Pollution Vulnerability of the Ghiss Nekkor Alluvial Aquifer in Al-Hoceima (Morocco), Using GIS-Based DRASTIC Model
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
- The combination of comparatively shallow groundwater depths.
- The principal source of nitrate must be derived from agricultural operations conducted on the surface.
- Nitrate leaching must be caused by surface water recharging for long periods to correlate pollution with human activities.
- The surface distribution must be generally uniform.
- Piezometric level of wells collected during a field mission in May 2018.
- Geological and pedological data of the Rif.
- Storage coefficient, precipitation, recharge, and hydraulic conductivity “The Loukkos Water Basin Agency (ABHL)”.
- Nitrate concentrations based on the analysis of water samples collected in May 2018.
- Lithology data of unsaturated and saturated zones covering the study area extracted from boreholes archived by the Loukkos Water Basin Agency (ABHL).
4. Results and Discussion
4.1. Model Results
4.1.1. Depth to Water (D)
4.1.2. Net Recharge (R)
4.1.3. Type of Aquifer (A)
4.1.4. Type of Soil (S)
4.1.5. Topography (T)
4.1.6. Impact of the Vadose Zone and Hydraulic Topography (I)
4.1.7. Hydraulic Conductivity (C)
4.2. Spatial Distribution of Vulnerability
4.3. Validation of the Model Using Groundwater Chemistry
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baalousha, H. Assessment of a Groundwater Quality Monitoring Network Using Vulnerability Mapping and Geostatistics: A Case Study from Heretaunga Plains, New Zealand. Agric. Water Manag. 2010, 97, 240–246. [Google Scholar] [CrossRef]
- Söderqvist, T.; Brinkhoff, P.; Norberg, T.; Rosén, L.; Back, P.-E.; Norrman, J. Cost-Benefit Analysis as a Part of Sustainability Assessment of Remediation Alternatives for Contaminated Land. J. Environ. Manag. 2015, 157, 267–278. [Google Scholar] [CrossRef]
- Jang, W.S.; Engel, B.; Harbor, J.; Theller, L. Aquifer Vulnerability Assessment for Sustainable Groundwater Management Using DRASTIC. Water 2017, 9, 792. [Google Scholar] [CrossRef] [Green Version]
- Vaux, H. Groundwater under Stress: The Importance of Management. Environ. Earth Sci. 2011, 62, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Alitane, A.; Essahlaoui, A.; Van Griensven, A.; Yimer, E.A.; Essahlaoui, N.; Mohajane, M.; Chawanda, C.J.; Van Rompaey, A. Towards a Decision-Making Approach of Sustainable Water Resources Management Based on Hydrological Modeling: A Case Study in Central Morocco. Sustainability 2022, 14, 10848. [Google Scholar] [CrossRef]
- Ahmed, M.; Aqnouy, M.; Stitou El Messari, J. Sustainability of Morocco’s Groundwater Resources in Response to Natural and Anthropogenic Forces. J. Hydrol. 2021, 603, 126866. [Google Scholar] [CrossRef]
- Benyoussef, S.; Arabi, M.; El Ouarghi, H.; Ghalit, M.; Azirar, M.; El Midaoui, A.; Ait Boughrous, A. Impact of Anthropic Activities on the Quality of Groundwater in the Central Rif (North Morocco). Ecol. Eng. Environ. Technol. 2021, 22, 69–78. [Google Scholar] [CrossRef]
- Benyoussef, S.; El Ouarghi, H.; Arabi, M.; El Yousfi, Y.; Azirar, M.; Boughrous, A.A. Assessment of the Impact of Imzouren City’s WWTP on the Quality of the Surrounding Groundwater, at the Rif Central (Northern Morocco). E3S Web Conf. 2021, 240, 01008. [Google Scholar] [CrossRef]
- El Yousfi, Y.; Himi, M.; El Ouarghi, H.; Aqnouy, M.; Benyoussef, S.; Gueddari, H.; Ait Hmeid, H.; Alitane, A.; Chaibi, M.; Zahid, M. Assessment and Prediction of the Water Quality Index for the Groundwater of the Ghiss-Nekkor (Al Hoceima, Northeastern Morocco). Sustainability 2023, 15, 402. [Google Scholar] [CrossRef]
- Hamza, S.M.; Ahsan, A.; Imteaz, M.A.; Rahman, A.; Mohammad, T.A.; Ghazali, A.H. Accomplishment and Subjectivity of GIS-Based DRASTIC Groundwater Vulnerability Assessment Method: A Review. Environ. Earth Sci. 2015, 73, 3063–3076. [Google Scholar] [CrossRef]
- Chae, G.T.; Kim, K.; Yun, S.T.; Kim, K.H.; Kim, S.O.; Choi, B.Y.; Kim, H.S.; Rhee, C.W. Hydrogeochemistry of Alluvial Groundwaters in an Agricultural Area: An Implication for Groundwater Contamination Susceptibility. Chemosphere 2004, 55, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Medici, G.; Langman, J.B. Pathways and Estimate of Aquifer Recharge in a Flood Basalt Terrain; A Review from the South Fork Palouse River Basin (Columbia River Plateau, USA). Sustainability 2022, 14, 11349. [Google Scholar] [CrossRef]
- Ducci, D. GIS Techniques for Mapping Groundwater Contamination Risk. Nat. Hazards 1999, 20, 279–294. [Google Scholar] [CrossRef]
- Lake, I.R.; Lovett, A.A.; Hiscock, K.M.; Betson, M.; Foley, A.; Sünnenberg, G.; Evers, S.; Fletcher, S. Evaluating Factors Influencing Groundwater Vulnerability to Nitrate Pollution: Developing the Potential of GIS. J. Environ. Manag. 2003, 68, 315–328. [Google Scholar] [CrossRef]
- Thapinta, A.; Hudak, P.F. Use of Geographic Information Systems for Assessing Groundwater Pollution Potential by Pesticides in Central Thailand. Environ. Int. 2003, 29, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Gueddari, H.; Akodad, M.; Baghour, M.; Moumen, A.; Skalli, A.; El Yousfi, Y.; Ismail, A.; Chahban, M.; Azizi, G.; Hmeid, H.A.; et al. The Salinity Origin and Hydrogeochemical Evolution of Groundwater in the Oued Kert Basin, North-eastern of Morocco. Sci. Afr. 2022, 16, e01226. [Google Scholar] [CrossRef]
- Jayaswal, K.; Sahu, V.; Gurjar, B.R. Water Pollution, Human Health and Remediation. In Energy, Environment, and Sustainability; Bhattacharya, S., Gupta, A., Gupta, A., Pandey, A., Eds.; Springer: Singapore, 2018; pp. 11–27. [Google Scholar] [CrossRef]
- Gueddari, H.; Akodad, M.; Baghour, M.; Moumen, A.; Skalli, A.; El Yousfi, Y.; Ait Hmeid, H.; Chahban, M.; Azizi, G.; Rahhou, A.; et al. Assessment of the Metal Contamination Index in Groundwater of the Quaternary of the Middle Kert Basin, North-Eastern Morocco. Environ. Qual. Manag. 2021, 32, 53–62. [Google Scholar] [CrossRef]
- Gueddari, H.; Akodad, M.; Baghour, M.; Moumen, A.; Skalli, A.; Chahban, M.; Azizi, G.; Ait Hmeid, H.; Maach, M.; Riouchi, O.; et al. Assessment of Potential Contamination of Groundwater in Abandoned Mining Region of Ben Taieb, Northeastern Morocco Using Statistical Studies. Int. J. Health Sci. 2022, 6, 4121–4133. [Google Scholar] [CrossRef]
- Vias, J.M.; Andreo, B.; Perles, M.J.; Carrasco, F. A Comparative Study of Four Schemes for Groundwater Vulnerability Mapping in a Diffuse Flow Carbonate Aquifer under Mediterranean Climatic Conditions. Environ. Geol. 2005, 47, 586–595. [Google Scholar] [CrossRef]
- Bera, A.; Mukhopadhyay, B.P.; Chowdhury, P.; Ghosh, A.; Biswas, S. Groundwater Vulnerability Assessment Using GIS-Based DRASTIC Model in Nangasai River Basin, India with Special Emphasis on Agricultural Contamination. Ecotoxicol. Environ. Saf. 2021, 214, 112085. [Google Scholar] [CrossRef]
- Kihumba, A.M.; Vanclooster, M.; Longo, J.N. Assessing Groundwater Vulnerability in the Kinshasa Region, DR Congo, Using a Calibrated DRASTIC Model. J. Afr. Earth Sci. 2017, 126, 13–22. [Google Scholar] [CrossRef]
- Persson, M.; Selim, T.; Olsson, J. Groundwater contamination risks from conservative point source pollutants in a future climate. Hydrol. Sci. J. 2019, 64, 1659–1671. [Google Scholar] [CrossRef] [Green Version]
- Bai, L.; Wang, Y.; Meng, F. Application of DRASTIC and Extension Theory in the Groundwater Vulnerability Evaluation Application of DRASTIC and Extension Theory in the Groundwater Vulnerability Evaluation. Water Environ. J. 2012, 26, 381–391. [Google Scholar] [CrossRef]
- Foster, S.S.D. Groundwater Recharge and Pollution Vulnerability of British Aquifers: A Critical Overview. Geol. Soc. Spec. Publ. 1998, 130, 7–22. [Google Scholar] [CrossRef]
- Boufekane, A.; Belloula, M.; Busico, G.; Drias, T.; Reghais, A.; Maizi, D. Hybridization of DRASTIC Method to Assess Future Groundwater Vulnerability Scenarios: Case of the Tebessa-Morsott Alluvial Aquifer (Northeastern Algeria). Appl. Sci. 2022, 12, 9205. [Google Scholar] [CrossRef]
- Zhang, R.; Hamerlinck, J.D.; Gloss, S.P.; Munn, L. Determination of Nonpoint-Source Pollution Using GIS and Numerical Models. J. Environ. Qual. 1996, 25, 411–418. [Google Scholar] [CrossRef] [Green Version]
- Babiker, I.S.; Mohammed, M.A.A.; Hiyama, T.; Kato, K. A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan. Sci. Total Environ. 2005, 345, 127–140. [Google Scholar] [CrossRef]
- Aswathi, J.; Sajinkumar, K.S.; Rajaneesh, A.; Oommen, T.; Bouali, E.H.; Binojkumar, R.B.; Rani, V.R.; Thomas, J.; Thrivikramji, K.P.; Ajin, R.S.; et al. Furthering the precision of RUSLE soil erosion with PSInSAR data: An innovative model. Geocarto Int. 2022, 37, 16108–16131. [Google Scholar] [CrossRef]
- Hamza, M.H.; Added, A.; Rodriguez, R.; Abdeljaoued, S.; Mammou, A.B. A GIS-Based DRASTIC Vulnerability and Net Recharge Reassessment in an Aquifer of a Semi-Arid Region (Metline-Ras Jebel-Raf Raf Aquifer, Northern Tunisia). J. Environ. Manag. 2007, 84, 12–19. [Google Scholar] [CrossRef]
- Almasri, M.N. Assessment of Intrinsic Vulnerability to Contamination for Gaza Coastal Aquifer, Palestine. J. Environ. Manag. 2008, 88, 577–593. [Google Scholar] [CrossRef]
- Wendland, F.; Bergmann, S.; Eisele, M.; Gömann, H.; Herrmann, F.; Kreins, P.; Kunkel, R. Model-Based Analysis of Nitrate Concentration in the Leachate—The North Rhine-Westfalia Case Study, Germany. Water 2020, 12, 550. [Google Scholar] [CrossRef] [Green Version]
- Fannakh, A.; Farsang, A. DRASTIC, GOD, and SI approaches for assessing groundwater vulnerability to pollution: A review. Environ. Sci. Eur. 2022, 34, 77. [Google Scholar] [CrossRef]
- Rajput, H.; Goyal, R.; Brighu, U. Modification and optimization of DRASTIC model for groundwater vulnerability and contamination risk assessment for Bhiwadi region of Rajasthan, India. Environ. Earth Sci. 2020, 79, 136. [Google Scholar] [CrossRef]
- Baena-Ruiz, L.; Pulido-Velazquez, D. A Novel Approach to Harmonize Vulnerability Assessment in Carbonate and Detrital Aquifers at Basin Scale. Water 2020, 12, 2971. [Google Scholar] [CrossRef]
- Lasagna, M.; De Luca, D.A.; Franchino, E. The role of physical and biological processes in aquifers and their importance on groundwater vulnerability to nitrate pollution. Environ. Earth Sci. 2016, 75, 961. [Google Scholar] [CrossRef]
- Maqsoom, A.; Aslam, B.; Khalil, U.; Ghorbanzadeh, O.; Ashraf, H.; Faisal Tufail, R.; Farooq, D.; Blaschke, T. A GIS-based DRASTIC Model and an Adjusted DRASTIC Model (DRASTICA) for Groundwater Susceptibility Assessment along the China–Pakistan Economic Corridor (CPEC) Route. ISPRS Int. J. Geo.-Inf. 2020, 9, 332. [Google Scholar] [CrossRef]
- Worrall, F.; Kolpin, D.W. Aquifer Vulnerability to Pesticide Pollution—Combining Soil, Land-Use and Aquifer Properties with Molecular Descriptors. J. Hydrol. 2004, 293, 191–204. [Google Scholar] [CrossRef]
- Højberg, A.L.; Hansen, A.L.; Wachniew, P.; Żurek, A.J.; Virtanen, S.; Arustiene, J.; Strömqvist, J.; Rankinen, K.; Refsgaard, J.C. Review and Assessment of Nitrate Reduction in Groundwater in the Baltic Sea Basin. J. Hydrol. Reg. Stud. 2017, 12, 50–68. [Google Scholar] [CrossRef]
- El Yousfi, Y.; Himi, M.; El Ouarghi, H.; Elgettafi, M.; Benyoussef, S.; Gueddari, H.; Aqnouy, M.; Salhi, A.; Alitane, A. Hydrogeochemical and Statistical Approach to Characterize Groundwater Salinity in the Ghiss-Nekkor Coastal Aquifers in the Al Hoceima Province, Morocco. Groundw. Sustain. Dev. 2022, 19, 100818. [Google Scholar] [CrossRef]
- Bouizrou, I.; Aqnouy, M.; Bouadila, A. Spatio-temporal analysis of trends and variability in precipitation across Morocco: Comparative analysis of recent and old non-parametric methods. J. Afr. Earth Sci. 2022, 196, 104691. [Google Scholar] [CrossRef]
- Salhi, A.; Messari, J.; Benabdelouahab, S.; Draoui, M.; Himi, M.; Casas, A. Sustainable Management of an Aquifer under Arid Conditions (Ghis-Nekor Aquifer, Al Hoceima, Northeast Morocco). In Proceedings of the EuroMediterranean Scientific Congress on Engineering, Algeciras, Spain, 1 January 2011. [Google Scholar]
- Nouayti, N.; Cherif, E.K.; Algarra, M.; Pola, M.L.; Fernández, S.; Nouayti, A.; Esteves da Silva, J.C.G.; Driss, K.; Samlani, N.; Mohamed, H.; et al. Determination of Physicochemical Water Quality of the Ghis-Nekor Aquifer (Al Hoceima, Morocco) Using Hydrochemistry, Multiple Isotopic Tracers, and the Geographical Information System (GIS). Water 2022, 14, 606. [Google Scholar] [CrossRef]
- Salhi, A. Géophysique, hydrogéologie et cartographie de la vulnérabilité et du risque de pollution de l’aquifère de Ghis-Nekor (Al Hoceima, Maroc). Ph.D. Thesis, Abdelmalek Essaadi University, Tétouan, Morocco, 2008. [Google Scholar]
- Baite, W.; Boukdir, A.; Zitouni, A.; Dahbi, S.D.; Mesmoudi, H.; Elissami, A.; Sabri, E.; Ikhmerdi, H. Diagnosis of the Ghiss Nekor Aquifer in Order to Elaborate the Aquifer Contract. E3S Web Conf. 2018, 37, 01006. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Thirumalaivasan, D.; Radhakrishnan, N. GIS Based Assessment of Groundwater Vulnerability Using Drastic Model. Arab. J. Sci. Eng. 2014, 39, 207–216. [Google Scholar] [CrossRef]
- Panagopoulos, G.P.; Antonakos, A.K.; Lambrakis, N.J. Optimization of the DRASTIC Method for Groundwater Vulnerability Assessment via the Use of Simple Statistical Methods and GIS. Hydrogeol. J. 2006, 14, 894–911. [Google Scholar] [CrossRef]
- Hajji, S.; Allouche, N.; Bouri, S.; Aljuaid, A.M.; Hachicha, W. Assessment of Seawater Intrusion in Coastal Aquifers Using Multivariate Statistical Analyses and Hydrochemical Facies Evolution-Based Model. Int. J. Environ. Res. Public Health 2022, 19, 155. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.R.; Kissel, D.E. Water Percolation: An Indicator of Nitrogen-Leaching Potential. In Managing Nitrogen for Groundwater Quality and Farm Profitability; Follett, R.F., Keeney, D.R., Cruse, R.M., Eds.; Soil Science Society of America, Inc.: Madison, WI, USA, 1991; pp. 59–83. [Google Scholar] [CrossRef]
- United States Department of Agriculture. Soil Conservation Service National Engineering Handbook, Hydrology; United States Department of Agriculture: Washington, DC, USA, 1972; Part 630.
- Aqnouy, M.; Ahmed, M.; Ayele, G.T.; Bouizrou, I.; Bouadila, A.; Stitou El Messari, J.E. Comparison of Hydrological Platforms in Assessing Rainfall-Runoff Behavior in a Mediterranean Watershed of Northern Morocco. Water 2023, 15, 447. [Google Scholar] [CrossRef]
- Barbulescu, A. Assessing Groundwater Vulnerability: DRASTIC and DRASTIC-Like Methods: A Review. Water 2020, 12, 1356. [Google Scholar] [CrossRef]
- Chen, J.; Gu, M.; Zhou, Y.; Wan, D.; He, Q.; Shi, Y.; Liu, Y. Efficient nitrate and perchlorate removal from aqueous solution via a novel electro-dialysis ion-exchange membrane bioreactor. Chem. Eng. J. 2022, 430, 132952. [Google Scholar] [CrossRef]
- Mulligan, C.N.; Yong, R.N. Natural attenuation of contaminated soils. Environ. Int. 2004, 30, 587–601. [Google Scholar] [CrossRef]
- Alitane, A.; Essahlaoui, A.; El Hafyani, M.; El Hmaidi, A.; El Ouali, A.; Kassou, A.; El Yousfi, Y.; van Griensven, A.; Chawanda, C.J.; Van Rompaey, A. Water Erosion Monitoring and Prediction in Response to the Effects of Climate Change Using RUSLE and SWAT Equations: Case of R’Dom Watershed in Morocco. Land 2022, 11, 93. [Google Scholar] [CrossRef]
- Michard, A.; Saddiqi, O.; Chalouan, A.; Frizon de Lamotte, D. (Eds.) Continental Evolution: The Geology of Morocco. In Lecture Notes in Earth Sciences; Springer: Berlin/Heidelberg, Germany, 2008; Volume 116. [Google Scholar] [CrossRef]
- Yahia, A.; El Bouabid, M. Assessment of Aquifer Vulnerability Based on GIS and ArcGIS Methods: A Case Study of the Sana’a Basin (Yemen). J. Water Resour. Prot. 2011, 3, 845–855. [Google Scholar] [CrossRef] [Green Version]
- Salhi, A.; Stitou El Messari, J.; Benabdelouahab, S.; El Gettafi, M.; Díaz, Y.; Himi, M.; Casas, A. Cartografía comparativa de la vulnerabilidad del acuífero costero de Ghis-Nekor (Marruecos) [Comparative cartography of the Ghis-Nekor coastal aquifer vulnerability (Morocco)]. Geogaceta 2008, 44, 167–170. [Google Scholar]
- Akhavan, S.; Mousavi, S.F.; Abedi-Koupai, J.; Abbaspour, K.C. Conditioning DRASTIC Model to Simulate Nitrate Pollution Case Study: Hamadan-Bahar Plain. Environ. Earth Sci. 2011, 63, 1155–1167. [Google Scholar] [CrossRef] [Green Version]
- Chafouq, D.; El Mandour, A.; Elgettafi, M.; Himi, M.; Chouikri, I.; Casas, A. Hydrochemical and Isotopic Characterization of Groundwater in the Ghis-Nekor Plain (Northern Morocco). J. Afr. Earth Sci. 2018, 139, 1–13. [Google Scholar] [CrossRef]
- Hamzaoui-Azaza, F.; Ketata, M.; Bouhlila, R.; Gueddari, M.; Riberio, L. Hydrogeochemical Characteristics and Assessment of Drinking Water Quality in Zeuss-Koutine Aquifer, Southeastern Tunisia. Environ. Monit. Assess. 2011, 174, 283–298. [Google Scholar] [CrossRef]
- Benyoussef, S.; Arabi, M.; El Ouarghi, H.; Ghalit, M.; El Yousfi, Y.; Azirar, M.; Boughrous, A.A. Qualitative Assessment of the Waters of the Coastal Aquifer Ghis-Nekor (Central Rif, Northern Morocco) in View of Agricultural Use. J. Water Land Dev. 2022, 52, 245–250. [Google Scholar] [CrossRef]
- Ouzerbane, Z.; Loulida, S.; Boughalem, M.; El Hmaidi, A.; Essahlaoui, A.; Najine, A. Application of GIS for Assessing the Vulnerability of Aquifers to Pollution in the Coastal Zone of Essaouira. Environ. Monit. Assess. 2022, 194, 35. [Google Scholar] [CrossRef] [PubMed]
- Echogdali, F.Z.; Boutaleb, S.; Taia, S.; Ouchchen, M.; Id–Belqas, M.; Kpan, R.B.; Abioui, M.; Aswathi, J.; Sajinkumar, K.S. Assessment of soil erosion risk in a semi–arid climate watershed using SWAT model: Case of Tata basin, South–East of Morocco. Appl. Water Sci. 2022, 12, 137. [Google Scholar] [CrossRef]
- Mchiouer, F.; Ouarghi, H.E.; Elyousfi, Y.; Abourrich, M. Hygienic quality assessment of well and spring water: A case study of the region of Al-Hoceima (Morocco Northern). Environ. Eng. Manag. J. 2022, 21, 353–364. [Google Scholar] [CrossRef]
- Elmeknassi, M.; El Mandour, A.; Elgettafi, M.; Himi, M.; Tijani, R.; El Khantouri, F.A.; Casas, A. A GIS-Based Approach for Geospatial Modeling of Groundwater Vulnerability and Pollution Risk Mapping in Bou-Areg and Gareb Aquifers, Northeastern Morocco. Environ. Sci. Pollut. Res. 2021, 28, 51612–51631. [Google Scholar] [CrossRef]
- Gueddari, H.; Akodad, M.; Baghour, M.; Moumen, A.; Skalli, A.; El Yousfi, Y.; Ait Hmeid, H.; Chahban, M.; Azizi, G.; Chaibi, M. Support Vector Machine: A Case Study in the Kert Aquifer for Predicting the Water Quality Index in Mediterranean Zone, Drouich Province, Oriental Region, Morocco. Nat. Environ. Pollut. Technol. 2022, 21, 2015–2023. [Google Scholar] [CrossRef]
- Kouz, T.; Cherkaoui Dekkaki, H.; Mansour, S.; Hassani Zerrouk, M.; Mourabit, T. Application of GALDIT Index to Assess the Intrinsic Vulnerability of Coastal Aquifer to Seawater Intrusion Case of the Ghiss-Nekor Aquifer (North East of Morocco). In Groundwater and Global Change in the Western Mediterranean Area; Calvache, M.L., Duque, C., Pulido-Velazquez, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 169–177. [Google Scholar] [CrossRef]
Hydrological Group | Soils | Equation |
---|---|---|
B | Sandy—Sandstone—Sandy Loam. | R = (P − 15.05)2/(P + 22.57) |
C | Sandy loam—Loamy sandy—Sandy clay—Nodular crusting. | R = (P − 19.53)2/(P + 29.29) |
Drastic Factor | Range | Rating | Weight |
---|---|---|---|
Depth to water table (m) | 1.5–4.6 | 9 | 5 |
4.6–9.1 | 7 | ||
9.1–15.2 | 5 | ||
15.2–22.8 | 3 | ||
22.8–30.4 | 2 | ||
>30.4 | 1 | ||
Recharge (mm) | 101.6–177.8 | 6 | 4 |
177.8–254 | 8 | ||
>254 | 9 | ||
Aquifer media | Massive Shale | 2 | 3 |
Thin Bedded Sandstone, Limestone | 4 | ||
Massive Sandstone | 6 | ||
Sand and Gravel | 8 | ||
Soil media | Peat | 8 | 2 |
Sandy Loam | 6 | ||
Silty Loam | 4 | ||
Clay Loam | 3 | ||
Topography (slope) (%) | 0–2 | 10 | 1 |
2–6 | 9 | ||
6–12 | 5 | ||
12–18 | 3 | ||
>18 | 1 | ||
Impact of vadose zone material | Silt/Clay | 3 | 5 |
Silty Sand Clay | 4 | ||
Sandstone | 5 | ||
Sand and Gravel with Silt | 6 | ||
Coarse Sand | 8 | ||
Conductivity (m/d) | 4.1–12.2 | 2 | 3 |
12.2–28.5 | 4 | ||
28.5–40.7 | 6 | ||
40.7–81.5 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Yousfi, Y.; Himi, M.; Aqnouy, M.; Benyoussef, S.; Gueddari, H.; Lamine, I.; El Ouarghi, H.; Alali, A.; Ait Hmeid, H.; Chahban, M.; et al. Pollution Vulnerability of the Ghiss Nekkor Alluvial Aquifer in Al-Hoceima (Morocco), Using GIS-Based DRASTIC Model. Int. J. Environ. Res. Public Health 2023, 20, 4992. https://doi.org/10.3390/ijerph20064992
El Yousfi Y, Himi M, Aqnouy M, Benyoussef S, Gueddari H, Lamine I, El Ouarghi H, Alali A, Ait Hmeid H, Chahban M, et al. Pollution Vulnerability of the Ghiss Nekkor Alluvial Aquifer in Al-Hoceima (Morocco), Using GIS-Based DRASTIC Model. International Journal of Environmental Research and Public Health. 2023; 20(6):4992. https://doi.org/10.3390/ijerph20064992
Chicago/Turabian StyleEl Yousfi, Yassine, Mahjoub Himi, Mourad Aqnouy, Said Benyoussef, Hicham Gueddari, Imane Lamine, Hossain El Ouarghi, Amar Alali, Hanane Ait Hmeid, Mohamed Chahban, and et al. 2023. "Pollution Vulnerability of the Ghiss Nekkor Alluvial Aquifer in Al-Hoceima (Morocco), Using GIS-Based DRASTIC Model" International Journal of Environmental Research and Public Health 20, no. 6: 4992. https://doi.org/10.3390/ijerph20064992
APA StyleEl Yousfi, Y., Himi, M., Aqnouy, M., Benyoussef, S., Gueddari, H., Lamine, I., El Ouarghi, H., Alali, A., Ait Hmeid, H., Chahban, M., Alitane, A., Elaaraj, A., Abdelrahman, K., Abu-Alam, T., Ait Boughrous, A., Khafouri, A., & Abioui, M. (2023). Pollution Vulnerability of the Ghiss Nekkor Alluvial Aquifer in Al-Hoceima (Morocco), Using GIS-Based DRASTIC Model. International Journal of Environmental Research and Public Health, 20(6), 4992. https://doi.org/10.3390/ijerph20064992