61) | 0.008 |
Sulfonylureas and Metformin and DR | 2.56 (1.56, 4.21) | <0.001 |
RERI | 0.405 (0.028, 0.782) | |
APAB | 0.259 (0.088, 0.430) | |
S | 3.578 (0.549, 23.306) |
DR | No-DR | |||
---|---|---|---|---|
OR (95%CI) | p | OR (95%CI) | p | |
Univariable Model | ||||
His | 0.92 (0.67, 1.27) | 0.619 | 0.79 (0.63, 1) | 0.036 |
0.73 (0.38, 1.4) | 0.339 | 0.74 (0.5, 1.08) | 0.117 | |
Trp | 1.15 (0.84, 1.58) | 0.386 | 0.79 (0.65, 0.97) | 0.022 |
0.85 (0.45, 1.62) | 0.631 | 0.63 (0.43, 0.92) | 0.018 | |
Val | 1.17 (0.85, 1.61) | 0.329 | 0.74 (0.6, 0.91) | 0.004 |
1.18 (0.63, 2.21) | 0.611 | 0.62 (0.42, 0.91) | 0.014 | |
Thr | 0.9 (0.65, 1.24) | 0.513 | 0.7 (0.55, 0.9) | 0.002 |
0.92 (0.49, 1.73) | 0.799 | 0.64 (0.43, 0.93) | 0.021 | |
Multivariable Model | ||||
His | 0.95 (0.66, 1.36) | 0.783 | 0.69 (0.53, 0.91) | 0.004 |
0.71 (0.34, 1.48) | 0.356 | 0.57 (0.37, 0.86) | 0.007 | |
Trp | 1.22 (0.84, 1.78) | 0.293 | 0.73 (0.58, 0.92) | 0.005 |
0.99 (0.48, 2.06) | 0.975 | 0.5 (0.33, 0.76) | 0.001 | |
Val | 1.21 (0.82, 1.77) | 0.339 | 0.72 (0.56, 0.91) | 0.005 |
1.28 (0.62, 2.65) | 0.508 | 0.58 (0.38, 0.89) | 0.012 | |
Thr | 0.96 (0.68, 1.36) | 0.823 | 0.64 (0.48, 0.84) | <0.001 |
1.06 (0.51, 2.21) | 0.872 | 0.54 (0.35, 0.82) | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, W.-M.; Su, J.-Y.; Xu, T.; Fang, Z.-Z. Prevalence of Diabetic Retinopathy and Use of Common Oral Hypoglycemic Agents Increase the Risk of Diabetic Nephropathy—A Cross-Sectional Study in Patients with Type 2 Diabetes. Int. J. Environ. Res. Public Health 2023, 20, 4623. https://doi.org/10.3390/ijerph20054623
Luo W-M, Su J-Y, Xu T, Fang Z-Z. Prevalence of Diabetic Retinopathy and Use of Common Oral Hypoglycemic Agents Increase the Risk of Diabetic Nephropathy—A Cross-Sectional Study in Patients with Type 2 Diabetes. International Journal of Environmental Research and Public Health. 2023; 20(5):4623. https://doi.org/10.3390/ijerph20054623
Chicago/Turabian StyleLuo, Wei-Ming, Jing-Yang Su, Tong Xu, and Zhong-Ze Fang. 2023. "Prevalence of Diabetic Retinopathy and Use of Common Oral Hypoglycemic Agents Increase the Risk of Diabetic Nephropathy—A Cross-Sectional Study in Patients with Type 2 Diabetes" International Journal of Environmental Research and Public Health 20, no. 5: 4623. https://doi.org/10.3390/ijerph20054623
APA StyleLuo, W. -M., Su, J. -Y., Xu, T., & Fang, Z. -Z. (2023). Prevalence of Diabetic Retinopathy and Use of Common Oral Hypoglycemic Agents Increase the Risk of Diabetic Nephropathy—A Cross-Sectional Study in Patients with Type 2 Diabetes. International Journal of Environmental Research and Public Health, 20(5), 4623. https://doi.org/10.3390/ijerph20054623