Automation, Climate Change, and the Future of Farm Work: Cross-Disciplinary Lessons for Studying Dynamic Changes in Agricultural Health and Safety
Abstract
:1. Introduction
2. Literature Review Approach
3. Technology and Climate Change in the Literature as It Pertains to Agricultural Safety and Health
3.1. Theme 1: Outcomes Related to the Adoption of Environmental Adaptation Strategies
3.2. Theme 2: Discrete Causes of Farm Injuries under Climate Change and Technological Change
3.3. Theme 3: Automation, Care, and Wellbeing on the Farm
3.4. Gaps in the Current Research
4. Social Science’s Contributions to the Environmental-Technological Change Intersection and Agricultural Worker Health
4.1. Contributions from Rural Sociology
4.2. Contributions from STS
4.3. Contributions from Environmental Social Science
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ehsan, E. Estimating smart energy inputs packages using hybrid optimisation technique to mitigate environmental emissions of commercial fish farms. Appl. Energy 2022, 326, 119602. [Google Scholar]
- Elahi, E.; Khalid, Z.; Tauni, M.Z.; Zhang, H.; Lirong, X. Extreme weather events risk to crop-production and the adaptation of innovative management strategies to mitigate the risk: A retrospective survey of rural Punjab, Pakistan. Technovation 2022, 117, 102255. [Google Scholar] [CrossRef]
- Waseem, M.; Khursheed, T.; Abbas, A.; Ahmad, I.; Javed, Z. Impact of meteorological drought on agriculture production at different scales in Punjab, Pakistan. J. Water Clim. Change 2021, 13, 113–124. [Google Scholar] [CrossRef]
- Martin, T.; Gasselin, P.; Hostiou, N.; Feron, G.; Laurens, L.; Purseigle, F.; Ollivier, G. Robots and transformations of work in farm: A systematic review of the literature and a research agenda. Agron. Sustain. Dev. 2022, 42, 1–20. [Google Scholar] [CrossRef]
- Pinzke, S. Comparison of Working Conditions and Prevalence of Musculoskeletal Symptoms among Dairy Farmers in Southern Sweden over a 25-Year Period. Front. Public Health 2016, 4, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porcher, J.; Schmitt, T. Dairy Cows: Workers in the Shadows? Soc. Anim. 2012, 20, 39–60. [Google Scholar] [CrossRef] [Green Version]
- Viveros-Guzmán, A.; Gertler, M. Latino Farmworkers in Saskatchewan: Language Barriers and Health and Safety. J. Agromed. 2015, 20, 341–348. [Google Scholar] [CrossRef]
- Bronson, K. Looking through a responsible innovation lens at uneven engagements with digital farming. NJAS Wagening. J. Life Sci. 2019, 90–91, 1–6. [Google Scholar] [CrossRef]
- Comi, M. Other agricultures of scale: Social and environmental insights from Yakima Valley hop growers. J. Rural Stud. 2020, 80, 543–552. [Google Scholar] [CrossRef]
- Comi, M. The distributed farmer: Rethinking US Midwestern precision agriculture techniques. Environ. Sociol. 2020, 6, 403–415. [Google Scholar] [CrossRef]
- Cowie, P.; Townsend, L.; Salemink, K. Smart rural futures: Will rural areas be left behind in the 4th industrial revolution? J. Rural Stud. 2020, 79, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Steffen, W.; Crutzen, P.J.; McNeill, J.R. The Anthropocene: Are Humans Now Overwhelming the Great Forces of Nature. AMBIO 2007, 36, 614–621. [Google Scholar] [CrossRef]
- Carolan, M. Automated agrifood futures: Robotics, labor and the distributive politics of digital agriculture. J. Peasant Stud. 2019, 47, 184–207. [Google Scholar] [CrossRef]
- U.S. Bureau of Labor Statistics. Survey of Occupational Inuries and Illnesses and Census of Fatal Occupational Injuries; Beureu of Labor Statistics: Washington, DC, USA, 2019.
- Weiler, A.M.; Sexsmith, K.; Minkoff-Zern, L.-A. Parallel Precarity: A Comparison of US and Canadian Agricultural Guest Worker Programs. Int. J. Sociol. Agric. Food. 2020, 26, 144–163. [Google Scholar]
- Flocks, J.D. The environmental and social injustice of farmworker pesticide exposure. Geo. J. Poverty L Policy 2012, 19, 255. [Google Scholar]
- Sexsmith, K. The embodied precarity of year-round agricultural work: Health and safety risks among Latino/a immigrant dairy farmworkers in New York. Agric. Hum. Values 2021, 39, 357–370. [Google Scholar] [CrossRef]
- Sorensen, J.A.; Tinc, P.J.; Weil, R.; Droullard, D. Symbolic Interactionism: A Framework for Understanding Risk-Taking Behaviors in Farm Communities. J. Agromed. 2016, 22, 26–35. [Google Scholar] [CrossRef]
- Thu, K. The Health Consequences of Industrialized Agriculture for Farmers in the United States. Hum. Organ. 1998, 57, 335–341. [Google Scholar] [CrossRef]
- Janssen, B.; Nonnenmann, M.W. New Institutional Theory and a Culture of Safety in Agriculture. J. Agromed. 2016, 22, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Becot, F.; Inwood, S.; Bendixsen, C.; Henning-Smith, C. Health Care and Health Insurance Access for Farm Families in the United States during COVID-19: Essential Workers without Essential Resources? J. Agromed. 2020, 25, 374–377. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 89, 105906. [Google Scholar]
- Adam-Poupart, A.; Labrèche, F.; Smargiassi, A.; Duguay, P.; Busque, M.-A.; Gagné, C.; Rintamäki, H.; Kjellstrom, T.; Zayed, J. Climate Change and Occupational Health and Safety in a Temperate Climate: Potential Impacts and Research Priorities in Quebec, Canada. Ind. Health 2013, 51, 68–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bambrick, H.; Hales, S. Climate Adaptation Strategy for Health and Action Plan: Part of the Project “Integrating Climate Change Risks in the Agriculture and Health Sectors in Sāmoa”; Ministry of Health: Apia, Samoa, 2013.
- Bengü, E. Farmers’ adaptation to climate-smart agriculture (CSA) in NW Turkey. Environ. Dev. Sustain. 2021, 23, 4215–4235. [Google Scholar] [CrossRef]
- Bowen, K.J.; Friel, S. Climate change adaptation: Where does global health fit in the agenda? Glob. Health 2012, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Brown, K.; Schirmer, J.; Upton, P. Can regenerative agriculture support successful adaptation to climate change and improved landscape health through building farmer self-efficacy and wellbeing? Curr. Res. Environ. Sustain. 2022, 4, 100170. [Google Scholar] [CrossRef]
- Ceccarelli, S.; Grando, S. Evolutionary Plant Breeding as a Response to the Complexity of Climate Change. iScience 2020, 23, 101815. [Google Scholar] [CrossRef]
- David, R.L. Developing local adaptation strategies for climate change in agriculture: A priority-setting approach with application to Latin America. Glob. Environ. Change 2014, 29, 78–91. [Google Scholar] [CrossRef]
- Duchenne-Moutien, R.A.; Neetoo, H. Climate Change and Emerging Food Safety Issues: A Review. J. Food Prot. 2021, 84, 1884–1897. [Google Scholar] [CrossRef]
- Harvey, C.A.; Rakotobe, Z.L.; Rao, N.S.; Dave, R.; Razafimahatratra, H.; Rabarijohn, R.H.; Rajaofara, H.; MacKinnon, J.L. Extreme vulnerability of smallholder farmers to agricultural risks and climate change in Madagascar. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130089. [Google Scholar] [CrossRef] [Green Version]
- Hennessy, D.A.; Zhang, J.; Bai, N. Animal health inputs, endogenous risk, general infrastructure, technology adoption and industrialized animal agriculture. Food Policy 2019, 83, 355–362. [Google Scholar] [CrossRef]
- Inman, E.N.; Hobbs, R.J.; Tsvuura, Z. No safety net in the face of climate change: The case of pastoralists in Kunene Region, Namibia. PLoS ONE 2020, 15, e0238982. [Google Scholar] [CrossRef]
- Jaramillo, D.; Krisher, L.; Schwatka, N.V.; Tenney, L.; Fisher, G.G.; Clancy, R.L.; Shore, E.; Asensio, C.; Tetreau, S.; Castrillo, M.E.; et al. International Total Worker Health: Applicability to Agribusiness in Latin America. Int. J. Environ. Res. Public Health 2021, 18, 2252. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J.; Barrangou, R.; Hill, C.; Kokini, J.L.; Lila, M.A.; Meyer, A.S.; Yu, L. Building a Resilient, Sustainable, and Healthier Food Supply through Innovation and Technology. Annu. Rev. Food Sci. Technol. 2021, 12, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Simarmata, T.; Proyoga, M.K.; Herdiyantoro, D.; Setiawati, M.R.; Adinata, K.; Stöber, S. Climate Resilient Sustainable Agriculture for Restoring the Soil Health and Increasing Rice Productivity as Adaptation Strategy to Climate Change in Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2021, 748, 012039. [Google Scholar] [CrossRef]
- Wei, Z. Soil health and gender: Why and how to identify the linkages. Int. J. Agric. Sustain. 2021, 19, 269–287. [Google Scholar] [CrossRef]
- Xiang, J.; Bi, P.; Pisaniello, D.; Hansen, A. Health Impacts of Workplace Heat Exposure: An Epidemiological Review. Ind. Health 2014, 52, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Xiang, J.; Bi, P.; Pisaniello, D.; Hansen, A. The impact of heatwaves on workers’ health and safety in Adelaide, South Australia. Environ. Res. 2014, 133, 90–95. [Google Scholar] [CrossRef]
- Yeni, F.; Alpas, H. Vulnerability of global food production to extreme climatic events. Food Res. Int. 2017, 96, 27–39. [Google Scholar] [CrossRef]
- El Khayat, M.; Halwani, D.A.; Hneiny, L.; Alameddine, I.; Haidar, M.A.; Habib, R.R. Impacts of Climate Change and Heat Stress on Farmworkers’ Health: A Scoping Review. Front. Public Health 2022, 10, 782811. [Google Scholar] [CrossRef]
- Goldman, S.; Engelman-Lado, M. Agriculture, Climate Change, and Farmworker Health–from Health Impacts to Policy Interventions-Environment-Oral Virtual. In APHA 2021 Annual Meeting and Expo; APHA: Atlanta, GA, USA, 2021. [Google Scholar]
- Mutic, A.D.; Mix, J.M.; Elon, L.; Mutic, N.J.; Economos, J.; Flocks, J.; Tovar-Aguilar, A.J.; McCauley, L.A. Classification of Heat-Related Illness Symptoms among Florida Farmworkers. J. Nurs. Sch. 2017, 50, 74–82. [Google Scholar] [CrossRef]
- Pinkerton, K.E.; Felt, E.; Riden, H.E. Editorial: Extreme Weather Resulting from Global Warming is an Emerging Threat to Farmworker Health and Safety. J. Agric. Saf. Health 2019, 25, 189–190. [Google Scholar] [CrossRef]
- Unseld, M. Farmworkers—Always Essential, Always at Risk: An Interview with Jeannie Economos. New Solut. J. Environ. Occup. Health Policy 2020, 30, 305–310. [Google Scholar] [CrossRef]
- Arcury, T.A.; Quandt, S.A. Delivery of Health Services to Migrant and Seasonal Farmworkers. Annu. Rev. Public Health 2007, 28, 345–363. [Google Scholar] [CrossRef] [Green Version]
- Arcury, T.A.; Quandt, S.A.; Russell, G.B. Pesticide safety among farmworkers: Perceived risk and perceived control as factors reflecting environmental justice. Environ. Health Perspect. 2002, 110, 233–240. [Google Scholar] [CrossRef]
- Hiott, A.E.; Grzywacz, J.G.; Davis, S.W.; Quandt, S.A.; Arcury, T.A. Migrant Farmworker Stress: Mental Health Implications. J. Rural Health 2008, 24, 32–39. [Google Scholar] [CrossRef]
- Holmes, S.M. “Oaxacans Like to Work Bent Over”: The Naturalization of Social Suffering among Berry Farm Workers. Int. Migr. 2007, 45, 39–68. [Google Scholar] [CrossRef]
- Ortiz, P. CHAPTER 9. From Slavery to Cesar Chavez and Beyond: Farmworker Organizing in the United States. In The Human Cost of Food; University of Texas Press: Austin, TX, USA, 2021; pp. 249–277. [Google Scholar] [CrossRef]
- Sexsmith, K.; Palacios, E.E.; Gorgo-Gourovitch, M.; Arredondo, I.A.H. Latino/a Farmworkers’ Concerns about Safety and Health in the Pennsylvania Mushroom Industry. J. Agromed. 2021, 27, 169–182. [Google Scholar] [CrossRef]
- Comi, M.; Becot, F. Thinking the Future of Agricultural Worker Health on a Warming Planet and an Automating Farm. J. Agromed. 2022, 28, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Bjørn Gunnar, H. Automatic milking systems and farmer wellbeing–exploring the effects of automation and digitalization in dairy farming. J. Rural Stud. 2020, 80, 469–480. [Google Scholar] [CrossRef]
- Applebaum, K.M.; Graham, J.; Gray, G.M.; Lapuma, P.; McCormick, S.A.; Northcross, A.; Perry, M.J. An Overview of Occupational Risks from Climate Change. Curr. Environ. Health Rep. 2016, 3, 13–22. [Google Scholar] [CrossRef]
- Bashiri, B.; Mann, D.D. Impact of Automation on Drivers’ Performance in Agricultural Semi-Autonomous Vehicles. J. Agric. Saf. Health 2015, 21, 129–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benos, L.; Bochtis, D.D. An Analysis of Safety and Health Issues in Agriculture Towards Work Automation. In Information and Communication Technologies for Agriculture—Theme IV: Actions; Springer: Berlin/Heidelberg, Germany, 2021; pp. 95–117. [Google Scholar]
- Berhane, K.; Kumie, A.; Samet, J. Health Effects of Environmental Exposures, Occupational Hazards and Climate Change in Ethiopia: Synthesis of Situational Analysis, Needs Assessment and the Way Forward. Ethiop. J. Health Dev. 2016, 30, 50–56. [Google Scholar] [PubMed]
- Brook, A.; De Micco, V.; Battipaglia, G.; Erbaggio, A.; Ludeno, G.; Catapano, I.; Bonfante, A. A smart multiple spatial and temporal resolution system to support precision agriculture from satellite images: Proof of concept on Aglianico vineyard. Remote Sens. Environ. 2020, 240, 111679. [Google Scholar] [CrossRef]
- Butler-Dawson, J.; James, K.A.; Krisher, L.; Jaramillo, D.; Dally, M.; Neumann, N.; Pilloni, D.; Cruz, A.; Asensio, C.; Johnson, R.J.; et al. Environmental metal exposures and kidney function of Guatemalan sugarcane workers. J. Expo. Sci. Environ. Epidemiol. 2022, 32, 461–471. [Google Scholar] [CrossRef]
- Dally, M.; Butler-Dawson, J.; Sorensen, C.; Van Dyke, M.; James, K.; Krisher, L.; Jaramillo, D.; Newman, L. Wet Bulb Globe Temperature and Recorded Occupational Injury Rates among Sugarcane Harvesters in Southwest Guatemala. Int. J. Environ. Res. Public Health 2020, 17, 8195. [Google Scholar] [CrossRef] [PubMed]
- Endang, S. State of the art of Indonesian agriculture and the introduction of innovation for added value of cassava. Plant Biotechnol. Rep. 2020, 14, 207–212. [Google Scholar] [CrossRef]
- Fenske, R.A.; Pinkerton, K.E. Climate Change and the Amplification of Agricultural Worker Health Risks. J. Agromed. 2021, 26, 15–17. [Google Scholar] [CrossRef] [PubMed]
- Gubernot, D.M.; Anderson, G.B.; Hunting, K.L. Characterizing occupational heat-related mortality in the United States, 2000–2010: An analysis using the census of fatal occupational injuries database. Am. J. Ind. Med. 2015, 58, 203–211. [Google Scholar] [CrossRef] [Green Version]
- Gupta, N.; Khosravy, M.; Gupta, S.; Dey, N.; Crespo, R.G. Lightweight Artificial Intelligence Technology for Health Diagnosis of Agriculture Vehicles: Parallel Evolving Artificial Neural Networks by Genetic Algorithm. Int. J. Parallel Program. 2020, 50, 1–26. [Google Scholar] [CrossRef]
- Hagevoort, G.R.; Douphrate, D.I.; Reynolds, S.J. A Review of Health and Safety Leadership and Managerial Practices on Modern Dairy Farms. J. Agromed. 2013, 18, 265–273. [Google Scholar] [CrossRef]
- Hesketh, M.; Wuellner, S.; Robinson, A.; Adams, D.; Smith, C.; Bonauto, D. Heat related illness among workers in Washington State: A descriptive study using workers’ compensation claims, 2006–2017. Am. J. Ind. Med. 2020, 63, 300–311. [Google Scholar] [CrossRef]
- Hess, T.; Sumberg, J.; Biggs, T.; Georgescu, M.; Haro-Monteagudo, D.; Jewitt, G.; Ozdogan, M.; Marshall, M.; Thenkabail, P.; Daccache, A.; et al. A sweet deal? Sugarcane, water and agricultural transformation in Sub-Saharan Africa. Glob. Environ. Change 2016, 39, 181–194. [Google Scholar] [CrossRef] [Green Version]
- Jemal, F. Wastewater reclamation and reuse potentials in agriculture: Towards environmental sustainability. Environ. Dev. Sustain. 2021, 23, 2949–2972. [Google Scholar] [CrossRef]
- Khan, M.I.; Bath, B.; Kociolek, A.; Zeng, X.; Koehncke, N.; Trask, C. Trunk Posture Exposure Patterns among Prairie Ranch and Grain Farmers. J. Agromed. 2019, 25, 210–220. [Google Scholar] [CrossRef]
- Morris, N.B.; Piil, J.F.; Morabito, M.; Messeri, A.; Levi, M.; Ioannou, L.G.; Ciuha, U.; Pogačar, T.; Kajfež Bogataj, L.; Kingma, B.; et al. The HEAT-SHIELD project—Perspectives from an inter-sectoral approach to occupational heat stress. J. Sci. Med. Sport 2021, 24, 747–755. [Google Scholar] [CrossRef]
- Musker, R.; Lange, M.; Hollander, A.; Huber, P.; Springer, N.; Riggle, C.; Quinn, J.F.; Tomich, T.P. Towards designing an ontology encompassing the environment-agriculture-food-diet-health knowledge spectrum for food system sustainability and resilience. In CEUR Workshop Proceedings; CEUR-WS: Auchen, Germany, 2016. [Google Scholar]
- Pardeep, K. Agricultural sustainability in Indian Himalayan region: Constraints and potentials. Indian J. Ecol. 2021, 48, 649–661. [Google Scholar]
- Pishgar, M.; Issa, S.; Sietsema, M.; Pratap, P.; Darabi, H. REDECA: A Novel Framework to Review Artificial Intelligence and Its Applications in Occupational Safety and Health. Int. J. Environ. Res. Public Health 2021, 18, 6705. [Google Scholar] [CrossRef]
- Riccò, M. Air temperature exposure and agricultural occupational injuries in the Autonomous Province of Trento (2000–2013, North-Eastern Italy). Int. J. Occup. Med. Environ. Health 2018, 31, 317–331. [Google Scholar] [CrossRef] [Green Version]
- Riley, K.; Wilhalme, H.; Delp, L.; Eisenman, D.P. Mortality and Morbidity during Extreme Heat Events and Prevalence of Outdoor Work: An Analysis of Community-Level Data from Los Angeles County, California. Int. J. Environ. Res. Public Health 2018, 15, 580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarah, P.C. Do advisors perceive climate change as an agricultural risk? An in-depth examination of Midwestern U.S. Ag advisors’ views on drought, climate change, and risk management. Agric. Hum. Values 2018, 35, 349–365. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, A.C.; Schmidt, A.; Bechthold, A.; Boeing, H.; Watzl, B.; Darmon, N.; Devleesschauwer, B.; Heckelei, T.; Pires, S.M.; Nadaud, P.; et al. Integration of various dimensions in food-based dietary guidelines via mathematical approaches: Report of a DGE/FENS Workshop in Bonn, Germany, 23–24 September 2019. Br. J. Nutr. 2020, 126, 942–949. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.R.; Sacarrão-Birrento, L.; Almeida, M.; Ribeiro, D.M.; Guedes, C.; González Montaña, J.R.; Pereira, A.F.; Zaralis, K.; Geraldo, A.; Tzamaloukas, O.; et al. Extensive Sheep and Goat Production: The Role of Novel Technologies towards Sustainability and Animal Welfare. Animals 2022, 12, 885. [Google Scholar] [CrossRef]
- Skotadis, E.; Kanaris, A.; Aslanidis, E.; Michalis, P.; Kalatzis, N.; Chatzipapadopoulos, F.; Marianos, N.; Tsoukalas, D. A sensing approach for automated and real-time pesticide detection in the scope of smart-farming. Comput. Electron. Agric. 2020, 178, 105759. [Google Scholar] [CrossRef] [PubMed]
- Castañeda, H.; Holmes, S.M.; Madrigal, D.S.; Young, M.-E.D.; Beyeler, N.; Quesada, J. Immigration as a Social Determinant of Health. Annu. Rev. Public Health 2015, 36, 375–392. [Google Scholar] [CrossRef]
- Holmes, S.M. Structural Vulnerability and Hierarchies of Ethnicity and Citizenship on the Farm. Med. Anthr. 2011, 30, 425–449. [Google Scholar] [CrossRef]
- Cheng, R.; Mantovani, A.; Frazzoli, C. Analysis of Food Safety and Security Challenges in Emerging African Food Producing Areas through a One Health Lens: The Dairy Chains in Mali. J. Food Prot. 2017, 80, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Lundström, C.; Lindblom, J. Care in dairy farming with automatic milking systems, identified using an Activity Theory lens. J. Rural Stud. 2021, 87, 386–403. [Google Scholar] [CrossRef]
- Holmes, S.M. Fresh fruit, broken bodies. In Fresh Fruit, Broken Bodies; University of California Press: Oakland, CA, USA, 2013. [Google Scholar]
- Charatsari, C.; Lioutas, E.D.; Papadaki-Klavdianou, A.; Michailidis, A.; Partalidou, M. Farm advisors amid the transition to Agriculture 4.0: Professional identity, conceptions of the future and future-specific competencies. Sociol. Rural 2022, 62, 335–362. [Google Scholar] [CrossRef]
- Klerkx, L.; Rose, D. Dealing with the game-changing technologies of Agriculture 4.0: How do we manage diversity and responsibility in food system transition pathways? Glob. Food Secur. 2020, 24, 100347. [Google Scholar] [CrossRef]
- Van Der Ploeg, J.D.; Renting, H.; Brunori, G.; Knickel, K.; Mannion, J.; Marsden, T.; De Roest, K.; Sevilla-Guzman, E.; Ventura, F. Rural Development: From Practices and Policies towards Theory. Sociol. Rural 2000, 40, 391–408. [Google Scholar] [CrossRef]
- Carolan, M.S. Barriers to the Adoption of Sustainable Agriculture on Rented Land: An Examination of Contesting Social Fields. Rural Sociol. 2005, 70, 387–413. [Google Scholar] [CrossRef]
- Lawson, V.; Jarosz, L.; Bonds, A. Articulations of Place, Poverty, and Race: Dumping Grounds and Unseen Grounds in the Rural American Northwest. Ann. Assoc. Am. Geogr. 2010, 100, 655–677. [Google Scholar] [CrossRef]
- Shortall, S.; McKee, A.; Sutherland, L.-A. Why do farm accidents persist? Normalising danger on the farm within the farm family. Sociol. Health Illn. 2018, 41, 470–483. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, L.-A.; Calo, A. Assemblage and the ‘good farmer’: New entrants to crofting in scotland. J. Rural Stud. 2020, 80, 532–542. [Google Scholar] [CrossRef]
- Rotz, S.; Duncan, E.; Small, M.; Botschner, J.; Dara, R.; Mosby, I.; Reed, M.; Fraser, E.D.G. The Politics of Digital Agricultural Technologies: A Preliminary Review. Sociol. Rural 2019, 59, 203–229. [Google Scholar] [CrossRef] [Green Version]
- Rotz, S.; Gravely, E.; Mosby, I.; Duncan, E.; Finnis, E.; Horgan, M.; LeBlanc, J.; Martin, R.; Neufeld, H.T.; Nixon, A.; et al. Automated pastures and the digital divide: How agricultural technologies are shaping labour and rural communities. J. Rural Stud. 2019, 68, 112–122. [Google Scholar] [CrossRef]
- Comi, M. ‘The right hybrid for every acre’: Assembling the social worlds of corn and soy seed-selling in conventional agricultural techniques. Sociol. Rural 2018, 59, 159–176. [Google Scholar] [CrossRef] [Green Version]
- Guthman, J. Wilted: Pathogens, Chemicals, and the Fragile Future of the Strawberry Industry; University of California Press: Oakland, CA, USA, 2019. [Google Scholar]
- Guthman, J.; Zurawski, E. “If I need to put more armor on, I can’t carry more guns”: The collective action problem of breeding for productivity in the California strawberry industry. Int. J. Sociol. Agric. Food Online 2020, 26, 69–88. [Google Scholar]
- Stock, P.V.; Forney, J. Farmer autonomy and the farming self. J. Rural Stud. 2014, 36 (Suppl. C), 160–171. [Google Scholar] [CrossRef]
- Stock, P.V.; Forney, J.; Emery, S.B.; Wittman, H. Neoliberal natures on the farm: Farmer autonomy and cooperation in comparative perspective. J. Rural Stud. 2014, 36, 411–422. [Google Scholar] [CrossRef] [Green Version]
- Becot, F.; Bendixsen, C.; Barnes, K.; Rudolphi, J. Broadening Our Understanding of Farm Children’s Risk Exposure by Considering Their Parents’ Farming Background. Int. J. Environ. Res. Public Health 2021, 18, 5218. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.; Heley, J.; Woods, M. Unravelling the Global Wool Assemblage: Researching Place and Production Networks in the Global Countryside. Sociol. Rural 2018, 59, 137–158. [Google Scholar] [CrossRef] [Green Version]
- Comi, M.; Stamper, R. Chicken noodle night: Conviviality, resilience, and food at the Vinland Fair. Food Cult. Soc. 2021, 24, 309–324. [Google Scholar] [CrossRef]
- Darnhofer, I. Farming from a Process-Relational Perspective: Making Openings for Change Visible. Sociol. Rural 2020, 60, 505–528. [Google Scholar] [CrossRef] [Green Version]
- Garasky, S.; Morton, L.W.; Greder, K. The food environment and food insecurity: Perceptions of rural, suburban, and urban food pantry clients in Iowa. Fam. Econ. Nutr. Rev. 2004, 16, 41–48. [Google Scholar]
- Crane, T.A. Bringing Science and Technology Studies into Agricultural Anthropology: Technology Development as Cultural Encounter between Farmers and Researchers. Cult. Agric. Food Environ. 2014, 36, 45–55. [Google Scholar] [CrossRef]
- Du Bray, M.V.; Burnham, M.; Running, K.; Quimby, B. Farmer Lifeways and the Lived Experience of Adaptation to Water Policy Change in Idaho’s Eastern Snake Plain Aquifer Region. Cult. Agric. Food Environ. 2022. [Google Scholar] [CrossRef]
- Horton, S.B. They Leave Their Kidneys in the Fields. In Illness, Injury, and Illegality among U.S. Farmworkers, 1st ed.; University of California Press: Oakland, CA, USA, 2016. [Google Scholar]
- Vásquez-León, M. Hispanic Farmers and Farmworkers: Social Networks, Institutional Exclusion, and Climate Vulnerability in Southeastern Arizona. Am. Anthr. 2009, 111, 289–301. [Google Scholar] [CrossRef]
- Yates-Doerr, E. Reworking the Social Determinants of Health: Responding to Material-Semiotic Indeterminacy in Public Health Interventions. Med. Anthr. Q. 2020, 34, 378–397. [Google Scholar] [CrossRef] [PubMed]
- Law, J.; Mol, A. Notes on Materiality and Sociality. Sociol. Rev. 1995, 43, 274–294. [Google Scholar] [CrossRef]
- Mol, A. The Body Multiple: Ontology in Medical Practice; Duke University Press: Durham, NC, USA, 2002; p. 196. [Google Scholar]
- Mol, A.; Moser, I.; Pols, J. Care in Practice: On Tinkering in Clinics, Homes and Farms, 1st ed.; Transcript-Verl: Bielefeld, Germany, 2010; p. 325. [Google Scholar]
- Callon, M.; Law, J. On Interests and their Transformation: Enrolment and Counter-Enrolment. Soc. Stud. Sci. 1982, 12, 615–625. [Google Scholar] [CrossRef]
- Law, J. Aircraft Stories: Decentering the Object in Technoscience; Duke University Press: Durham, NC, USA, 2002; p. 252. [Google Scholar]
- Carolan, M. The politics of big data: Corporate agri-food governance meets “weak” resistance. In Agri-Environmental Governance as an Assemblage: Multiplicity, Power, and Transformation; Forney, J., Rosin, C.J., Campbell, H., Eds.; Routledge: Abingdon, FL, USA, 2018; pp. 195–212. [Google Scholar]
- Darling, E.S.; McClanahan, T.R.; Maina, J.; Gurney, G.G.; Graham, N.A.J.; Januchowski-Hartley, F.; Cinner, J.E.; Mora, C.; Hicks, C.C.; Maire, E.; et al. Social–environmental drivers inform strategic management of coral reefs in the Anthropocene. Nat. Ecol. Evol. 2019, 3, 1341–1350. [Google Scholar] [CrossRef] [PubMed]
- Dwiartama, A. From ‘disciplinary societies’ to ‘societies of control’: An historical narrative of agri-envionmnetal governance in Indonesia. In Agri-Environmental Governance as an Assemblage: Multiplicity, Power, and Transformation; Forney, J., Rosin, C.J., Campbell, H., Eds.; Routledge: Abingdon, FL, USA, 2018; pp. 91–104. [Google Scholar]
- Rosin, C.J.; Legun, K.A.; Campbell, H.; Sautier, M. From compliance to co-production: Emergent forms of agency in Sustainable Wine Production in New Zealand. Environ. Plan. A Econ. Space 2017, 49, 2780–2799. [Google Scholar] [CrossRef] [Green Version]
- O’Flynn, T.; Macken-Walsh, Á.; Lane, A.; High, C. Farmers doing it for themselves: How farmer-inventors are frustrated by their interactions with the Agricultural Knowledge and Innovation System. In Proceedings of the 13th European IFSA Symposium—Farming Systems: Facing Uncertainties and Enhancing Opportunities, Chania, Greece, 1–5 July 2018. [Google Scholar]
- Jasanoff, S. States of Knowledge: The Co-Production of Science and Social Order; Transferred to Digital Print ed.; International Library of Sociology; Routledge: London, UK, 2010; p. 317. [Google Scholar]
- Masson-Minock, M.; Stockmann, D. Creating a legal framework for urban agriculture: Lessons from Flint, Michigan. J. Agric. Food Syst. Community Dev. 2010, 1, 91–104. [Google Scholar] [CrossRef]
- Legun, K.; Burch, K. Robot-ready: How apple producers are assembling in anticipation of new AI robotics. J. Rural Stud. 2021, 82, 380–390. [Google Scholar] [CrossRef]
- Gardezi, M.; Adereti, D.T.; Stock, R.; Ogunyiola, A. In pursuit of responsible innovation for precision agriculture technologies. J. Responsib. Innov. 2022, 9, 224–247. [Google Scholar] [CrossRef]
- Caterina, A. Smart agriculture for food quality: Facing climate change in the 21st century. Crit. Rev. Food Sci. Nutr. 2021, 61, 971–981. [Google Scholar] [CrossRef]
- Carolan, M. Publicising Food: Big Data, Precision Agriculture, and Co-Experimental Techniques of Addition. Sociol. Rural 2015, 57, 135–154. [Google Scholar] [CrossRef]
- Liebman, A.K.; Juarez-Carrillo, P.M.; Reyes, I.A.C.; Keifer, M.C. Immigrant dairy workers’ perceptions of health and safety on the farm in America’s Heartland. Am. J. Ind. Med. 2016, 59, 227–235. [Google Scholar] [CrossRef]
- McLean, J. Water cultures as assemblages: Indigenous, neoliberal, colonial water cultures in northern Australia. J. Rural Stud. 2017, 52, 81–89. [Google Scholar] [CrossRef]
- Hutchison, M. Fish Assemblages as Indicators of Ecosystem Health in the Condamine-Balonne River System: A Guide Prepared for the Department of Science Information Technology Innovation and the Arts/Compiled by Michael Hutchison of Animal Science; Department of Agriculture, Fisheries and Forestry: Brisbane, Australia, 2014.
- Moore, S.A.; Robbins, P. Nature’s Diverise Ecomomies: Reading Political Ecology for Economic Difference. In Making Other Worlds Possible: Performing Diverse Economies; Roelvink, G., St. Martin, K., Gibson-Graham, J.K., Eds.; University of Minnesota Press: Minneapolis, MN, USA, 2015. [Google Scholar]
- Müller, B. Still Feeding the World? The Political Ecology of Canadian Prairie Farmers. Anthropologica 2008, 50, 389–407. [Google Scholar]
- Comi, M. Seeds, Chemicals, and Stuff: The Agency of Things in (Un)Just Agriculture Regimes. In Environmental Justice in the Anthropocene: From (un)Just Presents to Just Futures; Ryder, S., Powlen, K., Laituri, M., Malin, S.A., Sbicca, J., Stevis, D., Eds.; Routledge: New York, NY, USA, 2021; pp. 230–240. [Google Scholar]
- Di Chiro, G. Living environmentalisms: Coalition politics, social reproduction, and environmental justice. Environ. Polit. 2008, 17, 276–298. [Google Scholar] [CrossRef]
- Taylor, D. The Rise of the Environmental Justice Paradigm: Injustice Framing and the Social Construction of Environmental Discourses. Am. Behav. Sci. 2000, 43, 508–580. [Google Scholar] [CrossRef]
- Fitzgerald, J.B.; Jorgenson, A.K.; Clark, B. Energy consumption and working hours: A longitudinal study of developed and developing nations, 1990–2008. Environ. Sociol. 2015, 1, 213–223. [Google Scholar] [CrossRef]
- Givens, J.E. Ecologically unequal exchange and the carbon intensity of well-being, 1990–2011. Environ. Sociol. 2017, 4, 311–324. [Google Scholar] [CrossRef]
- Shostak, S. ‘When you heal the soil…’: Environmental racism and socioecological repair in contemporary urban agriculture. Environ. Sociol. 2022, 8, 400–412. [Google Scholar] [CrossRef]
- Sykes, E. Environmental justice beyond physical access: Rethinking Black American utilization of urban public green spaces. Environ. Sociol. 2022, 8, 388–399. [Google Scholar] [CrossRef]
- Buttel, F.H. The Treadmill of Production. Organ. Environ. 2004, 17, 323–336. [Google Scholar] [CrossRef]
- Gould, K.A.; Pellow, D.N.; Schnaiberg, A. Interrogating the Treadmill of Production. Organ. Environ. 2004, 17, 296–316. [Google Scholar] [CrossRef] [Green Version]
- Pellow, D.N. What Is Critical Environmental Justice? Polity Press: Newark, UK, 2017. [Google Scholar]
- Reed, M.G.; George, C. Where in the world is environmental justice? Prog. Hum. Geogr. 2011, 35, 835–842. [Google Scholar] [CrossRef]
- Klerkx, L.; Jakku, E.; Labarthe, P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS Wagening. J. Life Sci. 2019, 90–91, 100315. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Comi, M.; Becot, F.; Bendixsen, C. Automation, Climate Change, and the Future of Farm Work: Cross-Disciplinary Lessons for Studying Dynamic Changes in Agricultural Health and Safety. Int. J. Environ. Res. Public Health 2023, 20, 4778. https://doi.org/10.3390/ijerph20064778
Comi M, Becot F, Bendixsen C. Automation, Climate Change, and the Future of Farm Work: Cross-Disciplinary Lessons for Studying Dynamic Changes in Agricultural Health and Safety. International Journal of Environmental Research and Public Health. 2023; 20(6):4778. https://doi.org/10.3390/ijerph20064778
Chicago/Turabian StyleComi, Matt, Florence Becot, and Casper Bendixsen. 2023. "Automation, Climate Change, and the Future of Farm Work: Cross-Disciplinary Lessons for Studying Dynamic Changes in Agricultural Health and Safety" International Journal of Environmental Research and Public Health 20, no. 6: 4778. https://doi.org/10.3390/ijerph20064778
APA StyleComi, M., Becot, F., & Bendixsen, C. (2023). Automation, Climate Change, and the Future of Farm Work: Cross-Disciplinary Lessons for Studying Dynamic Changes in Agricultural Health and Safety. International Journal of Environmental Research and Public Health, 20(6), 4778. https://doi.org/10.3390/ijerph20064778