A Multimethodological Approach for the Valorization of “Senatore Cappelli” Wheat Milling By-Products as a Source of Bioactive Compounds and Nutraceutical Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Instruments
2.3. Sampling
2.4. Quality and Safety of Raw Matrices
Biogenic Amines Extraction from Wheat Husk
2.5. Phytochemical, Cytotoxic, and Anti-Inflammatory Properties of Wheat Husk Extracts
2.5.1. Hydroalcoholic Extraction of SC Wheat Husk
2.5.2. Total Phenolic Content (TPC)
2.5.3. Total Flavonoids Content (TFC)
2.5.4. Antioxidant Activity Determination by ABTS and DPPH Assays
2.5.5. Trypan Blue Assay
2.5.6. Real-Time Quantitative PCR Analysis
2.6. Sustainability Evaluation of Wheat By-Products by Life Cycle Assessment (LCA)
2.6.1. Goal and Scope Definition
2.6.2. Life Cycle Inventory (LCI)
2.6.3. Scenario Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Quality and Safety of Wheat Husks by Quantitative Determination of Biogenic Amines (BAs)
3.2. Phenolic and Antioxidant Properties of “Senatore Cappelli” Durum Wheat Husks
3.3. Cytotoxicity of “Senatore Cappelli” Durum Wheat Husks in BV2 Cells
3.4. M1 mRNA Markers Expression
3.5. M2 mRNA Markers Expression
3.6. Antioxidant Activity of SC Durum Wheat Husk
3.7. Life Cycle Assessment of Wheat By-Products
Carbon Footprint of Alternative Scenarios for Wheat Husk System Production
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vinci, G.; Maddaloni, L.; Prencipe, S.A.; Ruggeri, M.; Di Loreto, M.V. A Comparison of the Mediterranean Diet and Current Food Patterns in Italy: A Life Cycle Thinking Approach for a Sustainable Consumption. Int. J. Environ. Res. Public Health 2022, 19, 12274. [Google Scholar] [CrossRef] [PubMed]
- De Paula, R.; Rabalski, I.; Messia, M.C.; Abdel-Aal, E.-S.M.; Marconi, E. Effect of Processing on Phenolic Acids Composition and Radical Scavenging Capacity of Barley Pasta. Food Res. Int. 2017, 102, 136–143. [Google Scholar] [CrossRef]
- Dinelli, G.; Segura-Carretero, A.; Di Silvestro, R.; Marotti, I.; Arráez-Román, D.; Benedettelli, S.; Ghiselli, L.; Fernadez-Gutierrez, A. Profiles of Phenolic Compounds in Modern and Old Common Wheat Varieties Determined by Liquid Chromatography Coupled with Time-of-Flight Mass Spectrometry. J. Chromatogr. A 2011, 1218, 7670–7681. [Google Scholar] [CrossRef]
- Di Silvestro, R.; Marotti, I.; Bosi, S.; Bregola, V.; Carretero, A.S.; Sedej, I.; Mandic, A.; Sakac, M.; Benedettelli, S.; Dinelli, G. Health-Promoting Phytochemicals of Italian Common Wheat Varieties Grown under Low-Input Agricultural Management: Bioactive Compounds of Different Common Wheat Varieties. J. Sci. Food Agric. 2012, 92, 2800–2810. [Google Scholar] [CrossRef] [PubMed]
- Yaashikaa, P.R.; Senthil Kumar, P.; Varjani, S. Valorization of Agro-Industrial Wastes for Biorefinery Process and Circular Bioeconomy: A Critical Review. Bioresour. Technol. 2022, 343, 126126. [Google Scholar] [CrossRef]
- FAOSTAT. Crops and Livestock Products. 2021. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 12 December 2022).
- Bledzki, A.K.; Mamun, A.A.; Volk, J. Physical, Chemical and Surface Properties of Wheat Husk, Rye Husk and Soft Wood and Their Polypropylene Composites. Compos. Part A Appl. Sci. Manuf. 2010, 41, 480–488. [Google Scholar] [CrossRef]
- Heiniö, R.-L.; Liukkonen, K.-H.; Myllymäki, O.; Pihlava, J.-M.; Adlercreutz, H.; Heinonen, S.-M.; Poutanen, K. Quantities of Phenolic Compounds and Their Impacts on the Perceived Flavour Attributes of Rye Grain. J. Cereal Sci. 2008, 47, 566–575. [Google Scholar] [CrossRef]
- Mohanty, S.S.; Koul, Y.; Varjani, S.; Pandey, A.; Ngo, H.H.; Chang, J.-S.; Wong, J.W.C.; Bui, X.-T. A Critical Review on Various Feedstocks as Sustainable Substrates for Biosurfactants Production: A Way towards Cleaner Production. Microb. Cell Factories 2021, 20, 120. [Google Scholar] [CrossRef]
- Mishra, B.; Varjani, S.; Agrawal, D.C.; Mandal, S.K.; Ngo, H.H.; Taherzadeh, M.J.; Chang, J.-S.; You, S.; Guo, W. Engineering Biocatalytic Material for the Remediation of Pollutants: A Comprehensive Review. Environ. Technol. Innov. 2020, 20, 101063. [Google Scholar] [CrossRef]
- Yadav, V.; Sarker, A.; Yadav, A.; Miftah, A.O.; Bilal, M.; Iqbal, H.M.N. Integrated Biorefinery Approach to Valorize Citrus Waste: A Sustainable Solution for Resource Recovery and Environmental Management. Chemosphere 2022, 293, 133459. [Google Scholar] [CrossRef]
- Saha, S.; Buttari, B.; Profumo, E.; Tucci, P.; Saso, L. A Perspective on Nrf2 Signaling Pathway for Neuroinflammation: A Potential Therapeutic Target in Alzheimer’s and Parkinson’s Diseases. Front. Cell. Neurosci. 2022, 15, 787258. [Google Scholar] [CrossRef]
- Buttari, B.; Profumo, E.; Segoni, L.; D’Arcangelo, D.; Rossi, S.; Facchiano, F.; Saso, L.; Businaro, R.; Iuliano, L.; Riganò, R. Resveratrol Counteracts Inflammation in Human M1 and M2 Macrophages upon Challenge with 7-Oxo-Cholesterol: Potential Therapeutic Implications in Atherosclerosis. Oxid. Med. Cell. Longev. 2014, 2014, 257543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armeli, F.; Mengoni, B.; Maggi, E.; Mazzoni, C.; Preziosi, A.; Mancini, P.; Businaro, R.; Lenz, T.; Archer, T. Milmed Yeast Alters the LPS-Induced M1 Microglia Cells to Form M2 Anti-Inflammatory Phenotype. Biomedicines 2022, 10, 3116. [Google Scholar] [CrossRef]
- Huang, B.; Zhenxin, Y.; Chen, S.; Tan, Z.; Zong, Z.; Zhang, H.; Xiong, X. The Innate and Adaptive Immune Cells in Alzheimer’s and Parkinson’s Diseases. Oxid. Med. Cell. Longev. 2022, 2022, 1315248. [Google Scholar] [CrossRef] [PubMed]
- Kirkley, K.S.; Popichak, K.A.; Afzali, M.F.; Legare, M.E.; Tjalkens, R.B. Microglia Amplify Inflammatory Activation of Astrocytes in Manganese Neurotoxicity. J. Neuroinflamm. 2017, 14, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Zheng, Y.; Luo, Y.; Du, Y.; Zhang, X.; Fu, J. Curcumin Inhibits LPS-Induced Neuroinflammation by Promoting Microglial M2 Polarization via TREM2/ TLR4/ NF-ΚB Pathways in BV2 Cells. Mol. Immunol. 2019, 116, 29–37. [Google Scholar] [CrossRef]
- Song, S.; Yu, L.; Hasan, M.N.; Paruchuri, S.S.; Mullett, S.J.; Sullivan, M.L.G.; Fiesler, V.M.; Young, C.B.; Stolz, D.B.; Wendell, S.G.; et al. Elevated Microglial Oxidative Phosphorylation and Phagocytosis Stimulate Post-Stroke Brain Remodeling and Cognitive Function Recovery in Mice. Commun. Biol. 2022, 5, 35. [Google Scholar] [CrossRef]
- Gobbi, L.; Maddaloni, L.; Prencipe, S.A.; Vinci, G. Bioactive Compounds in Different Coffee Beverages for Quality and Sustainability Assessment. Beverages 2023, 9, 3. [Google Scholar] [CrossRef]
- Mietz, J.L.; Karmas, E. Chemical Quality Index of Canned Tuna as Determined by High-Pressure Liquid Chromatography. J. Food Sci. 1977, 42, 155–158. [Google Scholar] [CrossRef]
- Zhang, Y.; Truzzi, F.; D’Amen, E.; Dinelli, G. Effect of Storage Conditions and Time on the Polyphenol Content of Wheat Flours. Processes 2021, 9, 248. [Google Scholar] [CrossRef]
- Abdel-Naeem, H.H.S.; Sallam, K.I.; Malak, N.M.L. Improvement of the Microbial Quality, Antioxidant Activity, Phenolic and Flavonoid Contents, and Shelf Life of Smoked Herring (Clupea Harengus) during Frozen Storage by Using Chitosan Edible Coating. Food Control 2021, 130, 108317. [Google Scholar] [CrossRef]
- Gómez, J.; Simirgiotis, M.J.; Manrique, S.; Piñeiro, M.; Lima, B.; Bórquez, J.; Feresin, G.E.; Tapia, A. UHPLC-ESI-OT-MS Phenolics Profiling, Free Radical Scavenging, Antibacterial and Nematicidal Activities of “Yellow-Brown Resins” from Larrea Spp. Antioxidants 2021, 10, 185. [Google Scholar] [CrossRef] [PubMed]
- Djocgoue, P.E.; Niemenak, N.; Djocgoue, P.F.; Ondobo, M.L.; Ndoumou, D.O. Heritability of Polyphenols, Anthocyanins and Antioxidant Capacity of Cameroonian Cocoa (Theobroma cacao L.) Beans. Afr. J. Biotechnol. 2015, 14, 2672–2682. [Google Scholar] [CrossRef] [Green Version]
- De Caris, M.G.; Grieco, M.; Maggi, E.; Francioso, A.; Armeli, F.; Mosca, L.; Pinto, A.; D’Erme, M.; Mancini, P.; Businaro, R. Blueberry Counteracts BV-2 Microglia Morphological and Functional Switch after LPS Challenge. Nutrients 2020, 12, 1830. [Google Scholar] [CrossRef] [PubMed]
- Forster, P.; Artaxo, P. Changes in Atmospheric Constituents and in Radiative Forcing. In Climate Change 2007: The Physical Science Basis; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Karayigit, B.; Colak, N.; Ozogul, F.; Gundogdu, A.; Inceer, H.; Bilgiçli, N.; Ayaz, F.A. The Biogenic Amine and Mineral Contents of Different Milling Fractions of Bread and Durum Wheat (Triticum L.) Cultivars. Food Biosci. 2020, 37, 100676. [Google Scholar] [CrossRef]
- Sánchez-Pérez, S.; Comas-Basté, O.; Rabell-González, J.; Veciana-Nogués, M.T.; Latorre-Moratalla, M.L.; Vidal-Carou, M.C. Biogenic Amines in Plant-Origin Foods: Are They Frequently Underestimated in Low-Histamine Diets? Foods 2018, 7, 205. [Google Scholar] [CrossRef] [Green Version]
- Kalač, P. Health Effects and Occurrence of Dietary Polyamines: A Review for the Period 2005–Mid 2013. Food Chem. 2014, 161, 27–39. [Google Scholar] [CrossRef]
- Bellato, S.; Ciccoritti, R.; Del Frate, V.; Sgrulletta, D.; Carbone, K. Influence of Genotype and Environment on the Content of 5-n Alkylresorcinols, Total Phenols and on the Antiradical Activity of Whole Durum Wheat Grains. J. Cereal Sci. 2013, 57, 162–169. [Google Scholar] [CrossRef]
- Zhang, L.; García-Pérez, P.; Martinelli, E.; Giuberti, G.; Trevisan, M.; Lucini, L. Different Fractions from Wheat Flour Provide Distinctive Phenolic Profiles and Different Bioaccessibility of Polyphenols Following in Vitro Digestion. Food Chem. 2023, 404, 134540. [Google Scholar] [CrossRef]
- Guerrini, A.; Burlini, I.; Huerta Lorenzo, B.; Grandini, A.; Vertuani, S.; Tacchini, M.; Sacchetti, G. Antioxidant and Antimicrobial Extracts Obtained from Agricultural By-Products: Strategies for a Sustainable Recovery and Future Perspectives. Food Bioprod. Process. 2020, 124, 397–407. [Google Scholar] [CrossRef]
- Fărcaș, A.C.; Socaci, S.A.; Nemeș, S.A.; Pop, O.L.; Coldea, T.E.; Fogarasi, M.; Biriș-Dorhoi, E.S. An Update Regarding the Bioactive Compound of Cereal By-Products: Health Benefits and Potential Applications. Nutrients 2022, 14, 3470. [Google Scholar] [CrossRef]
- Iversen, K.N.; Carlsson, F.; Andersson, A.; Michaëlsson, K.; Langton, M.; Risérus, U.; Hellström, P.M.; Landberg, R. A Hypocaloric Diet Rich in High Fiber Rye Foods Causes Greater Reduction in Body Weight and Body Fat than a Diet Rich in Refined Wheat: A Parallel Randomized Controlled Trial in Adults with Overweight and Obesity (the RyeWeight Study). Clin. Nutr. ESPEN 2021, 45, 155–169. [Google Scholar] [CrossRef] [PubMed]
- Kirwan, J.P.; Malin, S.K.; Scelsi, A.R.; Kullman, E.L.; Navaneethan, S.D.; Pagadala, M.R.; Haus, J.M.; Filion, J.; Godin, J.-P.; Kochhar, S.; et al. A Whole-Grain Diet Reduces Cardiovascular Risk Factors in Overweight and Obese Adults: A Randomized Controlled Trial. J. Nutr. 2016, 146, 2244–2251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katcher, H.I.; Legro, R.S.; Kunselman, A.R.; Gillies, P.J.; Demers, L.M.; Bagshaw, D.M.; Kris-Etherton, P.M. The Effects of a Whole Grain–Enriched Hypocaloric Diet on Cardiovascular Disease Risk Factors in Men and Women with Metabolic Syndrome. Am. J. Clin. Nutr. 2008, 87, 79–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, D.S.A.; Oliver, P.L. ROS Generation in Microglia: Understanding Oxidative Stress and Inflammation in Neurodegenerative Disease. Antioxidants 2020, 9, 743. [Google Scholar] [CrossRef]
- Giacosa, A.; Peroni, G.; Rondanelli, M. Phytochemical Components and Human Health Effects of Old versus Modern Italian Wheat Varieties: The Case of Durum Wheat Senatore Cappelli. Nutrients 2022, 14, 2779. [Google Scholar] [CrossRef] [PubMed]
- Figueira, I.; Garcia, G.; Pimpão, R.C.; Terrasso, A.P.; Costa, I.; Almeida, A.F.; Tavares, L.; Pais, T.F.; Pinto, P.; Ventura, M.R.; et al. Polyphenols Journey through Blood-Brain Barrier towards Neuronal Protection. Sci. Rep. 2017, 7, 11456. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Buttari, B.; Panieri, E.; Profumo, E.; Saso, L. An Overview of Nrf2 Signaling Pathway and Its Role in Inflammation. Molecules 2020, 25, 5474. [Google Scholar] [CrossRef]
- Nozik-Grayck, E.; Suliman, H.B.; Piantadosi, C.A. Extracellular Superoxide Dismutase. Int. J. Biochem. Cell Biol. 2005, 37, 2466–2471. [Google Scholar] [CrossRef]
- Đorđević, T.; Antov, M. Wheat Chaff Utilization: Evaluation of Antioxidant Capacity of Waste Streams Generated by Different Pretreatments. Ind. Crops Prod. 2016, 94, 649–657. [Google Scholar] [CrossRef]
- Gianotti, A.; Danesi, F.; Verardo, V.; Serrazanetti, D.I.; Valli, V.; Russo, A.; Riciputi, Y.; Tossani, N.; Caboni, M.F.; Guerzoni, M.E.; et al. Role of Cereal Type and Processing in Whole Grain In Vivo Protection from Oxidative Stress. Front. Biosci. 2011, 16, 1609–1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quispe, I.; Navia, R.; Kahhat, R. Life Cycle Assessment of Rice Husk as an Energy Source. A Peruvian Case Study. J. Clean. Prod. 2019, 209, 1235–1244. [Google Scholar] [CrossRef]
- Cappucci, G.M.; Ruffini, V.; Barbieri, V.; Siligardi, C.; Ferrari, A.M. Life Cycle Assessment of Wheat Husk Based Agro-Concrete Block. J. Clean. Prod. 2022, 349, 131437. [Google Scholar] [CrossRef]
- Gao, T.; Bian, R.; Joseph, S.; Taherymoosavi, S.; Mitchell, D.R.G.; Munroe, P.; Xu, J.; Shi, J. Wheat Straw Vinegar: A More Cost-Effective Solution than Chemical Fungicides for Sustainable Wheat Plant Protection. Sci. Total Environ. 2020, 725, 138359. [Google Scholar] [CrossRef] [PubMed]
- Safaripour, M.; Hossain, K.G.; Ulven, C.A.; Pourhashem, G. Environmental Impact Tradeoff Considerations for Wheat Bran-Based Biocomposite. Sci. Total Environ. 2021, 781, 146588. [Google Scholar] [CrossRef]
- Neto, B.; Dias, A.C.; Machado, M. Life Cycle Assessment of the Supply Chain of a Portuguese Wine: From Viticulture to Distribution. Int. J. Life Cycle Assess 2013, 18, 590–602. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Senthil Kumar, P.; Varjani, S.J.; Saravanan, A. Advances in Production and Application of Biochar from Lignocellulosic Feedstocks for Remediation of Environmental Pollutants. Bioresour. Technol. 2019, 292, 122030. [Google Scholar] [CrossRef]
- Banat, I.M.; Satpute, S.K.; Cameotra, S.S.; Patil, R.; Nyayanit, N.V. Cost Effective Technologies and Renewable Substrates for Biosurfactants’™ Production. Front. Microbiol. 2014, 5, 697. [Google Scholar] [CrossRef] [Green Version]
- Istituto di Servizi per il Mercato Agricolo Alimentare (ISMEA)—Indicatori di Competitività—Filiere Cereali, Produzione. 2022. Available online: https://www.ismeamercati.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/11336 (accessed on 14 January 2023).
GENE | Forward Primer (5′–3′) | Reverse Primer (5′–3′) | Accession Number |
---|---|---|---|
mARG1 | ATGTGCCCTCTGTCTTTTAGGG | GGTCTCTCACGTCATACTCTGT | NM_007482.3 |
miNOS | GGCAGCCTGTGAGACCTTTG | GCATTGGAAGTGAAGCGTTTC | AF427516.1 |
mACT-β | GGCTGTATTCCCCTCCATCG | CCAGTTGGTAACAATGCCATGT | NM_007393.5 |
mCOX2 | AGGACTCTGCTCACGAAGGA | TGACATGGATTGGAACAGCA | NM_011198 |
mCCL2 | GGAATGGGTCCAGACATACATTA | CTACAGAAGTGCTTGAGGTGGTT | NM_031530 |
mChil3 | AGACTTGCGTGACTATGAAGCATTG | GCAGGTCCAAACTTCCATCCTC | NM_009892 |
mSOD1 | GCCCGCTAAGTGCTGAGTC | AGCCCCAGAAGGATAACGGA | NM_017050 |
mNRF2 | TCTGAGCCAGGACTACGACG | GAGGTGGTGGTGTCTCTGC | NM_031789 |
mCD206 | TTCAGCTATTGGACGCGAGG | GAATCTGACACCAGCGGAA | NM_008625 |
Inputs | Unit | Value | Source |
---|---|---|---|
Up-stream Agricultural Process | |||
Agricultural fuel | g | 1.58 | |
Water | g | 85 | EcoInvent v3.8 |
Mineral superphosphate (19% P2O5) | g | 0.57 | |
Ammonium nitrate (26% N) | g | 0.78 | WFLDB |
Urea (46% N) | g | 0.92 | Agribalyse v3.0.1 |
Seeds | g | 0.03 | EcoInvent v3.8 |
Herbicide | g | 0.44 | WFLDB |
Insecticide | g | 3.78 | |
Outputs | |||
Raw wheat grain | g | 1000 | |
Wheat Milling Process | |||
Electricity | kWh | 0.06 | EcoInvent v3.8 |
Outputs | |||
Milled wheat grains | g | 820 | |
Wheat by-products (husks) | g | 180 | |
Bioactive Compounds Extraction | |||
Wheat husks | g | 180 | |
Phase 1 (Hydroalcoholic Extraction) | |||
Chemicals (Ethanol) | g | 896 | |
Ultrapure water | g | 210 | EcoInvent v3.8 |
Electricity for ultrasonic bath | kWh | 0.12 | |
Phase 2 (Centrifugation) | |||
Electricity | kWh | 0.45 | EcoInvent v3.8 |
Outputs | |||
Wheat husk extract | mL | 885 |
Biogenic Amines Concentration (mg/100 g) | WH1 | WH2 |
---|---|---|
B-PEA | 9.57 ± 1.33 b | n.d. |
PUT | 1.81 ± 0.19 b | 0.85 ± 0.11 a |
CAD | 0.58 ± 0.09 a | 2.17 ± 0.11 b |
HIS | n.d. | 6.60 ± 0.79 b |
SER | 11.24 ± 1.79 a | 17.26 ± 1.57 b |
TYR | n.d. | 1.12 ± 0.09 a |
SPD | 7.86 ± 0.81 b | 0.82 ± 0.07 a |
SPM | 4.61 ± 0.47 b | 0.74 ± 0.05 a |
Total BAs | 35.66 a | 43.26 b |
BAQI | 0.42 | 5.46 |
Cereal Milling Husks | ||
---|---|---|
WH1 | WH2 | |
TPC (mg GAE/100 g dw) | 189.71 ± 3.97 a | 351.14 ± 5.91 b |
TFC (mg RE/100 g dw) | 108.67 ± 3.44 b | 156.90 ± 2.31 a |
ABTS (mg TE/100 g dw) | 31.23 ± 1.53 a | 37.84 ± 4.69 b |
DPPH (EC50 mg/mL) | 1.45 ± 0.17 a | 1.34 ± 0.12 a |
Impact Categories | Unit | Wheat Production | Milling Process | Wheat By-Products |
---|---|---|---|---|
Global warming | kg CO2 eq | 2.39 × 10−1 | 9.01 × 10−2 | 1.05 × 10−1 |
Terrestrial acidification | kg SO2 eq | 2.64 × 10−3 | 0.6 | 8.83 × 10−4 |
Terrestrial ecotoxicity | kg 1.4-DCB | 1.79 × 10−1 | 4.02 × 10−2 | 1.14 × 10−1 |
Land use | m2a crop eq | 1.20 | 2.40 × 10−4 | 3.11 × 10−1 |
Human non-carcinogenic toxicity | kg 1.4-DCB | 4.59 × 10−1 | 1.68 × 10−1 | 1.93 × 10−1 |
Water consumption | m3 | 1.02 × 10−2 | 4.50 × 10−3 | 2.04 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vinci, G.; Prencipe, S.A.; Armeli, F.; Businaro, R. A Multimethodological Approach for the Valorization of “Senatore Cappelli” Wheat Milling By-Products as a Source of Bioactive Compounds and Nutraceutical Activity. Int. J. Environ. Res. Public Health 2023, 20, 5057. https://doi.org/10.3390/ijerph20065057
Vinci G, Prencipe SA, Armeli F, Businaro R. A Multimethodological Approach for the Valorization of “Senatore Cappelli” Wheat Milling By-Products as a Source of Bioactive Compounds and Nutraceutical Activity. International Journal of Environmental Research and Public Health. 2023; 20(6):5057. https://doi.org/10.3390/ijerph20065057
Chicago/Turabian StyleVinci, Giuliana, Sabrina Antonia Prencipe, Federica Armeli, and Rita Businaro. 2023. "A Multimethodological Approach for the Valorization of “Senatore Cappelli” Wheat Milling By-Products as a Source of Bioactive Compounds and Nutraceutical Activity" International Journal of Environmental Research and Public Health 20, no. 6: 5057. https://doi.org/10.3390/ijerph20065057
APA StyleVinci, G., Prencipe, S. A., Armeli, F., & Businaro, R. (2023). A Multimethodological Approach for the Valorization of “Senatore Cappelli” Wheat Milling By-Products as a Source of Bioactive Compounds and Nutraceutical Activity. International Journal of Environmental Research and Public Health, 20(6), 5057. https://doi.org/10.3390/ijerph20065057