Scenario Simulation of the Relationship between Land-Use Changes and Ecosystem Carbon Storage: A Case Study in Dongting Lake Basin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Data Sources and Processing
2.3. Methods
2.3.1. Simulation of Land-Use Changes Based on the PLUS Model
- (1)
- Verification of simulation accuracy
- (2)
- Scenario setting of future land-use changes
- NES: The scenario is based on the land-use data in three periods from 1980 to 2020 to predict the demand for different land-use types using the linear regression method and Markov chain. The scenario continues the historical land-use change trend in the study area, with no function-restricted areas and planned development areas.
- EPS: The scenario aims to reflect that in order to achieve the ecosystem restoration objective, the government in the study area intensifies enforcement intensity for ecological protection policies, stringently controls increases in construction land, and encourages returning farmland to forests, grassland, and lakes, as well as vegetation and wetland restoration. Therein, the function-restricted areas include ecological barriers including the Luoxiao–Mufu Mountains, Nanling Mountains, and Wuling–Xuefeng Mountains designated in the Territorial Spatial Master Planning of Hunan Province (2021–2035). Based on the NES, there are the following settings, apart from the function-restricted areas: (1) stringently restricting the transition of forests, grassland, wetland, and waters to other land-use types; (2) improving transition probabilities of farmland and unused land to forests, wetland, and waters by 60%, reducing transition probabilities of farmland and unused land to construction land by 80%, and improving the probability of transition of grassland to forests by 60%; and (3) setting a buffer of 10 km in the periphery of existing urban areas to meet the minimum demand for urbanization.
- EDS: The scenario gives priority to meeting production and living needs for socioeconomic development so that the demand for farmland and construction land grows substantially. The scenario mainly includes the following contents: (1) based on the NES, improving transition probabilities of all land-use types (except for waters) to farmland and construction land by 50%; (2) setting the southeast of Guizhou Province, the Yichang–Jingzhou–Jingmen–Enshi urban agglomeration, and the circum–Changsha–Zhuzhou–Xiangtan urban agglomeration designated in the Territorial Spatial Master Planning (2021–2035) and Main Functional Area Planning as planned development areas; and (3) setting waters in the basin in 2020 as function-restricted areas in an attempt to meet the demand for water for production and domestic use.
- PDS: The three aforementioned scenarios should coexist in a practical planning framework, necessitating trade-offs when planning the ecological, production, and living spaces. On the basis of development areas of urban agglomerations set in the EDS, the PDS also involves the following aspects: (1) setting the 1-hour commuting circle in the Development Plan for Changsha–Zhuzhou–Xiangtan Metropolitan Area as the buffer at the urbanization boundary; (2) setting ecological barriers such as the Wuling Mountains, Nanling Mountains, and Dongting Lake wetland designated in the Main Functional Area Planning and Comprehensive Water Environment Control Plan of Dongting Lake as function-restricted areas, in which transition from forests, wetland, and waters to other land-use types is prohibited; and (3) setting existing cultivated land in main agricultural producing areas of the basin in 2020 as function-restricted areas, to achieve the objective of protecting cultivated land and basic farmland. In addition, the development intensity of various land-use types in nonfunction-restricted areas is improved to 6.9% based on the NES according to the Main Functional Area Planning.
2.3.2. CS Assessment of Terrestrial Ecosystems Based on the InVEST Model
- (1)
- Estimate of CS
- (2)
- Estimate of carbon density
- (3)
- Prediction of carbon density in future years based on GM(1,1)
2.3.3. Coordinating the Model between Land-Use Changes and CS
2.3.4. Standard Deviational Ellipse Analysis
3. Results
3.1. Land-Use Simulation in Different Scenarios
3.2. Dynamic Changes in CS in Different Scenarios
3.3. The Relationship between Land-Use Changes and CS
3.3.1. Influences of Land-Use Changes on CS
3.3.2. Spatial Coordination between Land-Use Changes and CS in Different Scenarios
4. Discussion
4.1. The Relationship between Land-Use Changes and CS
4.2. Policy Implications and Optimization Suggestions
4.3. Accuracy of Estimation Results of CS
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arneth, A.; Sitch, S.A.; Pongratz, J.; Stocker, B.D.; Ciais, P.; Poulter, B.I.; Bayer, A.D.; Bondeau, A.; Calle, L.; Chini, L.P.; et al. Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed. Nat. Geosci. 2017, 10, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Vasenev, V.I.; Stoorvogel, J.J.; Leemans, R.; Hajiaghayeva, R.A. Projection of urban expansion and related changes in soil carbon stocks in the Moscow Region. J. Clean. Prod. 2018, 170, 902–914. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, X.; Chuai, X.; Yang, H.; Lai, L.; Tan, J. Impact of land use type conversion on carbon storage in terrestrial ecosystems of China: A spatial-temporal perspective. Sci. Rep. 2015, 5, 10233. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Teng, Y.J.; Yan, Y.G.; Zhao, C.W.; Zhang, W.Q.; Ji, X.L. Simulation of land use and carbon storage volution in multi-scenario: A case study in Beijing-Tianjin-Hebei urban agglomeration, China. Sustainability 2022, 14, 13436. [Google Scholar] [CrossRef]
- Duan, Y.C.; Tang, J.; Li, Z.Y.; Yang, Y.; Dai, C.; Qu, Y.K.; Lv, H. Optimal planning and management of land use in river source region: A case study of Songhua River Basin, China. Int. J. Environ. Res. Public Health 2022, 19, 6610. [Google Scholar] [CrossRef]
- Borges, E.C.; Paz, I.; Leite, N.A.D.; Willinger, B.; Ichiba, A.; Gires, A.; Campos, P.C.; Monier, L.; Cardinal, H.; Amorim, J.C.; et al. Evaluation of the spatial variability of ecosystem services and natural capital: The urban land cover change impacts on carbon stocks. Int. J. Sustain. Dev. World Ecol. 2020, 28, 339–349. [Google Scholar] [CrossRef]
- Zhu, L.Y.; Song, R.X.; Sun, S.; Li, Y.; Hu, K. Land use/land cover change and its impact on ecosystem carbon storage in coastal areas of China from 1980 to 2050. Ecol. Indic. 2022, 142, 109178. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, D.D.; Cao, L.; Anderson, B. Assessment and prediction of carbon storage based on land use/land cover dynamics in the tropics: A case study of Hainan Island, China. Land 2022, 11, 244. [Google Scholar] [CrossRef]
- Shi, M.J.; Wu, H.Q.; Jiang, P.G.; Shi, W.J.; Zhang, M.; Zhang, L.N.; Zhang, H.Y.; Fan, X.; Liu, Z.; Zheng, K.; et al. Cropland expansion mitigates the supply and demand deficit for carbon sequestration service under different scenarios in the future-The case of Xinjiang. Agriculture 2022, 12, 1182. [Google Scholar] [CrossRef]
- Clerici, N.; Cote-Navarro, F.; Escobedo, F.J.; Rubiano, K.; Villegas, J.C. Spatio-temporal and cumulative effects of land use-land cover and climate change on two ecosystem services in the Colombian Andes. Sci. Total Environ. 2019, 685, 1181–1192. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, L.F.; Li, Q.; Wang, S.; Liu, X.L.; Li, Y. The spatiotemporal evolution and prediction of carbon storage in the Yellow River Basin based on the major function-oriented zone planning. Sustainability 2022, 14, 7963. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Li, X.; Mao, Y.T.; Wang, X.R.; Lin, Q. Dynamic simulation of land use change and assessment of carbon storage based on climate change scenarios at the city level: A case study of Bortala, China. Ecol. Indic. 2022, 134, 108499. [Google Scholar] [CrossRef]
- Cunha, J.; Campos, F.S.; David, J.; Padmanaban, R.; Cabral, P. Carbon sequestration scenarios in Portugal: Which way to go forward? Environ. Monit. Assess. 2021, 193, 547. [Google Scholar] [CrossRef]
- Ding, T.H.; Chen, J.F.; Fang, Z.; Chen, J.Y. Assessment of coordinative relationship between comprehensive ecosystem service and urbanization: A case study of Yangtze River Delta urban Agglomerations, China. Ecol. Indic. 2021, 133, 108454. [Google Scholar] [CrossRef]
- Goldstein, J.H.; Caldarone, G.; Duarte, T.K.; Ennaanay, D.; Hannahs, N.J.; Mendoza, G.F.; Polasky, S.; Wolny, S.; Daily, G.C. Integrating ecosystem-service tradeoffs into land-use decisions. Proc. Natl. Acad. Sci. USA 2012, 109, 7565–7570. [Google Scholar] [CrossRef] [Green Version]
- Adelisardou, F.; Zhao, W.W.; Chow, R.; Mederly, P.; Minkina, T.M.; Schou, J. Spatiotemporal change detection of carbon storage and sequestration in an arid ecosystem by integrating Google Earth Engine and InVEST (the Jiroft plain, Iran). Int. J. Environ. Sci. Technol. (Tehran) 2021, 19, 5929–5944. [Google Scholar] [CrossRef]
- Benez, S.F.J.; Dwivedi, P. Analyzing the impacts of land use policies on selected ecosystem services in the upper Chattahoochee Watershed, Georgia, United States. Environ. Res. Commun. 2021, 3, 115001. [Google Scholar] [CrossRef]
- Li, P.J.; Liu, C.F.; Liu, L.C.; Wang, W.T. Dynamic analysis of supply and demand coupling of ecosystem services in Loess Hilly Region: A case study of Lanzhou, China. Chin. Geogr. Sci. 2021, 31, 276–296. [Google Scholar] [CrossRef]
- Han, N.L.; Yu, M.; Jia, P.H. Multi-scenario landscape ecological risk simulation for sustainable development goals: A case study on the central mountainous area of Hainan Island. Int. J. Environ. Res. Public Health 2022, 19, 4030. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Liu, X.P.; Li, X.; Chen, Y.M.; Tian, H.; Yao, Y. Delineating multi-scenario urban growth boundaries with a CA-based FLUS model and morphological method. Landsc. Urban Plan. 2018, 177, 47–63. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.F.; Clarke, K.C.; Liu, S.S.; Wang, B.Y.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Zhou, Y.; Chang, J.; Feng, S.S. Effects of urban growth boundaries on urban spatial structural and ecological functional optimization in the Jining Metropolitan Area, China. Land Use Policy 2022, 117, 106113. [Google Scholar]
- Yuan, B.D.; Fu, L.N.; Zou, Y.A.; Zhang, S.Q.; Chen, X.S.; Li, F.; Deng, Z.M.; Xie, Y.H. Spatiotemporal change detection of ecological quality and the associated affecting factors in Dongting Lake Basin, based on RSEI. J. Clean. Prod. 2021, 302, 126955. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Yang, P.; Xia, J.; Wang, W.Y.; Cai, W.; Chen, N.C.; Hu, S.; Luo, X.G.; Li, J.; Zhan, C.S. Land use/land cover prediction and analysis of the middle reaches of the Yangtze River under different scenarios. Sci Total Environ. 2022, 833, 155238. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.X.; Li, Z.W.; Wang, D.Y.; Chen, J.; Liu, Y.J.; Nie, X.D.; Zhang, Y.T.; Ning, K.; Hu, X.Q. Unbalanced social-ecological development within the Dongting Lake basin: Inspiration from evaluation of ecological restoration projects. J. Clean. Prod. 2021, 315, 128161. [Google Scholar] [CrossRef]
- Yang, L.; Deng, M.; Wang, J.L.; Que, H.F. Spatial-temporal evolution of land use and ecological risk in Dongting Lake Basin during 1980–2018. Act. Ecol. Sin. 2021, 41, 3929–3939. (In Chinese) [Google Scholar]
- Du, Y.J.; Li, X.L.; He, X.L.; Li, X.Q.; Yang, G.; Li, D.B.; Xu, W.H.; Qiao, X.; Li, C.; Sui, L. Multi-scenario simulation and trade-off analysis of ecological service value in the Manas River Basin based on land use optimization in China. Int. J. Environ. Res. Public Health 2022, 19, 6216. [Google Scholar] [CrossRef]
- Wei, Q.Q.; Abudureheman, M.; Halike, A.; Yao, K.X.; Yao, L.; Tang, H.; Tuheti, B. Temporal and spatial variation analysis of habitat quality on the PLUS-InVEST model for Ebinur Lake Basin, China. Ecol. Indic. 2022, 145, 109632. [Google Scholar] [CrossRef]
- Piao, S.L.; Fang, J.Y.; Zhou, L.M.; Tan, K.; Tao, S. Changes in biomass carbon stocks in China’s grasslands between 1982 and 1999. Global Biogeochem. Cycles 2007, 21, GB2002. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.Y.; Guo, Z.D.; Piao, S.L.; Chen, A.P. Estimation of terrestrial vegetation carbon sequestration in China from 1981 to 2000. Sci. Sin. Terrae 2007, 37, 804–812. [Google Scholar]
- Giardina, C.P.; Ryan, M.G. Evidence that decomposition rates of organic carbon in mineral soil do not vary with remperature. Nature 2000, 404, 858–861. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.S.; Yang, Y.S.; Xie, J.S.; Du, Z.X.; Zhang, J. Total belowground carbon allocation in China’s forests. Acta Ecol. Sin. 2007, 27, 5148–5157. [Google Scholar]
- Alam, S.A.; Starr, M.; Clark, B.J.F. Tree biomass and soil organic carbon densities across the Sudanese woodland savannah: A regional carbon sequestration study. J. Arid. Environ. 2013, 89, 67–76. [Google Scholar] [CrossRef]
- Xi, X.H.; Zhang, X.J.; Liao, Q.L.; Chen, D.Y.; Bai, R.J.; Huang, Z.F. Multi-purpose regional geochemical survey and soil carbon reserves problem: Examples of Jiangsu, Henan, Sichuan, Jilin Provinces and Inner Mongolia. Quat. Sci. 2008, 28, 58–67. (In Chinese) [Google Scholar]
- Xi, X.H.; Yang, Z.F.; Liao, Q.L.; Zhang, J.X.; Bai, R.J.; Zhang, X.Z.; Jin, L.X.; Wang, H.F.; Li, M.; Xia, X.Q. Soil organic carbon storage in typical regions of China. Quat. Sci. 2010, 30, 573–583. (In Chinese) [Google Scholar]
- Xi, X.H.; Li, M.; Zhang, X.Z.; Zhang, Y.P.; Zhang, D.P.; Zhang, J.X.; Dou, W.; Yang, Y. Research on soil organic carbon distribution and change trend in middle-east plain and its vicinity in China. Earth Sci. Front. 2013, 20, 154–165. (In Chinese) [Google Scholar]
- Tang, X.L.; Zhao, X.; Bai, Y.F.; Tang, Z.Y.; Wang, W.T.; Zhao, Y.C.; Wan, H.W.; Xie, Z.Q.; Shi, X.Z.; Wu, B.F.; et al. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proc. Natl. Acad. Sci. USA 2018, 115, 4021–4026. [Google Scholar] [CrossRef] [Green Version]
- Kayacan, E.; Ulutas, B.; Kaynak, O. Grey system theory-based models in time series prediction. Expert Syst. Appl. 2010, 37, 1784–1789. [Google Scholar] [CrossRef]
- Yang, Z.W.; Chen, Y.B.; Qian, Q.L.; Wu, Z.F.; Zheng, Z.H.; Huang, Q.Y. The coupling relationship between construction land expansion and high-temperature area expansion in China’s three major urban agglomerations. Int. J. Remote Sens. 2019, 40, 6680–6699. [Google Scholar] [CrossRef]
- Stokes, E.C.; Seto, K.C. Climate change and urban land systems: Bridging the gaps between urbanism and land science. J. Land Use Sci. 2016, 11, 698–708. [Google Scholar] [CrossRef]
- Wang, Q.R.; Mao, Z.X.; Xian, L.H.; Liang, Z.X. A study on the coupling coordination between tourism and the low-carbon city. Asia Pacific J. Tour. Res. 2019, 24, 550–562. [Google Scholar] [CrossRef]
- Zhuang, D.F.; Liu, J.Y. Modeling of regional differentiation of land-use degree in China. Chin. Geogr. Sci. 1997, 7, 302–309. [Google Scholar] [CrossRef]
- Zuo, Z.L.; Guo, H.X.; Cheng, J.H.; Li, Y.L. How to achieve new progress in ecological civilization construction?-Based on cloud model and coupling coordination degree model. Ecol. Indic. 2021, 127, 107789. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, J.; Chen, W. Impact of urban expansion on carbon storage under multi-scenario simulations in Wuhan, China. Environ. Sci. Pollut. Res. 2022, 29, 45507–45526. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.Z.; Gao, Y.; Li, C.; Xie, Z.; Chang, Y.Y.; Zhang, B.L. How human activity has changed the regional habitat quality in an eco-economic zone: Evidence from Poyang Lake eco-economic zone, China. Int. J. Environ. Res. Public Health 2020, 17, 6253. [Google Scholar] [CrossRef]
- Lin, J.Y.; Li, X. Conflict resolution in the zoning of eco-protected areas in fast-growing regions based on game theory. J. Environ. Manag. 2016, 170, 177–185. [Google Scholar] [CrossRef]
- Xu, L.; He, N.P.; Yu, G.R. A dataset of carbon density in China terrestrial ecosystems (2010s). China Sci. Data. 2018, 4, 90–96. [Google Scholar]
- Zhang, J.X.; Xing, X.D.; Lu, J.; Lü, H.Z. The distribution rule of soil carbon in Dongting lake district and its response to the global climate change. Earth Sci. Front. 2008, 15, 57–66. (In Chinese) [Google Scholar]
- Kang, W.X.; Tian, Z.; He, J.N.; Xi, H.Z.; Cui, S.S.; Hu, Y.P. Carbon storage of the wetland vegetation ecosystegm and its distribution in Dongting Lake. J. Soil Water Conserv. 2009, 23, 129–133+148. (In Chinese) [Google Scholar]
Land-Use Type | 2020 Carbon Density | 2030 Carbon Density | ||||||
---|---|---|---|---|---|---|---|---|
Ci-above | Ci-below | Ci-soil | Ci-dead | Ci-above | Ci-below | Ci-soil | Ci-dead | |
Farmland | 1.80 | 0.35 | 61.41 | 0.00 | 1.93 | 0.38 | 66.06 | 0.00 |
Forests | 27.12 | 7.32 | 111.12 | 1.16 | 28.05 | 7.57 | 114.96 | 1.20 |
Grassland | 1.19 | 2.37 | 63.42 | 0.06 | 1.26 | 2.49 | 66.90 | 0.07 |
Wetland | 8.50 | 1.95 | 131.61 | 0.95 | 8.24 | 1.89 | 127.62 | 0.92 |
Construction land | 0.00 | 0.00 | 44.15 | 0.00 | 0.00 | 0.00 | 49.14 | 0.00 |
Unused land | 0.00 | 0.00 | 30.47 | 0.00 | 0.00 | 0.00 | 29.94 | 0.00 |
O | Judgment Condition | Coordination Type | Relationships Between LUI and CS | |
---|---|---|---|---|
[0,0.5) | ALUI < ACS | Uncoordinated | Ahead | LUI and CS are uncoordinated, and CS growth is ahead of improvement in LUI |
ALUI > ACS | Lagging | LUI and CS are uncoordinated, and CS growth lags improvement in LUI | ||
[0.5,0.8) | ALUI < ACS | Adapted | Ahead | LUI and CS are managed so as to coordinate, and CS growth is ahead of improvement in LUI |
ALUI > ACS | Lagging | LUI and CS are managed so as to coordinate, and CS growth lags improvement in LUI | ||
(0.8,1] | ALUI < ACS | Coordinated | Ahead | LUI and CS are coordinated, and CS growth is ahead of improvement in LUI |
ALUI > ACS | Lagging | LUI and CS are coordinated, and CS growth lags improvement in LUI |
Year | Farmland | Forests | Grassland | Wetland | Waters | Construction Land | Unused Land | |
---|---|---|---|---|---|---|---|---|
Area | 2020 | 73,615.78 | 160,449.22 | 13,568.41 | 4416.96 | 4561.83 | 6580.18 | 30.46 |
2030 NES | 72,698.53 | 160,364.60 | 13,199.58 | 4567.22 | 4655.35 | 7707.39 | 30.17 | |
2030 EPS | 72,643.50 | 160,570.26 | 13,785.44 | 4682.18 | 4737.22 | 6775.37 | 28.87 | |
2030 EDS | 72,861.43 | 160,279.99 | 13,015.16 | 4448.08 | 4561.83 | 8031.38 | 24.97 | |
2030 PDS | 72,707.71 | 160,496.34 | 13,207.69 | 4468.54 | 4570.83 | 7743.02 | 28.71 | |
Change | 2020–2030 NES | −917.25 | −84.62 | −368.83 | 150.26 | 93.52 | 1127.21 | −0.29 |
2020–2030 EPS | −972.28 | 121.04 | 217.03 | 265.22 | 175.39 | 195.19 | −1.59 | |
2020–2030 EDS | −754.35 | −169.23 | −553.25 | 31.12 | 0.00 | 1451.20 | −5.49 | |
2020–2030 PDS | −908.07 | 47.12 | −360.72 | 51.58 | 9.00 | 1162.84 | −1.75 |
Year | Farmland | Forests | Grassland | Wetland | Construction Land | Unused Land | Tot | |
---|---|---|---|---|---|---|---|---|
Area | 2020 | 467.90 | 2354.11 | 90.96 | 63.17 | 29.05 | 0.10 | 3005.29 |
2030 NES | 497.04 | 2434.01 | 93.35 | 63.33 | 37.87 | 0.10 | 3125.70 | |
2030 EPS | 496.66 | 2437.14 | 97.49 | 64.93 | 33.29 | 0.09 | 3129.60 | |
2030 EDS | 498.15 | 2432.73 | 92.04 | 61.68 | 39.47 | 0.08 | 3124.15 | |
2030 PDS | 497.10 | 2436.01 | 93.40 | 61.97 | 38.05 | 0.09 | 3126.62 | |
Change | 2020–2030 NES | 29.14 | 79.90 | 2.39 | 0.16 | 8.82 | 0.00 | 120.41 |
2020–2030 EPS | 28.76 | 83.03 | 6.53 | 1.76 | 4.24 | −0.01 | 124.41 | |
2020–2030 EDS | 30.25 | 78.62 | 1.08 | −1.49 | 10.42 | −0.02 | 118.86 | |
2020–2030 PDS | 29.20 | 81.90 | 2.44 | −1.20 | 9.00 | −0.01 | 121.33 |
Land-Use Type | Carbon Density | The Present Research | Reference Value | Data Source |
---|---|---|---|---|
Farmland | Ci-soil | 61.41~66.06 | 65.20 | Xu et al. [47] |
Forests | Ci-above | 27.12~28.05 | 29.58 | Xu et al. [47] |
Ci-below | 7.32~7.57 | 10.40 | Xu et al. [47] | |
Ci-soil | 111.12~114.96 | 158.40 | Xu et al. [47] | |
Grassland | Ci-soil | 63.42~66.90 | 68.20 | Xu et al. [47] |
Wetland | Ci-above + Ci-below + Ci-dead | 11.05~11.40 | 14.95 | Zhang et al. [48]; Kang et al. [49] |
Ci-soil | 127.62~131.61 | 139.4~157.71 | Zhang et al. [48]; Kang et al. [49] | |
Others | Ci-soil | 29.94~49.14 | 27.46~44.51 | Xu et al. [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, W.; Wang, J.; Han, Y.; Yang, L.; Que, H.; Wang, R. Scenario Simulation of the Relationship between Land-Use Changes and Ecosystem Carbon Storage: A Case Study in Dongting Lake Basin, China. Int. J. Environ. Res. Public Health 2023, 20, 4835. https://doi.org/10.3390/ijerph20064835
Zhou W, Wang J, Han Y, Yang L, Que H, Wang R. Scenario Simulation of the Relationship between Land-Use Changes and Ecosystem Carbon Storage: A Case Study in Dongting Lake Basin, China. International Journal of Environmental Research and Public Health. 2023; 20(6):4835. https://doi.org/10.3390/ijerph20064835
Chicago/Turabian StyleZhou, Wenqiang, Jinlong Wang, Yu Han, Ling Yang, Huafei Que, and Rong Wang. 2023. "Scenario Simulation of the Relationship between Land-Use Changes and Ecosystem Carbon Storage: A Case Study in Dongting Lake Basin, China" International Journal of Environmental Research and Public Health 20, no. 6: 4835. https://doi.org/10.3390/ijerph20064835
APA StyleZhou, W., Wang, J., Han, Y., Yang, L., Que, H., & Wang, R. (2023). Scenario Simulation of the Relationship between Land-Use Changes and Ecosystem Carbon Storage: A Case Study in Dongting Lake Basin, China. International Journal of Environmental Research and Public Health, 20(6), 4835. https://doi.org/10.3390/ijerph20064835