Use of Virtual Reality and Videogames in the Physiotherapy Treatment of Stroke Patients: A Pilot Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Intervention
2.3. Data Collection
- Muscle strength, measured through the Daniels and Worthingham Scale. The following muscles were assessed: shoulder flexors, elbow flexors, wrist flexors, hip flexors, knee flexors, ankle flexors, shoulder extensors, elbow extensors, wrist extensors, hip extensors, knee extensors and ankle extensors.
- Spasticity, measured by means of the Modified Ashworth Scale on shoulder flexors, elbow flexors, wrist flexors, hip and knee flexors, ankle and foot flexors, shoulder extensors, elbow extensors, wrist extensors, hip and knee extensors, ankle and foot extensors.
- Functionality was assessed through the Motricity Index. Arms and legs were tested: pinch grip, elbow flexion, shoulder abduction, ankle dorsiflexion, knee extension and hip flexion.
- Trunk control was assessed through the following movements: rolling to weak side, rolling to strong side, sitting up from lying down and balance in the sitting position.
- Balance and gait were evaluated through the Tinetti Balance Scale.
- Balance was assessed by means of the Berg Balance Scale.
- The Functional Ambulation Classification of the Hospital of Sagunto (CFMHS) was used for the assessment of the functional level of gait.
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions and Future Work
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Téllez, P.D.; Moral-Munoz, J.A.; Fernández, E.C.; Couso, A.S.; Lucena-Anton, D. Efectos de la realidad virtual sobre el equilibrio y la marcha en el ictus: Revisión sistemática y metaanálisis. Rev. Neurol. 2019, 69, 223–234. [Google Scholar] [CrossRef]
- Capdevila, M.S.; Sas, M.A.; Morientes, N.V.; Raurell, R.F.; Tebar, A.H. Abordaje de los ictus: Colaboración entre Atención Primaria y Especializada. Med. Fam. SEMERGEN 2005, 31, 314–318. [Google Scholar] [CrossRef]
- Montaner, J.; Mauleón, A.; Vidal, C.; Molina, C.; Alvarez-Sabín, J. Stroke: A stranger among the people. Rev. Neurol. 1998, 27, 943–947. [Google Scholar]
- Ictus. Available online: https://www.guttmann.com/es/especialidad/ictus (accessed on 4 February 2023).
- Soto, A.; Guillén-Grima, F.; Morales, G.; Muñoz, S.; Aguinaga-Ontoso, I.; Fuentes-Aspe, R. Prevalence and incidence of ictus in Europe: Systematic review and meta-analysis. An. Sist. Sanit. Navar. 2022, 45, e0979. [Google Scholar] [CrossRef] [PubMed]
- Purroy, F.; Montalà, N. Epidemiology of Stroke in the Last Decade: A Systematic Review. Rev. Neurol. 2021, 73, 321–336. [Google Scholar] [CrossRef] [PubMed]
- Simal Hernández, P.; Matias-Guiu Guia, J.; Hernández Meléndez, T.; Aparicio Azcárraga, P. Logros y retos en la atención del ictus en España: Desde la Estrategia del Sistema Nacional de Salud al Plan de Acción Europeo 2018–2030. Rev. Española Salud Pública 2021, 95, e1–e5. [Google Scholar]
- Noé, E.; Gómez, A.; Bernabeu, M.; Quemada, I.; Rodríguez, R.; Pérez, T.; López, C.; Laxe, S.; Colomer, C.; Ríos, M.; et al. Guía: Principios básicos de la neurorrehabilitación del paciente con daño cerebral adquirido. Recomendaciones de la Sociedad Española de Neurorrehabilitación. Neurología 2021, S0213485321001377. [Google Scholar] [CrossRef]
- Rodríguez-Yañez, M.; Gómez-Choco, M.; López-Cancio, E.; Amaro, S.; de Leciñana, M.A.; Arenillas, J.; Ayo-Martín, O.; Castellanos, M.; Freijo, M.; García-Pastor, A.; et al. Prevención de ictus en pacientes con hipertensión arterial: Recomendaciones del Grupo de Estudio de Enfermedades Cerebrovasculares de la Sociedad Española de Neurología. Neurología 2020, 36, 462–471. [Google Scholar] [CrossRef]
- Pelayo, M.P.S.; Albu, S.; Murillo, N.; Penalva, J.B. Espasticidad en la patología neurológica. Actualización sobre mecanismos fisiopatológicos, avances en el diagnóstico y tratamiento. Rev. Neurol. 2020, 70, 453–460. [Google Scholar] [CrossRef]
- Burgaya Subirana, S.; Macià Rieradevall, E.; Cabral Salvadores, M.; Ramos Calvo, A.M.; Burgaya Subirana, S.; Macià Rieradevall, E.; Cabral Salvadores, M.; Ramos Calvo, A.M. Ictus: Un Reto Diagnóstico. Pediatría Aten. Primaria 2021, 23, 179–182. [Google Scholar]
- Romero Bravo, M.; de la Cruz Cosme, C.; Barbancho Fernández, M.Á.; García Casares, N. Conocimiento sobre el ictus en la población española. Una revisión sistemática. Rev. Neurol. 2022, 74, 189–201. [Google Scholar] [PubMed]
- Arranz-Escudero, A.; Martín-Casas, P.; Díaz-Arribas, M.J.; Carpio-Calatayud, E.; Niño-Díaz, G.; López-de-Uralde-Villanueva, I. Postural control and gait changes in subacute stroke patients after receiving interdisciplinary rehabilitation and related factors: A retrospective study. Rev. Neurol. 2021, 73, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Secorún-Enjuanes, L.; Morales-Esquinas, S.; Abos-Navarro, I.; Monfort-Ferris, S.; Buisán-Espías, R. Tratamiento del equilibrio en un paciente con antecedente de Ictus. A propósito de un caso. RSI Rev. Sanit. Investig. 2022, 3, 65. [Google Scholar]
- Veerbeek, J.M.; van Wegen, E.; van Peppen, R.; van der Wees, P.J.; Hendriks, E.; Rietberg, M.; Kwakkel, G. What Is the Evidence for Physical Therapy Poststroke? A Systematic Review and Meta-Analysis. PLoS ONE 2014, 9, e87987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murie-Fernández, M.; Irimia, P.; Martinez-Vila, E.; Meyer, M.J.; Teasell, R. Neurorrehabilitación tras el ictus. Neurología 2010, 25, 189–196. [Google Scholar] [CrossRef]
- Samsó, J.V. La neurorrehabilitación, un proceso de alta complejidad. Rev. Neurol. 2020, 70, 433. [Google Scholar] [CrossRef]
- FEDACE (Federación Española de Daño Cerebral). Available online: https://fedace.org/index.php? (accessed on 4 February 2023).
- Sousa Ferreira, R.; Campanari Xavier, R.A.; Rodrigues Ancioto, A.S.; Sousa Ferreira, R.; Campanari Xavier, R.A.; Rodrigues Ancioto, A.S. La realidad virtual como herramienta para la educación básica y profesional. Rev. Científica Gen. José María Córdova 2021, 19, 223–241. [Google Scholar] [CrossRef]
- Virtual Reality Society. History of Virtual Reality. Available online: https://www.vrs.org.uk/virtual-reality/history.html (accessed on 4 February 2023).
- Mazuryk, T.; Gervautz, M. History, Applications, Technology and Future. Virtual Real. 1996, 1–72. [Google Scholar]
- Bamodu, O.; Ye, X.M. Virtual Reality and Virtual Reality System Components. Adv. Mater. Res. 2013, 765–767, 1169–1172. [Google Scholar] [CrossRef]
- Ultimate Guide to Virtual Reality (VR) in 2023: Types & Uses. Available online: https://research.aimultiple.com/virtual-reality/ (accessed on 4 February 2023).
- Azócar-Gallardo, J.; Ojeda-Aravena, A. Los videojuegos activos en tiempos de pandemia por COVID-19: Una potencial estrategia para aumentar la actividad física de los escolares. Fisioterapia 2021, 43, 124. [Google Scholar] [CrossRef]
- Almeciga, L.D.P.; Pous, M.F. Aplicación de Realidad Virtual Para la Rehabilitación; Escola d’Enginyeria de Barcelona Est, Universitat Politècnica de Catalunya: Barcelona, Spain, 2020. [Google Scholar]
- Shahrbanian, S.; Ma, X.; Aghaei, N.; Korner-Bitensky, N.; Simmonds, M. Use of Virtual Reality (Immersive vs. Non Immersive) for Pain Management in Children and Adults: A Systematic Review of Evidence from Randomized Controlled Trials. Eur. J. Exp. Biol. 2012, 2, 1408–1422. [Google Scholar]
- Ocete, G.V.; Carrillo, J.A.O.; González, M.Á.B. La realidad virtual y sus posibilidades didácticas. Rev. Científica Electrónica De Educ. Y Comun. En La Soc. Del Conoc. 2003, 2, 12. [Google Scholar]
- Rutkowski, S.; Kiper, P.; Cacciante, L.; Cieślik, B.; Mazurek, J.; Turolla, A.; Szczepańska-Gieracha, J. Use of virtual reality-based training in different fields of rehabilitation: A systematic review and meta-analysis. J. Rehabilitation Med. 2020, 52, jrm00121. [Google Scholar] [CrossRef] [PubMed]
- Eckert, M.; Gómez-Martinho, I.; Meneses, J.; Martínez, J.-F. New Approaches to Exciting Exergame-Experiences for People with Motor Function Impairments. Sensors 2017, 17, 354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Salas, C.P. Realidad Virtual: Un Aporte Real para la Evaluación y el Tratamiento de Personas con Discapacidad Intelectual. Ter. Psicológica 2008, 26, 253–262. [Google Scholar] [CrossRef]
- Yang, Y.-R.; Tsai, M.-P.; Chuang, T.-Y.; Sung, W.-H.; Wang, R.-Y. Virtual reality-based training improves community ambulation in individuals with stroke: A randomized controlled trial. Gait Posture 2008, 28, 201–206. [Google Scholar] [CrossRef]
- Jung, J.; Yu, J.; Kang, H. Effects of Virtual Reality Treadmill Training on Balance and Balance Self-efficacy in Stroke Patients with a History of Falling. J. Phys. Ther. Sci. 2012, 24, 1133–1136. [Google Scholar] [CrossRef] [Green Version]
- McEwen, D.; Taillon-Hobson, A.; Bilodeau, M.; Sveistrup, H.; Finestone, H. Virtual Reality Exercise Improves Mobility After Stroke: An Inpatient Randomized Controlled Trial. Stroke 2014, 45, 1853–1855. [Google Scholar] [CrossRef]
- Park, Y.-H.; Lee, C.-H.; Lee, B.-H. Clinical usefulness of the virtual reality-based postural control training on the gait ability in patients with stroke. J. Exerc. Rehabilitation 2013, 9, 489–494. [Google Scholar] [CrossRef]
- Liao, Y.-Y.; Tseng, H.-Y.; Lin, Y.-J.; Wang, C.-J.; Hsu, W.-C. Using virtual reality-based training to improve cognitive function, instrumental activities of daily living and neural efficiency in older adults with mild cognitive impairment. Eur. J. Phys. Rehabilitation Med. 2020, 56, 47–57. [Google Scholar] [CrossRef]
- Cho, K.H.; Lee, W.H. Effect of treadmill training based real-world video recording on balance and gait in chronic stroke patients: A randomized controlled trial. Gait Posture 2014, 39, 523–528. [Google Scholar] [CrossRef]
- El-Kafy, E.M.A.; Alshehri, M.A.; El-Fiky, A.A.-R.; Guermazi, M.A.; Mahmoud, H.M. The Effect of Robot-Mediated Virtual Reality Gaming on Upper Limb Spasticity Poststroke: A Randomized-Controlled Trial. Games Health J. 2022, 11, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Andreikanich, A.; Santos, B.S.; Amorim, P.; Zagalo, H.; Marques, B.; Margalho, P.; Lains, J.; Faim, F.; Coelho, M.; Cardoso, T.; et al. An Exploratory Study on the use of Virtual Reality in Balance Rehabilitation. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 3416–3419. [Google Scholar] [CrossRef]
- Paraense, H.; Marques, B.; Amorim, P.; Dias, P.; Santos, B.S. Whac-A-Mole: Exploring Virtual Reality (VR) for Upper-Limb Post-Stroke Physical Rehabilitation based on Participatory Design and Serious Games. In Proceedings of the 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Christchurch, New Zealand, 12–16 March 2022; pp. 716–717. [Google Scholar] [CrossRef]
- Rizzolatti, G.; Craighero, L. THE MIRROR-NEURON SYSTEM. Annu. Rev. Neurosci. 2004, 27, 169–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cattaneo, L.; Rizzolatti, G. The Mirror Neuron System. Arch. Neurol. 2009, 66, 557–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blexer–Full Play Therapeutic Blender Exergames for People with Physical Impairments. Available online: https://www.springerprofessional.de/en/blexer-full-play-therapeutic-blender-exergames-for-people-with-p/15501146 (accessed on 4 February 2023).
- Eckert, M.; Jiménez, M.; Martín-Ruiz, M.-L.; Meneses, J.; Salgado, L. Blexer-Med: A Medical Web Platform for Administrating Full Play Therapeutic Exergames. In Smart Objects and Technologies for Social Good; Guidi, B., Ricci, L., Calafate, C., Gaggi, O., Marquez-Barja, J., Eds.; Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering; Springer International Publishing: Cham, Switzerland, 2018; Volume 233, pp. 289–299. ISBN 978-3-319-76110-7. [Google Scholar]
- Eckert, M.; Gomez-Martinho, I.; Esteban, C.; Peláez, Y.; Jiménez, M.; Martín-Ruiz, M.-L.; Manzano, M.; Aglio, A.; Osma, V.; Meneses, J.; et al. The Blexer system–Adaptive full play therapeutic exergames with web-based supervision for people with motor dysfunctionalities. EAI Endorsed Trans. Game-Based Learn. 2018, 5, 155085. [Google Scholar] [CrossRef]
- Arnold, D.M.; Burns, K.E.A.; Adhikari, N.K.J.; Kho, M.; Meade, M.O.; Cook, D.J.; McMaster Critical Care Interest Group. The design and interpretation of pilot trials in clinical research in critical care. Crit. Care Med. 2009, 37, S69–S74. [Google Scholar] [CrossRef] [PubMed]
- Thabane, L.; Ma, J.; Chu, R.; Cheng, J.; Ismaila, A.; Rios, L.P.; Robson, R.; Thabane, M.; Giangregorio, L.; Goldsmith, C.H. A tutorial on pilot studies: The what, why and how. BMC Med. Res. Methodol. 2010, 10, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watson, L.D.; A Quinn, D. Stages of Stroke: A model for stroke rehabilitation. Br. J. Nurs. 1998, 7, 631–640. [Google Scholar] [CrossRef]
- In, T.; Lee, K.; Song, C. Virtual Reality Reflection Therapy Improves Balance and Gait in Patients with Chronic Stroke: Randomized Controlled Trials. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2016, 22, 4046–4053. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Jang, S.H.; Kim, C.S.; Jung, J.H.; You, S. Use of Virtual Reality to Enhance Balance and Ambulation in Chronic Stroke: A Double-Blind, Randomized Controlled Study. Am. J. Phys. Med. Rehabil. 2009, 88, 693–701. [Google Scholar] [CrossRef]
- Lee, M.M.; Lee, K.J.; Song, C.H. Game-Based Virtual Reality Canoe Paddling Training to Improve Postural Balance and Upper Extremity Function: A Preliminary Randomized Controlled Study of 30 Patients with Subacute Stroke. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2018, 24, 2590–2598. [Google Scholar] [CrossRef]
- Lin, R.-C.; Chiang, S.L.; Heitkemper, M.M.; Weng, S.-M.; Lin, C.-F.; Yang, F.-C.; Lin, C.-H. Effectiveness of Early Rehabilitation Combined With Virtual Reality Training on Muscle Strength, Mood State, and Functional Status in Patients With Acute Stroke: A Randomized Controlled Trial. Worldviews Evid.-Based Nurs. 2020, 17, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Calabrò, R.S.; Naro, A.; Russo, M.; Leo, A.; De Luca, R.; Balletta, T.; Buda, A.; La Rosa, G.; Bramanti, A.; Bramanti, P. The role of virtual reality in improving motor performance as revealed by EEG: A randomized clinical trial. J. Neuroeng. Rehabil. 2017, 14, 53. [Google Scholar] [CrossRef] [PubMed]
- Rizzolatti, G.; Fabbri-Destro, M.; Cattaneo, L. Mirror neurons and their clinical relevance. Nat. Clin. Pract. Neurol. 2009, 5, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Luque-Moreno, C.; Cano-Bravo, F.; Kiper, P.; Solís-Marcos, I.; Moral-Munoz, J.A.; Agostini, M.; Oliva-Pascual-Vaca, A.; Turolla, A. Reinforced Feedback in Virtual Environment for Plantar Flexor Poststroke Spasticity Reduction and Gait Function Improvement. BioMed Res. Int. 2019, 2019, 6295263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Kim, Y.; Lee, B.-H. Effect of Virtual Reality-based Bilateral Upper Extremity Training on Upper Extremity Function after Stroke: A Randomized Controlled Clinical Trial. Occup. Ther. Int. 2016, 23, 357–368. [Google Scholar] [CrossRef] [Green Version]
- Lloréns, R.; Noé, E.; Colomer, C.; Alcañiz, M. Effectiveness, Usability, and Cost-Benefit of a Virtual Reality–Based Telerehabilitation Program for Balance Recovery After Stroke: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2015, 96, 418–425. [Google Scholar] [CrossRef] [Green Version]
Clinical Variables | CG | EG | |||||
---|---|---|---|---|---|---|---|
Pre | Post | p-Value | Pre | Post | p-Value | ||
Functionality (Motricity Index) | 72.70 ± 37.74 | 75.66 ± 36.72 | 0.754 | 67.08 ± 31.66 | 84.00 ± 23.05 | 0.001 | |
Trunk Control | 46.58 ± 33.58 | 69.65 ± 29.39 | 0.083 | 65.16 ± 23.33 | 91.58 ± 21.55 | 0.008 | |
Balance (Tinetti) | 6.50 ± 6.08 | 9.08 ± 5.66 | 0.251 | 8.58 ± 4.12 | 13.58 ± 3.05 | 0.004 | |
Gait (Tinetti) | 3.58 ± 4.52 | 5.83 ± 3.99 | 0.105 | 5.41 ± 3.02 | 9.16 ± 2.85 | 0.006 | |
Balance (Berg) | 21.33 ± 22.76 | 28.91 ± 20.40 | 0.111 | 27.00 ± 15.89 | 46.00 ± 13.08 | 0.007 | |
Functional Level of Gait (CFMHS) | 0 | 5 | 0 | 0.280 | 1 | 0 | 0.038 |
1 | 2 | 7 | 7 | 1 | |||
2 | 4 | 1 | 2 | 1 | |||
3 | 1 | 2 | 1 | 2 | |||
4 | 0 | 2 | 1 | 6 | |||
5 | 0 | 0 | 0 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peláez-Vélez, F.-J.; Eckert, M.; Gacto-Sánchez, M.; Martínez-Carrasco, Á. Use of Virtual Reality and Videogames in the Physiotherapy Treatment of Stroke Patients: A Pilot Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2023, 20, 4747. https://doi.org/10.3390/ijerph20064747
Peláez-Vélez F-J, Eckert M, Gacto-Sánchez M, Martínez-Carrasco Á. Use of Virtual Reality and Videogames in the Physiotherapy Treatment of Stroke Patients: A Pilot Randomized Controlled Trial. International Journal of Environmental Research and Public Health. 2023; 20(6):4747. https://doi.org/10.3390/ijerph20064747
Chicago/Turabian StylePeláez-Vélez, Francisco-Javier, Martina Eckert, Mariano Gacto-Sánchez, and Ángel Martínez-Carrasco. 2023. "Use of Virtual Reality and Videogames in the Physiotherapy Treatment of Stroke Patients: A Pilot Randomized Controlled Trial" International Journal of Environmental Research and Public Health 20, no. 6: 4747. https://doi.org/10.3390/ijerph20064747
APA StylePeláez-Vélez, F. -J., Eckert, M., Gacto-Sánchez, M., & Martínez-Carrasco, Á. (2023). Use of Virtual Reality and Videogames in the Physiotherapy Treatment of Stroke Patients: A Pilot Randomized Controlled Trial. International Journal of Environmental Research and Public Health, 20(6), 4747. https://doi.org/10.3390/ijerph20064747