Relationship between Health Inequalities and Breast Cancer Survival in Mexican Women
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilkinson, L.; Gathani, T. Understanding breast cancer as a global health concern. Br. J. Radiol. 2022, 95, 20211033. [Google Scholar] [CrossRef]
- Mohar, A.; Reynoso, N.; Armas, D.; Gutiérrez, C.; Torres, J. Cancer Trends in Mexico: Essential Data for the Creation and Follow-Up of Public Policies. J. Glob. Oncol. 2017, 6, 740–748. [Google Scholar] [CrossRef]
- International Agency for Reserch on Cancer. Mexico Source: GLOBOCAN 2020. The Global Cancer Observatory. 2020. Available online: https://gco.iarc.fr/today/data/factsheets/populations/484-mexico-fact-sheets.pdf (accessed on 3 December 2022).
- Monticciolo, D.; Newell, S.; Hendrick, E.; Helvie, A.; Moy, L.; Monsees, B.; Kopans, D.B.; Eby, P.R.; Sickles, E.A. Breast cancer screening for average-risk women: Recommendations from the ACR commission on breast imaging. J. Am. Coll. Radiol. 2017, 14, 1137–1143. [Google Scholar] [CrossRef]
- Sullivan, T.; Sullivan, R.; Ginsburg, M. Screening for cancer: Considerations for low-and middle-income countries. In Disease Control Priorities, 3rd ed.; The International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2015; p. 211. [Google Scholar]
- Nnaji, A.; Kuodi, P.; Walter, M.; Moodley, J. Effectiveness of interventions for improving timely diagnosis of breast and cervical cancers in low-income and middle-income countries: A systematic review. BMJ Open 2022, 12, 54501. [Google Scholar] [CrossRef]
- Dos Santos, S.; Gupta, S.; Orem, J.; Shulman, N. Global disparities in access to cancer care. Commun. Med. 2022, 2, 31. [Google Scholar] [CrossRef]
- World Health Organization. Health Inequities and Their Causes. World Health Organization. 2018. Available online: https://www.who.int/news-room/facts-in-pictures/detail/health-inequities-and-their-causes (accessed on 3 December 2022).
- Torres, J.; Rizzo, S.; Wong, R. Lifetime socioeconomic status and late-life health trajectories: Longitudinal results from the Mexican Health and Aging Study. J. Gerontol. Ser. B 2018, 73, 349–360. [Google Scholar] [CrossRef]
- Lome, A.; Touza, J.; White, C. Environmental injustice in Mexico City: A spatial quantile approach. Expo. Health 2020, 12, 265–279. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, P.; García, S. Health inequalities: Mexico’s greatest challenge. Lancet 2016, 388, 2330–2331. [Google Scholar] [CrossRef]
- Armenta, N.; Wehrmeister, C.; Arroyave, L.; Barros, J.; Victora, G. Ethnic inequalities in health intervention coverage among Mexican women at the individual and municipality levels. E Clin. Med. 2022, 43, 101228. [Google Scholar]
- Pacelli, B.; Carretta, E.; Spadea, T.; Caranci, N.; Di Felice, E.; Stivanello, E.; Cavuto, S.; Cisbani, L.; Candela, S.; De Palma, R.; et al. Does breast cancer screening level health inequalities out? A population-based study in an Italian region. Eur. J. Public Health 2014, 24, 280–285. [Google Scholar] [CrossRef] [Green Version]
- Oluwasanu, M.; Olopade, I. Global disparities in breast cancer outcomes: New perspectives, widening inequities, unanswered questions. Lancet Glob. Health 2020, 8, e978–e979. [Google Scholar] [CrossRef]
- Monfared, E.D.; Mohseni, M.; Amanpour, F.; Jarrahi, A.M.; Joo, M.M.; Heidarnia, M.A. Relationship of Social Determinants of Health with the Three-year Survival Rate of Breast Cancer. Asian Pac. J. Cancer Prev. 2017, 18, 1121–1126. [Google Scholar] [CrossRef]
- Taheri, M.; Tavakol, M.; Akbari, M.E.; Almasi-Hashiani, A.; Abbasi, M. Relationship of socio-economic status, income, and education with the survival rate of breast cancer: A meta-analysis. Iran. J. Public Health 2019, 48, 1428. [Google Scholar] [CrossRef]
- World Health Organization. Promedio de Personas por Habitacion en Vivienda Ocupada. Portal Europeo de Informacion Sanitaria. 2003. Available online: https://gateway.euro.who.int/en/indicators/hfa_469-4350-average-number-of-people-per-room-in-occupied-housing-unit/ (accessed on 20 November 2022).
- Singchou, W. The Housing Crisis in California and Beyond an Insiders Expose; AuthorHouse: Bloomington, IN, USA, 2021; Volume 3, pp. 150–300. Available online: https://books.google.com.mx/books?id=MRUMEAAAQBAJ&pg=PT141&lpg=PT141&dq=number+of+rooms+per+household+%2B+LOCKDOWN+%2B+TWO+PERSONS+PER+ROOM&source=bl&ots=aSBUiz2xOc&sig=ACfU3U2BCwY-MyVrpxSqEV0Emq50yV-1ew&hl=es&sa=X&ved=2ahUKEwjTpc7EqOj8AhVXkWoFHVAFCiIQ6AF6BAgfEAM#v=onepage&q=number%20of%20rooms%20per%20household%20%2B%20LOCKDOWN%20%2B%20TWO%20PERSONS%20PER%20ROOM&f=false (accessed on 5 November 2022).
- Berg, A. Benefits of screening mammography. JAMA 2010, 303, 168–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palme, M.; Simeonova, E. Does women’s education affect breast cancer risk and survival? Evidence from a population based social experiment in education. J. Health Econ. 2015, 42, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Bahk, J.; Jang, M.; Jung-Choi, K. Increased breast cancer mortality only in the lower education group: Age-period-cohort effect in breast cancer mortality by educational level in South Korea, 1983–2012. Int. J. Equity Health 2017, 16, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Momenimovahed, Z.; Salehiniya, H. Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer Dove Med. Press 2019, 111, 51–164. [Google Scholar] [CrossRef] [Green Version]
- Larsen, K.; Myklebust, Å.; Babigumira, R.; Vinberg, E.; Møller, B.; Ursin, G. Education, income and risk of cancer: Results from a Norwegian registry-based study. Acta Oncol. 2020, 59, 1300–1307. [Google Scholar] [CrossRef]
- Raghupathi, V.; Raghupathi, W. The influence of education on health: An empirical assessment of OECD countries for the period 1995–2015. Arch. Public Health 2020, 78, 20. [Google Scholar] [CrossRef] [Green Version]
- Okobia, N.; Bunker, H.; Okonofua, E.; Osime, U. Knowledge, attitude and practice of Nigerian women towards breast cancer: A cross-sectional study. World J. Surg. Oncol. 2006, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Medina, N.; Callahan, E.; Koru-Sengul, T.; Maheshwari, S.; Liu, Q.; Goel, N.; Pinheiro, P.S. Elevated breast cancer mortality among highly educated Asian American women. PLoS ONE 2022, 17, e0268617. [Google Scholar] [CrossRef]
- Verkooijen, M.; Fioretta, M.; Rapiti, E.; Bonnefoi, H.; Vlastos, G.; Kurtz, J.; Peter, S.; André-Pascal, S.; MA, S.H.; Christine, B. Patients’ refusal of surgery strongly impairs breast cancer survival. Ann. Surg. 2005, 2, 276–280. [Google Scholar] [CrossRef]
- Joseph, K.; Vrouwe, S.; Kamruzzaman, A. Outcome analysis of breast cancer patients who declined evidence-based treatment. World J. Surg. Oncol. 2012, 10, 118. [Google Scholar] [CrossRef] [Green Version]
- Niu, Y.; Zhang, L.; Ye, T.; Yan, Y.; Zhang, Y. Can unsuccessful treatment in primary medical institutions influence patients’ choice? A retrospective cluster sample study from China. BMJ Open 2019, 9, e022304. [Google Scholar] [CrossRef] [Green Version]
- Martínez, A.; Rodríguez, A. Vulnerability in health and social capital: A qualitative analysis by levels of marginalization in Mexico. Int. J. Equity Health 2020, 19, 24. [Google Scholar] [CrossRef] [Green Version]
- Marván, L.; Ehrenzweig, Y.; Catillo, L. Fatalistic Beliefs and Cervical Cancer Screening among Mexican Women. Health Care Women Int. 2016, 37, 140–154. [Google Scholar] [CrossRef]
- Martínez, E.; Unkart, T.; Tao, L.; Kroenke, H.; Schwab, R.; Komenaka, I.; Gomez, S.L. Prognostic significance of marital status in breast cancer survival: A population-based study. PLoS ONE 2017, 12, e0175515. [Google Scholar] [CrossRef] [Green Version]
- Yuan, R.; Zhang, C.; Li, Q.; Ji, M.; He, N. The impact of marital status on stage at diagnosis and survival of female patients with breast and gynecologic cancers: A meta-analysis. Gynecol. Oncol. 2021, 162, 778–787. [Google Scholar] [CrossRef]
- Kaplan, R.; Kronick, R. Marital status and longevity in the United States population. J. Epidemiol. Community Health 2006, 60, 760–765. [Google Scholar] [CrossRef] [Green Version]
- Jia, H.; Lubetkin, I. Life expectancy and active life expectancy by marital status among older US adults: Results from the US Medicare Health Outcome Survey (HOS). SSM Popul. Health 2020, 12, 100642. [Google Scholar] [CrossRef]
- Rook, S.; Zettel, A. The purported benefits of marriage viewed through the lens of physical health. Psychol. Inq. 2005, 16, 116–121. [Google Scholar]
- Zhao, Y.; Xu, G.; Guo, X.; Ma, W.; Xu, Y.; Peltzer, K.; Chekhonin, V.P.; Baklaushev, V.P.; Hu, N.; Wang, X.; et al. Early Death Incidence and Prediction in Stage IV Breast Cancer. Med. Sci. Monit. 2020, 26, e924858. [Google Scholar] [CrossRef] [PubMed]
- Webb, M.; Byrne, C.; Schnitt, J.; Connolly, L.; Jacobs, T.; Peiro, G.; Willett, W.; Colditz, G.A. Family history of breast cancer, age and benign breast disease. Int. J. Cancer 2002, 100, 375–378. [Google Scholar] [CrossRef] [PubMed]
- Kluttig, A.; Schmidt, A. Established and suspected risk factors in breast cancer aetiology. Breast Care 2009, 4, 82–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unger, K. Challenges to the early diagnosis and treatment of breast cancer in developing countries. World J. Clin. Oncol. 2014, 5, 465–477. [Google Scholar] [CrossRef]
- Njor, H.; Schwartz, W.; Blichert, M.; Lynge, E. Decline in breast cancer mortality: How much is attributable to screening? J. Med. Screen. 2015, 22, 20–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dreyer, S.; Nattinger, B.; McGinley, L.; Pezzin, E. Socioeconomic status and breast cancer treatment. Breast Cancer Res. Treat. 2018, 167, 1–8. [Google Scholar] [CrossRef]
- Kumachev, A.; Trudeau, E.; Chan, K. Associations among socioeconomic status, patterns of care, and outcomes in breast cancer patients in a universal health care system: Ontario’s experience. Cancer 2016, 122, 893–898. [Google Scholar] [CrossRef] [Green Version]
- The Global Goals. Reduce Inequality within and among Countries. The Global Goals. 2022. Available online: https://www.globalgoals.org/goals/10-reduced-inequalities/ (accessed on 28 December 2022).
- Gutiérrez, P.; García, S. No easy answer for how to tackle Mexico’s health challenges. Lancet Glob. Health 2016, 4, e668–e669. [Google Scholar] [CrossRef] [Green Version]
- Comité de Análisis Económico y del Desarrollo. Estudios Economicos de la OECD Mexico. OEDC Better Policies for Better Lives. 2017. Available online: https://www.oecd.org/economy/surveys/Mexico-2017-OECD-economic-survey-overview.pdf (accessed on 2 December 2022).
- Diggle, P.; Heagerty, P.; Liang, K.; Zeger, S. Analysis of Longitudinal Data; Oxford University Press: Oxford, UK, 2002; p. 396. [Google Scholar]
- Zeger, S.; Liang, K. Longitudinal data analysis for discrete and continuous outcomes. Biometrics 1986, 42, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Rutherford, M.J.; Hinchliffe, S.R.; Abel, G.A.; Lyratzopoulos, G.; Lambert, P.C.; Greenberg, D.C. How much of the deprivation gap in cancer survival can be explained by variation in stage at diagnosis: An example from breast cancer in the East of England. Int. J. Cancer 2013, 133, 2192–2200. [Google Scholar] [CrossRef] [PubMed]
Total | Full | Partial | p Value | ||||
---|---|---|---|---|---|---|---|
N | Survival Rate N (%) | N | Survival Rate N (%) | N | Survival Rate N (%) | ||
All cases | 964 | 788 (81.8) | 820 | 692 (84.4) | 144 | 96 (66.7) | |
1. Level of education | |||||||
Academic education | 140 | 119 (85.0%) | 118 | 104 (87.9%) | 22 | 15 (68.1%) | 0.001 |
High school or less | 824 | 524 (63.0%) | 702 | 446 (63.6%) | 122 | 73 (60.0%) | |
2. Health insurance | |||||||
Yes | 136 | 102 (75.0%) | 94 | 73 (77.7%) | 42 | 29 (69.1%) | 0.148 |
No | 828 | 686 (82.9%) | 726 | 619 (85.3%) | 102 | 67 (65.9%) | |
3. Marital status | |||||||
Single | 192 | 142 (74.0%) | 141 | 107 (75.9%) | 51 | 35 (68.7%) | 0.024 |
Married | 772 | 646 (83.7%) | 679 | 585 (86.2%) | 93 | 61 (65.6%) | |
4. Previous biopsies | |||||||
Yes | 604 | 540 (89.5%) | 519 | 470 (90.4%) | 85 | 70 (82.4%) | 0.001 |
No | 360 | 248 (68.9%) | 301 | 222 (73.8%) | 59 | 26 (44.1%) | |
5. Financial status | |||||||
Good | 640 | 578 (90.4%) | 554 | 507 (91.6%) | 86 | 71 (82.6%) | 0.001 |
Bad | 324 | 210 (64.9%) | 266 | 185 (69.6%) | 58 | 25 (43.2%) | |
6. Adherence to breast cancer screening programs | |||||||
≥3 points | 514 | 431 (83.9%) | 432 | 370 (85.7%) | 82 | 61 (74.4%) | 0.540 |
<3 points | 450 | 360 (80.0%) | 388 | 325 (83.8%) | 62 | 35 (56.5%) | |
7. Place of residence in childhood | |||||||
Rural | 194 | 126 (65.0%) | 157 | 126 (80.3%) | 37 | 27 (73.0%) | 0.637 |
Urban | 770 | 635 (82.5%) | 663 | 566 (85.4%) | 107 | 69 (64.5%) | |
8. Familiar history of breast cancer | |||||||
Yes | 258 | 210 (81.4%) | 207 | 171 (82.7%) | 51 | 39 (76.5%) | 0.900 |
No | 706 | 578 (81.9%) | 613 | 521 (85.0%) | 93 | 57 (61.3%) | |
9. Age at diagnosis | |||||||
<50 | 368 | 308 (83.7%) | 308 | 266 (86.4%) | 60 | 42 (70.0%) | 0.114 |
≥50 | 596 | 480 (80.6%) | 512 | 426 (83.3%) | 84 | 50 (64.3%) |
Total | With Chronic Diseases | No Chronic Diseases | p Value | ||||
---|---|---|---|---|---|---|---|
N | Survival Rate N (%) | N | Survival Rate N (%) | N | Survival Rate N (%) | ||
All cases | 964 | 637 (66.0%) | 172 | 111 (64.5%) | 792 | 507 (64.0%) | |
1. Level of education | |||||||
Academic education | 140 | 119 (85.0%) | 26 | 21 (79.5%) | 114 | 78 (86.2%) | 0.001 |
High school or less | 824 | 518 (62.9%) | 146 | 90 (61.6%) | 678 | 429 (63.2%) | |
2. Health insurance | |||||||
Yes | 136 | 102 (75.0%) | 28 | 22 (78.6%) | 108 | 80 (74.1%) | 0.16 |
No | 828 | 686 (82.9%) | 144 | 110 (76.4%) | 684 | 576 (84.3%) | |
3. Marital status | |||||||
Unmarried | 192 | 142 (74.0%) | 50 | 38 (76.0%) | 142 | 104 (73.3%) | 0.003 |
Married | 772 | 646 (83.7%) | 122 | 94 (77.1%) | 650 | 552 (85.0%) | |
4. Previous biopsies | |||||||
Yes | 604 | 540 (89.5%) | 120 | 98 (81.7%) | 484 | 442 (91.4%) | 0.001 |
No | 360 | 248 (68.9%) | 52 | 34 (65.4%) | 308 | 214 (69.5%) | |
5. Financial status | |||||||
Good | 640 | 578 (90.4%) | 116 | 100 (86.3%) | 524 | 478 (91.3%) | 0.001 |
Bad | 324 | 210 (35.1%) | 56 | 32 (57.2%) | 268 | 178 (66.5%) | |
6. Adherence to breast cancer screening programs | |||||||
≥3 points | 499 | 417 (83.6%) | 152 | 118 (77.7%) | 347 | 299 (86.2%) | 0.14 |
<3 points | 485 | 391 (80.7%) | 20 | 14 (70.0%) | 445 | 357 (80.3%) | |
7. Place of residence in childhood | |||||||
Rural | 190 | 147 (77.4%) | 149 | 112 (75.2%) | 41 | 35 (85.4%) | 0.664 |
Urban | 774 | 661 (82.9%) | 23 | 20 (87.0%) | 751 | 621 (82.7%) | |
8. Familiar history of breast cancer | |||||||
Yes | 258 | 210 (81.4%) | 36 | 30 (83.4%) | 222 | 180 (81.1%) | 0.625 |
No | 706 | 578 (81.9%) | 136 | 102 (75.0%) | 570 | 476 (83.6%) | |
9. Age at diagnosis | |||||||
<50 | 368 | 308 (83.7%) | 64 | 54 (84.4%) | 304 | 254 (83.6%) | 0.159 |
≥50 | 596 | 480 (80.6%) | 108 | 78 (72.3%) | 488 | 402 (82.4%) |
Model 1 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Full Treatment (Unadjusted) | Full Treatment (Adjusted by Age) | Partial Treatment (Unadjusted) | Partial Treatment (Adjusted by Age) | |||||||||
p Value | HR | 95%CI | p Value | HR | 95%CI | p Value | HR | 95%CI | p Value | HR | 95%CI | |
1. Level of education | ||||||||||||
High school or less | 0.041 | 1.100 | 1.090–1.520 | 0.02 | 1.250 | 1.031–1.519 | 0.271 | 0.656 | 0.310–1.390 | 0.583 | 1.475 | 0.368–5.917 |
Academic education | 1 | 1 | 1 | 1 | ||||||||
2. Health insurance | ||||||||||||
No | 0.380 | 1.222 | 0.781–1.911 | 0.815 | 1.028 | 0.609–1.905 | 0.130 | 1.731 | 0.851–3.524 | 0371 | 1.680 | 0.540–5.233 |
Yes | 1 | 1 | 1 | 1 | ||||||||
3. Marital status | ||||||||||||
Single | 0.021 | 1.618 | 1.074–2.492 | 0.203 | 1.432 | 0.870–2.163 | 0.333 | 0.730 | 0.387–1.379 | 0.194 | 0.540 | 0.213–1.368 |
Married | 1 | 1 | 1 | 1 | ||||||||
4. Previous biopsies | ||||||||||||
No | 0.001 | 2.885 | 1.841–3.913 | 0.001 | 2.455 | 1.563–4.359 | 0.05 | 1.120 | 0.800–1.871 | 0.89 | 1.085 | 0.691–9.869 |
Yes | 1 | 1 | 1 | 1 | ||||||||
5. Financial status (qualitative) | ||||||||||||
Bad | 0.001 | 4.683 | 3.221–6.167 | 0.001 | 4.888 | 3.325–6.364 | 0.012 | 1.973 | 1.600–1.978 | 0.002 | 4.185 | 1.704–10.279 |
Good-regular | 1 | 1 | 1 | 1 | ||||||||
6. Quantitative financial status (people per home/number of rooms per household) | ||||||||||||
0.019 | 1.187 | 1.029–1.370 | 0.002 | 3.314 | 1.325–1.452 | 0.013 | 2.325 | 1.787–3.415 | 0.02 | 1.225 | 1.019–6.540 | |
7. Adherence to breast cancer screening programs | ||||||||||||
<3 points | 0.415 | 1.203 | 0.771–1.877 | 0.527 | 1.318 | 0.824–1.777 | 0.720 | 1.093 | 0.671–1.782 | 0.867 | 0.912 | 0.309–2.692 |
≥3 points | 1 | 1 | 1 | 1 | ||||||||
8. Place of residence in childhood | ||||||||||||
Rural | 0.879 | 0.001 | 0.001–7.376 | 0.881 | 0.001 | 0.001–7.639 | 0.634 | 0.605 | 0.076–4.785 | 0.907 | 0.001 | 0.001–0.108 |
Urban | 1 | 1 | 1 | 1 | ||||||||
9. Familiar history of breast cancer | ||||||||||||
No | 0.658 | 0.507 | 0.172–1.492 | 0.794 | 0.940 | 0.593–1.491 | 0.622 | 0.898 | 0.585–1.379 | 0.130 | 1.832 | 0.768–4.371 |
Yes | 1 | 1 | 1 | 1 | ||||||||
10. Age | ||||||||||||
<50 | 0.202 | 0.778 | 0.529–1.144 | 0.422 | 0.780 | 0.425–1.431 | ||||||
≥50 | 1 | 1 |
Model 2 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Preexisting Chronic Diseases (Unadjusted) | Preexisting Chronic Diseases (Adjusted by Age) | No Chronic Diseases (Unadjusted) | No Chronic Diseases (Adjusted by Age) | |||||||||
p Value | HR | 95%CI | p Value | HR | 95%CI | p Value | HR | 95%CI | p Value | HR | 95%CI | |
1. Level of education | ||||||||||||
High school or less | 0.746 | 0.863 | 0.355–2.101 | 0.424 | 1.625 | 0.495–5.338 | 0.05 | 1.342 | 0.235–1.498 | 0.05 | 1.307 | 1.194–2.487 |
Academic education | 1 | 1 | 1 | 1 | ||||||||
2. Health insurance | ||||||||||||
No | 0.454 | 1.433 | 0.559–3.676 | 0.806 | 0.853 | 0.240–3.037 | 0.957 | 1.013 | 0.626–1.640 | 0.840 | 0.943 | 0.536–1.660 |
Yes | 1 | 1 | 1 | 1 | ||||||||
3. Marital status | ||||||||||||
Single | 0.654 | 0.848 | 0.411–1.749 | 0.232 | 1.846 | 0.676–5.043 | 0.115 | 1.374 | 0.925–2.042 | 0.075 | 1.524 | 0.958–2.424 |
Married | 1 | 1 | 1 | 1 | ||||||||
4. Previous biopsies | ||||||||||||
No | 0.232 | 1.579 | 0.746–3.342 | 0.756 | 0.859 | 0.330–2.234 | 0.05 | 1.697 | 0.538–5.383 | 0.05 | 1.701 | 0.449–5.595 |
Yes | 1 | 1 | 1 | 1 | ||||||||
5. Financial status | ||||||||||||
Bad | 0.001 | 4.948 | 2.459– 9.981 | 0.001 | 3.303 | 3.131–5.699 | 0.001 | 4.850 | 3.358–7.005 | 0.001 | 5.121 | 3.383–7.750 |
Good-regular | 1 | 1 | 1 | 1 | ||||||||
6. Quantitative financial status (people per home/number of rooms per household) | ||||||||||||
0.001 | 3.250 | 2.180–4.520 | 0.001 | 2.850 | 1.250–3.330 | 0.002 | 3.328 | 1.900–3.900 | 0.02 | 2.789 | 1.850–6.505 | |
7. Adherence to breast cancer screening programs | ||||||||||||
<3 points | 0.307 | 1.608 | 0.647–3.995 | 0.570 | 0.701 | 0.206–2.389 | 0.364 | 1.197 | 0.812–1.766 | 0.904 | 1.027 | 0.668–1.579 |
≥3 points | 1 | 1 | 1 | 1 | ||||||||
8. Place of residence in childhood | ||||||||||||
Rural | 0.201 | 2.237 | 0.651–7.680 | 0.173 | 0.343 | 0.073–1.1601 | 0.934 | 0.966 | 0.420–2.218 | 0.682 | 1.216 | 0.477–3.101 |
Urban | 1 | 1 | 1 | 1 | ||||||||
9. Familiar history of breast cancer | ||||||||||||
No | 0.143 | 2.003 | 0.791–5.077 | 0.039 | 0.252 | 0.068–0.930 | 0.506 | 0.879 | 0.601–1.286 | 0.761 | 1.073 | 0.682–1.688 |
Yes | 1 | 1 | 1 | 1 | ||||||||
10. Age | ||||||||||||
<50 | 0.042 | 0.444 | 0.203–0.971 | 0.116 | 0.749 | 0.522–1.074 | ||||||
≥50 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sollozo-Dupont, I.; Lara-Ameca, V.J.; Cruz-Castillo, D.; Villaseñor-Navarro, Y. Relationship between Health Inequalities and Breast Cancer Survival in Mexican Women. Int. J. Environ. Res. Public Health 2023, 20, 5329. https://doi.org/10.3390/ijerph20075329
Sollozo-Dupont I, Lara-Ameca VJ, Cruz-Castillo D, Villaseñor-Navarro Y. Relationship between Health Inequalities and Breast Cancer Survival in Mexican Women. International Journal of Environmental Research and Public Health. 2023; 20(7):5329. https://doi.org/10.3390/ijerph20075329
Chicago/Turabian StyleSollozo-Dupont, Isabel, Victor Jesús Lara-Ameca, Dulce Cruz-Castillo, and Yolanda Villaseñor-Navarro. 2023. "Relationship between Health Inequalities and Breast Cancer Survival in Mexican Women" International Journal of Environmental Research and Public Health 20, no. 7: 5329. https://doi.org/10.3390/ijerph20075329
APA StyleSollozo-Dupont, I., Lara-Ameca, V. J., Cruz-Castillo, D., & Villaseñor-Navarro, Y. (2023). Relationship between Health Inequalities and Breast Cancer Survival in Mexican Women. International Journal of Environmental Research and Public Health, 20(7), 5329. https://doi.org/10.3390/ijerph20075329