A Fine-Grained Recognition Neural Network with High-Order Feature Maps via Graph-Based Embedding for Natural Bird Diversity Conservation
Abstract
:1. Introduction
2. Related Works
2.1. Traditional Bird Identification Dataset and Methods
2.2. Bird Identification via Deep Learning Migration Technology
2.3. Image Recognition Based on Graph Method
3. Methods and Materials
3.1. Lightweight Backbone Network
3.2. Cross-Stage Three-Linear Attention Fine-Grained Feature Learning Module (CTA)
3.3. Graph-Based High-Order Feature Embedding (GFE)
3.4. YOLOV5 Detector via Soft-NMS Optimization
3.5. Loss Function
4. Experiment and Result
4.1. Implementation Details
4.2. Bird Classification Results
4.3. Bird Detection Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Das, S.; Pradhan, B.; Shit, P.K.; Alamri, A.M. Assessment of wetland ecosystem health using the pressure–state–response (PSR) model: A case study of mursidabad district of West Bengal (India). Sustainability 2020, 12, 5932. [Google Scholar] [CrossRef]
- Li, G.; Hao, Y.; Yang, T.; Xiao, W.; Pan, M.; Huo, S.; Lyu, T. Enhancing bioenergy production from the raw and defatted microalgal biomass using wastewater as the cultivation medium. Bioengineering 2022, 9, 637. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.-B.; Wang, Z.-Y.; Kong, J.-L.; Bai, Y.-T.; Su, T.-L.; Ma, H.-J.; Chakrabarti, P. Deep Spatio-Temporal Graph Network with Self-Optimization for Air Quality Prediction. Entropy 2023, 25, 247. [Google Scholar] [CrossRef] [PubMed]
- Little, C.J.; Rizzuto, M.; Luhring, T.M.; Monk, J.D.; Nowicki, R.J.; Paseka, R.E.; Stegen, J.C.; Symons, C.C.; Taub, F.B.; Yen, J.D. Movement with meaning: Integrating information into meta-ecology. Oikos 2022, 2022, e8892. [Google Scholar] [CrossRef]
- Muvengwi, J.; Fritz, H.; Mbiba, M.; Ndagurwa, H.G. Land use effects on phylogenetic and functional diversity of birds: Significance of urban green spaces. Landscape Urban Plan. 2022, 225, 104462. [Google Scholar] [CrossRef]
- Bełcik, M.; Lenda, M.; Amano, T.; Skórka, P. Different response of the taxonomic, phylogenetic and functional diversity of birds to forest fragmentation. Sci. Rep. 2020, 10, 20320. [Google Scholar] [CrossRef]
- Li, G.; Hu, R.; Wang, N.; Yang, T.; Xu, F.; Li, J.; Wu, J.; Huang, Z.; Pan, M.; Lv, T. Cultivation of microalgae in adjusted wastewater to enhance biofuel production and reduce environmental impact: Pyrolysis performances and life cycle assessment. J. Clean. Prod. 2022, 355, 131768. [Google Scholar] [CrossRef]
- Jin, X.-B.; Wang, Z.-Y.; Gong, W.-T.; Kong, J.-L.; Bai, Y.-T.; Su, T.-L.; Ma, H.-J.; Chakrabarti, P. Variational Bayesian Network with Information Interpretability Filtering for Air Quality Forecasting. Mathematics 2023, 11, 837. [Google Scholar] [CrossRef]
- Nugent, D.T.; Baker Gabb, D.J.; Leonard, S.W.; Morgan, J.W. Livestock grazing to maintain habitat of a critically endangered grassland bird: Is grazer species important? Ecol. Appl. 2022, 32, e2587. [Google Scholar] [CrossRef]
- Klaus, V.H.; Kiehl, K. A conceptual framework for urban ecological restoration and rehabilitation. Basic Appl. Ecol. 2021, 52, 82–94. [Google Scholar] [CrossRef]
- Morelli, F.; Reif, J.; Diaz, M.; Tryjanowski, P.; Ibáñez-álamo, J.D.; Suhonen, J.; Jokimäki, J.; Kaisanlahti-Jokimäki, M.; Møller, A.P.; Bussière, R. Top ten birds indicators of high environmental quality in European cities. Ecol. Indic. 2021, 133, 108397. [Google Scholar] [CrossRef]
- Randler, C.; Diaz-Morales, J.F.; Jokimäki, J.; Ortiz-Pulido, R.; Staller, N.; De Salvo, M.; Kaisanlahti-Jokimäki, M.L. Birding recreation specialization–A test of the factorial invariance in eight languages. J. Leis. Res. 2022, 1–7. [Google Scholar] [CrossRef]
- Pal, M.; Pop, P.; Mahapatra, A.; Bhagat, R.; Hore, U. Diversity and structure of bird assemblages along urban-rural gradient in Kolkata, India. Urban For. Urban Gree. 2019, 38, 84–96. [Google Scholar] [CrossRef]
- Wägele, J.W.; Bodesheim, P.; Bourlat, S.J.; Denzler, J.; Diepenbroek, M.; Fonseca, V.; Frommolt, K.; Geiger, M.F.; Gemeinholzer, B.; Glöckner, F.O. Towards a multisensor station for automated biodiversity monitoring. Basic Appl. Ecol. 2022, 59, 105–138. [Google Scholar] [CrossRef]
- Randler, C.; Tryjanowski, P.; Jokimäki, J.; Kaisanlahti-Jokimäki, M.L.; Staller, N. SARS-CoV2 (COVID-19) Pandemic lockdown influences nature-based recreational activity: The case of birders. Int. J. Environ. Res. Public Health 2022, 19, 7310. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.W.; Gao, M.; Jiang, Y.Z.; Gu, X.Q.; Ning, X.; Qian, P.J.; Ni, T.G. Hierarchical Domain Adaptation Projective Dictionary Pair Learning Model for EEG Classification in IoMT Systems. IEEE Trans. Intell. Transp. 2022, 1–9. [Google Scholar] [CrossRef]
- Cai, W.W.; Wei, Z.G. Remote sensing image classification based on a cross-attention mechanism and graph convolution. IEEE Geosci. Remote Sens. Lett. 2022, 19, 21506569. [Google Scholar] [CrossRef]
- Kong, J.L.; Wang, H.X.; Wang, X.Y.; Jin, X.B.; Fang, X.; Lin, S. Multi-stream hybrid architecture based on cross-level fusion strategy for fine-grained crop species recognition in precision agriculture. Comput. Electron. Agr. 2021, 185, 106134. [Google Scholar] [CrossRef]
- Zheng, Y.Y.; Kong, J.L.; Jin, X.B.; Wang, X.Y.; Su, T.L.; Zuo, M. CropDeep: The crop vision dataset for deep-learning-based classification and detection in precision agriculture. Sensors 2019, 19, 1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, J.L.; Yang, C.C.; Xiao, Y.; Lin, S.; Ma, K.; Zhu, Q.Z. A Graph-Related High-Order Neural Network Architecture via Feature Aggregation Enhancement for Identification Application of Diseases and Pests. Comput. Intell. Neurosci. 2022, 2022, 4391491. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.L.; Yang, C.C.; Wang, J.L.; Wang, X.Y.; Zuo, M.; Jin, X.B.; Lin, S. Deep-stacking network approach by multisource data mining for hazardous risk identification in IoT-based intelligent food management systems. Comput. Intell. Neurosci. 2021, 2021, 16. [Google Scholar] [CrossRef]
- Jacob, I.J.; Darney, P.E. Design of deep learning algorithm for IoT application by image based recognition. J. ISMAC 2021, 3, 276–290. [Google Scholar] [CrossRef]
- Zhang, S.H.; Zhao, Z.; Xu, Z.Y.; Bellisario, K.; Pijanowski, B.C. Automatic bird vocalization identification based on fusion of spectral pattern and texture features. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018. [Google Scholar]
- Kumar, R.; Kumar, A.; Bhavsar, A. Bird Region Detection in Images with Multi-scale HOG Features and SVM Scoring. In Proceedings of the 2nd International Conference on Computer Vision & Image Processing, Roorkee, India, 9–12 September 2017; Chaudhuri, B., Kankanhalli, M., Raman, B., Eds.; Springer: Singapore, 2018; pp. 353–364. [Google Scholar]
- Kong, J.L.; Wang, H.X.; Yang, C.C.; Jin, X.B.; Zuo, M.; Zhang, X. A spatial feature-enhanced attention neural network with high-order pooling representation for application in pest and disease recognition. Agriculture 2022, 12, 500. [Google Scholar] [CrossRef]
- Jin, X.B.; Zheng, W.Z.; Kong, J.L.; Wang, X.Y.; Bai, Y.T.; Su, T.L.; Lin, S. Deep-learning forecasting method for electric power load via attention-based encoder-decoder with bayesian optimization. Energies 2021, 14, 1596. [Google Scholar] [CrossRef]
- Wang, L.; Cao, X.Y.; Li, M.H.; Zhao, J.N. English Letter Recognition Based on TensorFlow Deep Learning. J. Phys. Conf. Ser. 2020, 1627, 12012. [Google Scholar]
- Jiang, H.X. The analysis of plants image recognition based on deep learning and artificial neural network. IEEE Access 2020, 8, 68828–68841. [Google Scholar]
- Chen, C.; Liu, B.; Wan, S.H.; Qiao, P.; Pei, Q.Q. An edge traffic flow detection scheme based on deep learning in an intelligent transportation system. IEEE Trans. Intell. Transp. Syst. 2020, 22, 1840–1852. [Google Scholar] [CrossRef]
- Tumas, P.; Serackis, A. Automated image annotation based on YOLOv3. In Proceedings of the 2018 IEEE 6th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE), Vilnius, Lithuania, 8–10 November 2018. [Google Scholar]
- The Caltech-Ucsd Birds-200–2011 Dataset. Available online: https://authors.library.caltech.edu/27452/1/CUB_200_2011.pdf (accessed on 7 January 2023).
- Berg, T.; Liu, J.X.; Woo Lee, S.; Alexander, M.L.; Jacobs, D.W.; Belhumeur, P.N. Birdsnap: Large-scale fine-grained visual categorization of birds. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014. [Google Scholar]
- Naumov, S.; Yaroslavtsev, G.; Avdiukhin, D. Objective-Based Hierarchical Clustering of Deep Embedding Vectors. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 2–9 February 2021. [Google Scholar]
- Karthikeyan, C.; Jabber, B.; Deepak, V.; Vamsidhar, E. Image Processing based Improved Face Recognition for Mobile Devices by using Scale-Invariant Feature Transform. In Proceedings of the 2020 International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 26–28 February 2020. [Google Scholar]
- Essa, A.; Asari, V.K. Face recognition based on modular histogram of oriented directional features. In Proceedings of the 2016 IEEE National Aerospace and Electronics Conference (NAECON) and Ohio Innovation Summit (OIS), Dayton, OH, USA, 25–29 July 2016. [Google Scholar]
- Huang, C.; Luo, B.; Tang, L.Z.; Liu, Y.N.; Ma, J.X. Topic model based bird breed classification and annotation. In Proceedings of the 2013 International Conference on Communications, Circuits and Systems (ICCCAS), Chengdu, China, 15–17 November 2013. [Google Scholar]
- Berg, T.; Belhumeur, P.N. Poof: Part-based one-vs.-one features for fine-grained categorization, face verification, and attribute estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013. [Google Scholar]
- Tryjanowski, P.; Murawiec, S.; Randler, C. No such Thing as Bad Birding Weather, but Depends on Personal Experience. Leis. Sci. 2023, 1–13. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2012, 25, 1097–1105. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd International Conference on Learning Representations (ICLR2015), San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Szegedyc, L. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Zhang, N.; Donahue, J.; Girshick, R.; Darrell, T. Part-based R-CNNs for fine-grained category detection. In European Conference on Computer Vision, Proceedings of the 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer: Cham, Switzerland, 2014; pp. 834–849. [Google Scholar]
- Donahue, J.; Jia, Y.Q.; Vinyals, O.; Hoffman, J.; Zhang, N.; Tzeng, E.; Darrell, T. Decaf: A deep convolutional activation feature for generic visual recognition. In Proceedings of the International Conference on Machine Learning, Beijing, China, 21–26 June 2014. [Google Scholar]
- Huang, S.L.; Xu, Z.; Tao, D.C.; Zhang, Y. Part-stacked CNN for fine-grained visual categorization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Feature Boosting, Suppression, and Diversification for Fine-Grained Visual Classification. Available online: https://arxiv.org/abs/2103.02782 (accessed on 7 January 2023).
- Ji, R.Y.; Wen, L.Y.; Zhang, L.B.; Du, D.W.; Wu, Y.J.; Zhao, C.; Liu, X.L.; Huang, F.Y. Attention convolutional binary neural tree for fine-grained visual categorization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Yang, B.; Pan, H.W.; Yu, J.Y.; Han, K.; Wang, Y.A. Classification of medical images with synergic graph convolutional networks. In Proceedings of the 2019 IEEE 35th International Conference on Data Engineering Workshops (ICDEW), Macao, China, 8–12 April 2019. [Google Scholar]
- Tai, K.S.; Socher, R.; Manning, C.D. Improved Semantic Representations from Tree-Structured Long Short-Term Memory Networks. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Beijing, China, 26–31 July 2015; Volume 1. Long Papers. [Google Scholar]
- Zhang, T.; Liu, B.; Niu, D.; Lai, K.F.; Xu, Y. Multiresolution graph attention networks for relevance matching. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Italy, 22–26 October 2018. [Google Scholar]
- Yu, B.; Yin, H.T.; Zhu, Z.X. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. In Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018. [Google Scholar]
- Zhao, Y.F.; Yan, K.; Huang, F.Y.; Li, J. Graph-based high-order relation discovery for fine-grained recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021. [Google Scholar]
- Lin, S.; Xiu, Y.; Kong, J.; Yang, C.; Zhao, C. An Effective Pyramid Neural Network Based on Graph-Related Attentions Structure for Fine-Grained Disease and Pest Identification in Intelligent Agriculture. Agriculture 2023, 13, 567. [Google Scholar] [CrossRef]
- Wang, Z.H.; Wang, S.J.; Li, H.J.; Dou, Z.; Li, J.J. Graph-propagation based correlation learning for weakly supervised fine-grained image classification. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020. [Google Scholar]
- Chen, T.S.; Lin, L.; Chen, R.Q.; Wu, Y.; Luo, X.N. Knowledge-embedded representation learning for fine-grained image recognition. In Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018. [Google Scholar]
- Wang, X.; Liu, H.R.; Shi, C.; Yang, C. Be confident! towards trustworthy graph neural networks via confidence calibration. Adv. Neural Inf. Process. Syst. 2021, 34, 23768–23779. [Google Scholar]
- Wang, C.Y.; Liao, H.; Wu, Y. CSPNet: A new backbone that can enhance learning capability of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Nashville, TN, USA, 19-25 June 2020; pp. 390–391. [Google Scholar]
- Ding, Y.F.; Ma, Z.Y.; Wen, S.G.; Xie, J.Y.; Chang, D.L.; Si, Z.W.; Wu, M.; Ling, H.B. AP-CNN: Weakly supervised attention pyramid convolutional neural network for fine-grained visual classification. IEEE Tran. Image Process. 2021, 30, 2826–2836. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Ding, F. Combined state and least squares parameter estimation algorithms for dynamic systems. Appl. Math. Model. 2014, 38, 403–412. [Google Scholar] [CrossRef]
- Ding, F. Hierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling. Appl. Math. Model. 2013, 37, 1694–1704. [Google Scholar] [CrossRef]
- Kong, J.-L.; Fan, X.-M.; Jin, X.-B.; Su, T.-L.; Bai, Y.-T.; Ma, H.-J.; Zuo, M. BMAE-Net: A Data-Driven Weather Prediction Network for Smart Agriculture. Agronomy 2023, 13, 625. [Google Scholar] [CrossRef]
CUB-200-2011 | Bird-400 | AF-Bird50 | |||||
---|---|---|---|---|---|---|---|
Methods | ACC (%) | Parameter (M) | ACC (%) | Parameter (M) | ACC (%) | Parameter (M) | |
Coarse-grained | VGG19 [42] | 76.4 | 575.5 | 95.4 | 549 | 80.1 | 564.8 |
ResNet50 [43] | 85.2 | 97.1 | 96.8 | 93.1 | 87.2 | 95.4 | |
Inception [44] | 85.9 | 48.9 | 97.6 | 34.1 | 88.3 | 44.2 | |
DenseNet [45] | 86.1 | 49.2 | 97.4 | 47.4 | 90.1 | 46.3 | |
Fine-grained | FBSD [49] | 89.2 | 164 | 99.2 | 95.3 | 94.3 | 159.7 |
AP-CNN [59] | 88.1 | 178 | 99.3 | 199.6 | 94.6 | 172.1 | |
GPA-Net | 89.6 | 100 | 99.3 | 128 | 95.4 | 98.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Yang, C.-C.; Xiao, Y.; Kong, J.-L. A Fine-Grained Recognition Neural Network with High-Order Feature Maps via Graph-Based Embedding for Natural Bird Diversity Conservation. Int. J. Environ. Res. Public Health 2023, 20, 4924. https://doi.org/10.3390/ijerph20064924
Xu X, Yang C-C, Xiao Y, Kong J-L. A Fine-Grained Recognition Neural Network with High-Order Feature Maps via Graph-Based Embedding for Natural Bird Diversity Conservation. International Journal of Environmental Research and Public Health. 2023; 20(6):4924. https://doi.org/10.3390/ijerph20064924
Chicago/Turabian StyleXu, Xin, Cheng-Cai Yang, Yang Xiao, and Jian-Lei Kong. 2023. "A Fine-Grained Recognition Neural Network with High-Order Feature Maps via Graph-Based Embedding for Natural Bird Diversity Conservation" International Journal of Environmental Research and Public Health 20, no. 6: 4924. https://doi.org/10.3390/ijerph20064924
APA StyleXu, X., Yang, C. -C., Xiao, Y., & Kong, J. -L. (2023). A Fine-Grained Recognition Neural Network with High-Order Feature Maps via Graph-Based Embedding for Natural Bird Diversity Conservation. International Journal of Environmental Research and Public Health, 20(6), 4924. https://doi.org/10.3390/ijerph20064924