1. Introduction
Since the reform and opening up, foreign direct investment (FDI) has played a vital role in promoting the economic development and optimizing the foreign trade structure of China. However, whilst boosting the economic strength of the country, FDI has also brought significant ecological damage and environmental pollution [
1]. Using the Beijing–Tianjin–Hebei region as an example, according to China Statistical Yearbook data, the amount of FDI increased from USD 18.15 billion to USD 48.43 billion, with an increase of 166.8% during the period of 2009–2018. Meanwhile, the GDP in the same period increased from USD 484.43 billion to USD 11285.7 billion, an increase in more than 20 times. It can be seen that the GDP of the Beijing–Tianjin–Hebei region has also achieved continuous growth with the increase in the number of FDI. However, according to the Announcement of China’s Environmental Status in 2018 issued by the Ministry of Environmental Protection, the number of days of light pollution, moderate pollution, heavy pollution and serious pollution in Beijing–Tianjin–Hebei region accounted for 27.1%, 10.50%, 6.0% and 3.20%, respectively, in a year. The announcement showed that the average concentration of PM 2.5 is 77 μg/m
3, 1.20 times higher than the national secondary standard [
2].
Driven by industrialization, western countries have produced massive amounts of air pollution for over a century that have affected the economic development of China over the past 40 years. The frequent occurrence of haze pollution events, including PM2.5, PM10 and other significant sources of pollution, has gradually expanded the scope and degree of pollution. Therefore, many scholars have proposed the ‘pollution paradise’ effect of FDI. To circumvent environmental regulations in their own countries and transfer crude industries, some multinational enterprises take advantage of their capital to export highly polluting and energy-intensive industries to less developed countries that are in urgent need of economic development and have low environmental awareness, thereby becoming essential drivers of environmental degradation [
3,
4,
5]. Liu and Gao highlighted a strong positive correlation between FDI and environmental pollution, arguing that the degree of regional pollution is aggravated along with an increasing FDI agglomeration [
6]. Dong et al. confirmed the positive effect of FDI on haze pollution based on quantile regression and Shapley value decomposition [
7].
However, some scholars also put forward the ‘pollution halo’ effect of FDI. Less-developed countries that introduced advanced clean production technologies and environmental governance from developed countries through FDI channels could improve their utilization rate of natural resources and the quality of their ecological environment [
8,
9]. He and Liu concluded that in China, FDI had a positive effect on pollution emissions (especially industrial sulfur dioxide emissions), and the impact of FDI on environmental pollution varied significantly across the eastern, central and western regions of China [
10]. Nathaniel et al. pointed out that the hypothesis of FDI effect was not valid in Mediterranean coastal countries, but FDI could effectively promote the improvement of local environmental quality [
11]. In response to these contrasting findings, some scholars have explored the green technology spillover effects of induced labor- and capital-based FDI [
12]. Some scholars have taken another approach and analysed the problem from the perspective of the ‘coordinated development of two-way FDI’, concluding that the coordinated development of two-way FDI in China could significantly suppress haze pollution [
13]. However, a unified conclusion on this topic is yet to be reached. This paper approves the ‘pollution paradise’ effect of FDI because the high incidence of haze pollution not only affects the health and well-being of the people, but also poses a huge threat to the ecological civilization construction and low-carbon green growth in China [
14]. Therefore, how to encourage countries to commit themselves to increasing their levels of environmental protection whilst simultaneously boosting trade and investment via FDI has become a hot topic amongst scholars.
Very few scholars have explored the impact of CSR on haze pollution. As micro-entities of the regional economy, enterprises serve as creators of economic value and producers of environmental pollution. Their functional performance in their economic, social and environmental responsibilities contributes to improving regional environmental quality and overall social welfare [
15,
16]. In this sense, encouraging more companies to commit themselves to social and environmental issues can help societies increase their trust in business communities, enhance the social capital of companies and thereby lead to a synergistic win-win situation [
17]. In terms of CSR transmissibility, if core firms in a region are active in haze reduction and management, then their activities will significantly affect the ecosystem of the industrial chain [
18]. The core enterprises set an example of continuously making significant contributions to the overall environment, especially haze pollution, by promoting social responsibility awareness on the upper and lower levels of the industrial chain. Therefore, if more firms voluntarily commit to limiting their pollution emissions, even beyond the provisions of international protocols and treaties, then such environmentally responsible behavior can become a benchmark for competitors to follow, thus forming a virtuous catch-up cycle [
19]. Some scholars have also pointed out that the CSR activities vigorously carried out by enterprises can stimulate active cognitive responsibility feedback from the society. Enterprises can attract those who care about social and environmental issues to act together by engaging in green and low-carbon production and designing environment friendly and energy efficient products to inform consumers that the production process of their final products minimizes harm to the environment [
20]. Such behavior can also help consumers be generally aware that companies, even sometimes seen as purely economic actors, have made environmentally responsible commitments in this area [
21].
Furthermore, in the context of the influx of FDI into China’s economic construction, FDI may indirectly influence the level of haze pollution in China through corporate social responsibility (CSR). Foreign companies with high CSR compliance standards may gradually lower their compliance standards whilst adapting to the already tricky and ineffective CSR compliance situation in China [
22], thereby forming a vicious circle of ‘competition to the bottom’ with domestic companies [
23]. Low-quality CSR activities vastly reduce discriminatory barriers and the transparency of international production activities. These activities also result in the indifference of foreign companies towards the welfare of Chinese consumers, the greening of production processes and their fulfilment of environmental responsibility. The resulting ‘pollution paradise’ effect will also further aggravate the degree of haze pollution [
24] and ultimately reduce the overall level of CSR and further aggravate the environmental pollution in China. During the investment process, enterprises need to be jointly driven to fulfil their social responsibilities, strengthen their environmental awareness and promote a balanced development of bilateral economy, ecology and society through moral guidance and environmental regulations.
To cope with the further deterioration of the ecological environment, China actively advocates optimizing the structure and quality of its FDI, enhancing CSR fulfilment and promoting green technology innovation [
25]. Nevertheless, the balance in the relationship amongst FDI, CSR and haze pollution remains a practical problem that hinders the low-carbon green development of the country. On the basis of the general equilibrium model of Copeland and Taylor, most domestic and foreign scholars have investigated the internal relationship amongst FDI, CSR and environmental pollution under the constraints of FDI and environmental regulation conditions [
15,
26]. In terms of research methods, scholars have transitioned from the econometric model with ordinary least square method and simultaneous equations at the core to the endogenous growth model and data envelopment analysis [
26,
27]. On the basis of the regional differences in practice and development, much achievement has been reported on spatio-temporal evolution analysis and sub-regional testing via micro-scopization [
28,
29]. In the context of technological innovation leading to low-carbon and green development, individual scholars have introduced environmental technology innovation behavior based on the ‘factor–behavior–performance’ research idea to understand the role of FDI, environmental regulation and technology innovation in environmental performance paths [
30]. To address this problem, this study attempts to integrate FDI, CSR and haze pollution into a unified theoretical framework, explore the nonlinear effects of FDI and CSR on haze pollution, further explore the problem based on regional economic level and resource endowment heterogeneity, and provide a scientific and sound theoretical basis for the haze pollution management and ecological environmental protection decisions in each province.
The theoretical significance of this paper is as follows: Firstly, in the issue of the CSR measurement, this paper innovatively proposes an optimized method that considers the social responsibility carrying capacity of enterprises of different scales and regions and the matching degree of local economic development. Through theoretical deduction and empirical results, it is preliminarily confirmed that CSR has an inhibition function on haze pollution in terms of time and depth, and the research findings provide a reference for relevant theory. Secondly, the action path and boundary conditions of FDI and CSR on haze pollution are proposed based on panel threshold model. This can objectively evaluate the environmental effects of FDI and provide a new perspective for identifying the drivers and governance mechanisms of haze pollution. Thirdly, this paper takes FDI and CSR as threshold variables, preliminary fits the findings through panel regression and analyses the spatial–geographical distribution characteristics of provinces based on different interval thresholds, thereby further verifying the completeness of its findings.
The remainder of the paper is presented as follows:
Section 2 provides an overview of methodology and data.
Section 3 represents research results and analysis.
Section 4 reports the discussion, and
Section 5 reports the conclusion.
3. Results
3.1. Collinearity Analysis and Model Selection
Firstly, correlation analysis and variance inflation factor (VIF) were used to verify the multicollinearity amongst the variables. As shown in
Table 1, none of the correlation coefficients amongst the variables exceed 0.7, thereby indicating that the correlation coefficients are within a reasonable value range. However, the maximum VIF of 2.41 is much smaller than the reference value of 10, thereby confirming the absence of any severe collinearity amongst the variables. Secondly, F-test and Hausman test were performed to determine the most appropriate estimation method for the model. The panel data estimation methods of OLS regression and random effects were rejected by comparative analysis, thereby confirming that the fixed-effects model was suitable for this study.
3.2. Panel Regression Analysis
The effects of FDI and CSR on haze pollution were initially estimated using Stata 15.1 to fit the panel data with the fixed effects. To further reveal the differential effects produced by the strength of the explanatory variables on the explained variables, the effects of the first and second powers of FDI and CSR on haze pollution were examined in the model after introducing control variables.
Table 2 presents the test results. When the explanatory variable is FDI, its first power regression coefficient is negative and significantly correlated at the 1% level (β = −25.560,
p < 0.1), whereas its second power coefficient is positive and passes the 5% significance level test (β = 0.645,
p < 0.05). Therefore, FDI and haze pollution have a U-shaped relationship. With the continuous increase in the total amount of FDI, the haze pollution degree initially decreases and then increases. This trend shows prominent stage characteristics and is constrained by the effect strength of FDI. When CSR is the explanatory variable, the first power coefficient is significantly positive (β = 31.601,
p > 0.1), whereas the second power coefficient is significantly negative (β = −15.202,
p < 0.1), thereby suggesting that CSR and haze pollution have an inverted U-shaped structure. As the degree of CSR fulfilment increases, the degree of haze pollution decreases.
3.3. Threshold Test
The above panel regression analysis reveals that both FDI and CSR have significant nonlinear effects on haze pollution, which reflects that the different influences of FDI and CSR obviously restrict the degree of haze pollution. Therefore, Bootstrap repeated sampling was performed 300 times to obtain the F statistic and
p value as well as the corresponding critical value distribution.
Table 3 presents the results. Firstly, the results reveal that both the single and double thresholds of FDI are significant at the 1% level. However, the presence of the triple threshold is not significant, thereby implying that this threshold is invalid. In other words, FDI has a significant double-threshold effect on haze pollution. Similarly, only the single threshold of CSR is significant at the 1% level, and the double and triple thresholds are not significant. In other words, CSR only has a single-threshold effect on haze pollution. Secondly, the threshold value was tested to confirm if it is equivalent to the actual value.
Table 3 shows that the two thresholds for FDI are 24.877 and 25.558, and the single threshold for CSR is 1.879. To further verify whether the corresponding estimated threshold value was equal to the actual value, the LR statistic was used to draw the likelihood ratio function graph of each threshold value of FDI (
Figure 1) and CSR (
Figure 2) under the 95% confidence interval. According to the relationship between the actual LR statistic (lowest point) and the critical value (7.35) at the significance level of 5%, the lowest point of LR statistic is significantly lower than 7.35, thereby confirming the consistency between the threshold value of FDI and CSR and the actual value.
3.4. Analysis of Threshold Effect
Table 4 presents the results of the threshold regression of FDI and CSR on haze pollution. The threshold effect of FDI was initially evaluated. In general, the positive effect of FDI on haze pollution demonstrates the ‘pollution paradise’ effect because the current use of FDI in China emphasizes quantity over quality. In the context of intensified local competition, local governments blindly expand their use of FDI to promote economic growth. However, those specific industries into which FDI flows are loosely regulated, thereby leading to many FDI flows into industries with high pollution and energy consumption. This behavior also results in the ‘market theft’ effect of FDI, which further deepens the degree of local haze pollution. When the FDI intensity is lower than 24.877, the impact coefficient is 1.6889, which is significant at the 5% level. Under the early extensive economic development mode, FDI influx plays a special role in promoting environmental pollution. In other words, FDI has a significant positive impact on haze pollution within the first threshold. When the FDI intensity ranges between 24.877 and 25.558, the influence is 2.273 at the significance level of 1%, thereby suggesting that during a process of economic growth that relies on FDI for a long time, the transfer of heavily polluting industries and obsolete technology from developed countries further deepens the environmental deterioration of developing countries. In other words, within the two threshold intervals of FDI, the promoting effect of FDI on haze pollution is significantly enhanced. When the FDI intensity is more significant than 25.558, the impact coefficient decreases to 1.637, which also passes the test at the 5% significance level. Compared with the influence strength of the above two threshold intervals, the positive influence of FDI on haze pollution is the weakest after crossing the second threshold value, thereby suggesting that with the increasing demand for high-quality economic development, both the government and enterprises will adjust their use of FDI, upgrade their industrial structure and use part of their funds for environmental governance. Given that the optimization and adjustment of FDI use are part of a long-term process, the transformation from ‘quantity to quality’ has not yet achieved the effect of restraining environmental pollution. After FDI crosses the second threshold value, the influence of FDI on haze pollution becomes positive, but its degree is the weakest. Therefore, hypothesis 1 is verified.
The threshold effect of CSR was then analysed. Overall, CSR shows a negative nonlinear effect on haze pollution, and this negative effect is characterized by increasing marginal efficiency. When pursuing economic value, enterprises actively practice social responsibility by paying attention to social harmony and ecological environmental protection, all-around development of environment friendly products and multi-channel innovation of low-carbon green production technology. As a starting point for the sustainable development of enterprises and a support point for the healthy development of the social economy, CSR plays a crucial role in scientific and technological innovation, industrial adjustment and environmental protection, providing a kinetic conversion for haze pollution. When CSR intensity is lower than 1.879, its impact coefficient on haze pollution is −9.652, which is significant at the 10% level. In other words, at the early stage of economic development, the collaborative economic, social and environmental nature of CSR effectively suppress the level of environmental pollution, thereby verifying that CSR is an excellent path to reduce environmental pollution. Meanwhile, when the CSR intensity is higher than 1.879, its impact on haze pollution is significantly more substantial with an impact coefficient of −14.040, which is significant at the 1% level. This finding can be mainly ascribed to the fact that with the increasing seriousness of environmental pollution, the government gradually increases the strength of its environmental regulations, thereby highlighting the necessity and comprehensiveness of CSR performance. Many enterprises incorporate CSR into their development strategies in response to the calls of the government and the public, regard the International Social Responsibility Guide (ISO26000) as a benchmark and fulfil their CSR by reducing their degree of environmental pollution. Therefore, on both sides of the single-threshold value of CSR, the influence of CSR on haze pollution is negative and gradually enhanced. Hypothesis 2 is then verified.
3.5. Further Analysis
There are also changes in the number of provinces across different threshold intervals. According to the different threshold values of FDI and CSR, the 30 provincial samples were divided into 5 intervals to analyse their threshold variability. According to the statistical results in
Table 5, FDI and CSR evolve in the direction of adjustment and optimization. From 2009 to 2018, the number of provinces with two variables that are less than the first threshold value showed a downward trend, whilst the number of provinces with two variables that are greater than the first threshold value showed an upward trend. A total of eighteen provinces did not pass the first threshold for FDI in 2018, and these provinces were mainly located in the less-developed regions of central and western China. In the same year, only three provinces passed the second threshold, namely Tianjin, Guangdong and Jiangsu Province. In terms of CSR, due to the influence of China’s economic development model and the degree of CSR fulfilment, none of the provinces passed the first threshold from 2009 to 2011. With the transformation of economic development and the popularization of the social responsibility concept, the number of provinces crossing the first threshold gradually increased since 2012, but their number remains relatively small. These results suggest that the development of China’s economy and its process of environmental governance are accompanied by the gradual optimization of the FDI structure and the development and implementation of CSR.
An analysis of the geographical characteristics of the number of threshold provinces is also included. The number of provinces where FDI and CSR crossed the threshold shows prominent eastern and western geographical characteristics. From the perspective of FDI, those provinces that exceeded the second threshold in 2009 included Shanghai, Shandong, Guangdong, Jiangsu, Zhejiang and Liaoning. Most of these provinces are located in the eastern coastal region, which is favorable to FDI. Some central provinces such as Sichuan, Anhui, Jiangxi, Henan, Hubei and Hunan are located between the two thresholds due to the constraints in resource endowment and industrial transfer. By contrast, fifteen provinces, including Yunnan, Inner Mongolia, Ningxia, Shanxi, Guangxi, Xinjiang and Guizhou, were less than the first threshold due to geographical location and ecological environment constraints. From the CSR perspective, China still has a long way to go to fulfil its social responsibility. Therefore, none of its provinces passed the first threshold before 2011. According to the measurement standard, it was only after 2012 that the CSR value of Yunnan, Shanghai, Sichuan and Guangdong gradually crossed the first threshold, which, to some extent, indicates that the current social responsibility governance work in China remains challenging and requires further planning and promotion.
4. Discussions
Healthy investment in China is the guarantee of stable economic growth. Different from the developed countries who adopt industrial development model, developing countries have a larger effective utilization gap of capital, more environmental barriers to hurdle and a more imperfect social responsibility environment. As a result, protecting the environment in China and hindrance factors affecting haze pollution are worth studying. This article highlights the economic–social environmental impact, embodied in FDI and CSR.
For FDI, whether it is linear regression or threshold effect regression, the promotion effect of FDI on haze pollution exists. These results not only support most of these previous studies suggesting the linear influence of FDI on haze pollution from the perspective of the pollution paradise and pollution halo effects [
4,
5,
6], but also expand its nonlinear relationship with stage characteristics. This may be because China attaches importance to the quantity rather than the quality of FDI due to its eagerness to develop the economy, as well as that the relevant environmental protection mechanism and regulatory mechanism are not sound enough, resulting in the consequences of increasing economic aggregate and environmental pollution.
For CSR, we consider the social-responsibility-bearing capacity of enterprises with different scales and from regions and the matching degree of local economic development. Then, our study shows that CSR has a significant inhibitory effect on haze pollution [
13,
15], whether linear or threshold effect. This is consistent with theoretical deduction, indicating that CSR effect plays a larger part in the threshold affection. It is possible that China’s policies towards CSR have gradually increased, and thus, enterprises vigorously implement social responsibility and nurture the concept of low-carbon green development. When foreign capital can adapt to China’s institutional environment, a harmonious road between economic development and a beautiful environment may take shape.
When taking FDI and CSR as threshold variables, examining the spatial–geographical distribution characteristics of provinces based on different interval thresholds, the study has found that the number of provinces with FDI and CSR greater than the first threshold has gradually increased, indicating that the Chinese government has gradually attached importance to optimizing and adjusting the structure of FDI use and promoting CSR implementation over time.
5. Conclusions
By analysing the influence mechanism of FDI and CSR on haze pollution, this paper reveals a nonlinear relationship between FDI and haze pollution based on the panel data of 30 provinces and cities across China from 2009 to 2018 and by using the fixed-effects model and threshold regression analysis. This study also comprehensively examines the change in the number of provinces based on the threshold interval and geographical characteristics and draws the following research conclusions. Firstly, there is a significantly positive double-threshold effect between FDI and haze pollution; that is, whether FDI is at the first or second threshold, its influence on haze pollution is significantly positive, and its influence reaches the most substantial level within the two threshold values. Meanwhile, there is a significantly negative single-threshold effect between CSR and haze pollution, that is, the effect of CSR on haze pollution on both sides of the single threshold has the positive effect of increasing marginal efficiency. The management of haze pollution in China is accompanied by optimizing the FDI structure and improving CSR. However, those provinces where each variable crosses different threshold intervals have prominent geographical characteristics. Secondly, from the threshold value and interval distribution perspective, the number of provinces that are below the first threshold value of FDI and CSR decreases yearly. Improving the quality of FDI use and actively carrying out CSR activities have become new approaches to haze pollution control. In terms of the geographical distribution of provinces, the eastern region, with its superior geographical features and developed economy, acts as the main force that crosses the second threshold of FDI and the first threshold of CSR. Meanwhile, the central provinces in the critical period of industrial optimization and investment attraction primarily lie between the two thresholds of FDI.
The above empirical evidence suggests that high-quality FDI and CSR can be used as tools to achieve haze pollution control targets and to construct a green, low-carbon and circular economic system. Policy recommendations are then proposed as followed: Firstly, the quality and structural optimization of FDI should be given priority. Given the need for high-quality economic development, people should adhere to the environmental access threshold of FDI, reduce the entry of enterprises with high energy consumption and pollution, and introduce more clean production and technological innovation enterprises. A group of foreign enterprises that are equipped with technological advantages and are in line with China’s economic development should also be introduced to reduce the probability of haze pollution and its negative effects by accumulating and diffusing their capital, technology and knowledge. Secondly, the fulfilment of social responsibilities should be vigorously promoted. Considering their current situation in fulfilling their social responsibilities, foreign and domestic enterprises should be guided to form a development concept that combines high-quality economic development with ecological and environmental protection. These enterprises should also jointly design social responsibility projects with the government and the public to solve social and environmental problems. They should extend their social responsibility to the whole industrial chain to form standard social and environmental value norms, drive chain enterprises to participate in social and environmental governance practices, and coordinate and cooperate with one another to address haze pollution. Thirdly, an environmental governance system shared amongst the government, enterprises and society should be established. The government should not only share its responsibility through environmental regulations and strengthen the restraint mechanism of enterprises’ pollution emissions, but also promote a long-term cooperation mechanism with enterprises, social organizations and other actors in environmental governance by taking advantage of the situation. Enterprises should also take an active part in this process by appropriately increasing their R&D investment to innovate green and clean production technologies and by exploring and developing closed-loop value creation systems that reduce emissions and costs, save production materials and recycle energy in circulation. They can significantly contribute to improving the environment by working with third parties, such as universities and research centers, in developing joint business plans, such as eco-patent sharing, to expand the space for collaboration.