Time Perspective Latent Profile Analysis and Its Meaning for School Burnout, Depression, and Family Acceptance in Adolescents
Abstract
:1. Introduction
The Present Research
2. Materials and Methods
2.1. Data Collection and Procedure
Instruments
2.2. Statistical Analysis
3. Results
3.1. Descriptive Results
3.2. LPA Results
3.3. Differences between Time Perspective Profiles and Perceived Family Acceptance, Student School Burnout, and Context of Pandemic Experience (Pre-COVID-19 vs. Post-COVID-19)
4. Discussion
Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Regulation of the Minister of Health of February 27, 2020 on SARS CoV-2 Coronavirus Infection. J. Laws 2020, Item 325. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20200000325 (accessed on 20 June 2022).
- World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard. 2020. Available online: https://covid19.who.int/region/euro/country/pl (accessed on 6 June 2022).
- Wu, F.; Zhao, S.; Yu, B.; Chen, Y.-M.; Wang, W.; Song, Z.-G.; Hu, Y.; Tao, Z.-W.; Tian, J.-H.; Pei, Y.-Y.; et al. A new coronavirus associated with human respiratory disease in China. Nature 2020, 579, 265–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarynowski, A.; Wójta-Kempa, M.; Płatek, D.; Czopek, K. Attempt to understand public-health relevant social dimensions of COVID-19 outbreak in poland. Soc. Regist. 2020, 4, 7–44. [Google Scholar] [CrossRef] [Green Version]
- Poleszak, W.; Pyżalski, J. Psychologiczna Sytuacja Dzieci i Młodzieży w Dobie Epidemii. In Edukacja w Czasach Pandemii Wirusa COVID-19.Z Dystansem o Tym, co Robimy Obecnie jako Nauczyciele; Pyżalski, J., Ed.; EduAkcja: Warszawa, Poland, 2020; Available online: https://www.edu-akcja.pl/wydawnictwa/zdalnie/ (accessed on 20 February 2021).
- Pyżalski, J. Zdrowie psychiczne i dobrostan młodych ludzi w czasie pandemii COVID-19—Przegląd najistotniejszych problemów. Dziecko Krzywdzone Teor. Bad. Prakt. 2021, 20, 92–115. [Google Scholar]
- Parker, P.D.; Salmela-Aro, K. Developmental processes in school burnout: A comparison of major developmental models. Learn. Individ. Differ. 2011, 21, 244–248. [Google Scholar] [CrossRef]
- Tomaszek, K.; Muchacka-Cymerman, A. Radzenie sobie ze stresem i patogenny wzór zachowania A jako predyktory wypalenia szkolnego uczniów Coping with stress and pathogenic A type behavior pattern as predictors of burnout. Teraźniejszość Człow. Eduk. 2018, 21, 67–86. [Google Scholar]
- Salmela-Aro, K.; Upadyaya, K. Developmental trajectories of school burnout: Evidence from two longitudinal studies. Learn. Individ. Differ. 2014, 36, 60–68. [Google Scholar] [CrossRef]
- Aypay, A.; Sever, M. School as if a workplace: Exploring burnout among high school students/Bir iş yeri gibi okul: Lise öğrencileri arasında tükenmişliğin keşfi. Eğitimde Kuram Uygul. 2015, 11, 460–472. [Google Scholar]
- Tucholska, S. Wypalenie Zawodowe u Nauczycieli. Psychologiczna Analiza Zjawiska i jego Osobowościowych Uwarunkowań; Wydawnictwo KUL: Lublin, Poland, 2009. [Google Scholar]
- Tomaszek, K. Why it is important to engage students in school activities? Examining the mediation effect of student school engagement on the relationships between student alienation and school burnout. Polish Psychol. Bull. 2020, 51, 89–97. [Google Scholar] [CrossRef]
- Aypay, A. Elementary School Student Burnout Scale for Grades 6–8: A Study of Validity and Reliability. Educ. Sci. Theory Pract. 2011, 11, 520–527. [Google Scholar]
- Wang, M.; Chow, A.; Hokens, T.; Salmela-Aro, K. The trajectories of student emotional engagement and school burnout with academic and psychological development: Findings from Finnish adolescents. Learn. Instr. 2015, 36, 57–65. [Google Scholar] [CrossRef]
- Sircova, A.; van de Vijver, F.J.R.; Osin, E.; Milfont, T.L.; Fieulaine, N.; Kislali-Erginbilgic, A.; Zimbardo, P.G.; Djarallah, S.; Chorfi, M.S.; Leite, U.D.R.; et al. A Global Look at Time: A 24-Country Study of the Equivalence of the Zimbardo Time Perspective Inventory. SAGE Open 2014, 4, 1–12. [Google Scholar] [CrossRef]
- Boyd, J.N.; Zimbardo, P.G. Time Perspective, Health, and Risk Taking. In Understanding Behavior in the Context of Time: Theory, Research, and Application; Strathman, A., Joireman, J., Eds.; Lawrence Erlbaum Associates Inc.: Mahwah, NJ, USA, 2005; pp. 85–107. [Google Scholar]
- Zimbardo, P.G.; Boyd, J.N. The Time Paradox: The New Psychology of Time That Will Change Your Life; Free Press: New York, NY, USA, 2008. [Google Scholar]
- Nosal, C.; Bajcar, B. Czas Psychologiczny: Wymiary, Struktura, Konsekwencje; Wydawnictwo Instytutu Psychologii PAN: Warszawa, Poland, 2004. [Google Scholar]
- Stolarski, M.; Matthews, G. Time Perspectives Predict Mood States and Satisfaction with Life over and above Personality. Curr. Psychol. 2016, 35, 516–526. [Google Scholar] [CrossRef] [Green Version]
- McKay, M.T.; Cole, J.C.; Andretta, J.R. Temporal profiles relate meaningfully to anxiety and depression in university undergraduates. Pers. Individ. Differ. 2016, 101, 106–109. [Google Scholar] [CrossRef]
- Carpenter, R.K.; Horton, J.C.; Alloway, T.P. Time Perspective, Working Memory, and Depression in Non-Clinical Samples: Is There a Link? J. Psychol. 2022, 156, 414–434. [Google Scholar] [CrossRef] [PubMed]
- Stolarski, M.; Matthews, G.; Postek, S.; Zimbardo, P.G.; Bitner, J. How We Feel is a Matter of Time: Relationships Between Time Perspectives and Mood. J. Happiness Stud. 2013, 15, 809–827. [Google Scholar] [CrossRef]
- Lennings, C.J.; Burns, A.M.; Cooney, G. Profiles of Time Perspective and Personality: Developmental Considerations. J. Psychol. 1998, 132, 629–641. [Google Scholar] [CrossRef] [PubMed]
- Braitman, A.L.; Henson, J.M. The impact of time perspective latent profiles on college drinking: A multidimensional approach. Subst. Use Misuse 2015, 50, 664–673. [Google Scholar] [CrossRef] [Green Version]
- Sircova, A.; van de Vijver FJ, R.; Osin, E.; Milfont, T.L.; Fieulaine, N.; Kislali-Erginbilgic, A.; Zimbardo, P.G. Time perspective profiles of cultures. In Time Perspective Theory; Review, Research and Application: Essays in Honor of Philip G. Zimbardo; Stolarski, M., Fieulaine, N., van Beek, W., Eds.; Springer International Publishing/Springer Nature: Cham, Switzerland, 2015; pp. 169–187. [Google Scholar] [CrossRef]
- Unger, A.; Papastamatelou, J.; Vowinckel, J.; Klamut, O.; Heger, A. Time Is the Fire in Which We Burn (Out): How Time Perspectives Affect Burnout Tendencies in Health Care Professionals Via Perceived Stress and Self-Efficacy. Psychol. Stud. 2022, 67, 150–163. [Google Scholar] [CrossRef]
- Macałka, E.; Tomaszek, K.; Kossewska, J. Students’ Depression and School Burnout in the Context of Family Network Acceptance and Deviation from Balanced Time Perspective. Educ. Sci. 2022, 12, 157. [Google Scholar] [CrossRef]
- Mojs, E.; Bartkowska, W.; Kaczmarek, Ł.D.; Ziarko, M.; Bujacz, A.; Warchoł-Biedermann, K. Właściwości psychometryczne polskiej wersji skróconej Skali Depresji Kutchera dla Młodzieży (Kutcher Adolescent Depression Scale)–pomiar depresji w grupie studentów. Psychiatr. Pol. 2015, 49, 135–144. [Google Scholar] [CrossRef]
- Leblanc, J.C.; Almudevar, A.; Brooks, S.J.; Kutcher, S. Screening for Adolescent Depression: Comparison of the Kutcher Adolescent Depression Scale with the Beck Depression Inventory. J. Child Adolesc. Psychopharmacol. 2002, 12, 113–126. [Google Scholar] [CrossRef]
- Tomaszek, K.; Muchacka-Cymerman, A. Polish Adaptation of the ESSBS School-Burnout Scale: Pilot Study Results. Hacet. Univ. Egit. Fak. Derg. 2019, 34, 418–433. [Google Scholar] [CrossRef]
- Zimbardo, P.G.; Boyd, J.N. Putting time in perspective: A valid, reliable individual-difference metric. J. Personal. Soc. Psychol. 1999, 77, 1271–1288. [Google Scholar] [CrossRef]
- Przepiórka, A. The Determinants of Realizing Entrepreneurial Goals. Ph.D. Thesis, Katolicki Uniwersytet Lubelski Jana Pawła II, Lublin, Poland, 2011. Unpublished. [Google Scholar]
- Spurk, D.; Hirschi, A.; Wang, M.; Valero, D.; Kauffeld, S. Latent profile analysis: A review and “how to” guide of its application within vocational behavior research. J. Vocat. Behav. 2020, 120, 103445. [Google Scholar] [CrossRef]
- Nylund, K.L.; Asparouhov, T.; Muthén, B.O. Deciding on the Number of Classes in Latent Class Analysis and Growth Mixture Modeling: A Monte Carlo Simulation Study. Struct. Equ. Model. A Multidiscip. J. 2007, 14, 535–569. [Google Scholar] [CrossRef]
- Lezhnina, O.; Kismihók, G. Latent Class Cluster Analysis: Selecting the number of clusters. Methods 2022, 9, 101747. [Google Scholar] [CrossRef]
- Bobba, B.; Lynch, L.S.; Sugimura, K.; Crocetti, E. I was, I Am, I will Be: Identity and time perspective before and during COVID-19. J. Res. Adolesc. 2023; early view. [Google Scholar] [CrossRef]
- Dąbrowska, A.; Marek-Banach, J.; Łopatkiewicz, A.; Wysocka, E.; Zimbardo, P. Time Perspective and Experience of Depression, Stress, and Loneliness Among Adolescents in Youth Educational Centres. Przegląd Badań Eduk. 2022, 36, 91–119. [Google Scholar] [CrossRef]
- Keough, K.A.; Zimbardo, P.G.; Boyd, J.N. Who’s smoking, drinking, and using drugs? Time perspective as a predictor of substance use. Basic Appl. Psychol. 1999, 21, 149–164. [Google Scholar] [CrossRef]
- Breier-Williford, S.; Bramlett, R.K. Time Perspective of Substance Abuse Patients: Comparison of the Scales in Stanford Time Perspective Inventory, Beck Depression Inventory, and Beck Hopelessness Scale. Psychol. Rep. 1995, 77 Pt 1, 899–905. [Google Scholar] [CrossRef]
- Zimbardo, P.G.; Keough, K.A.; Boyd, J.N. Present Time Perspective as a Predictor of Risky Driving. Personal. Individ. Differ. 1997, 23, 1007–1023. [Google Scholar] [CrossRef]
- Worrell, F.C.; Mello, Z.R. The reliability and validity of zimbardo time perspective inventory scores in academically talented adolescents. Educ. Psychol. Meas. 2007, 67, 487–504. [Google Scholar] [CrossRef]
- Zong, M.; Dong, D.; Yang, Z.; Feng, Y.; Qiao, Z. Role of time perspectives and self-control on well-being and ill-being during the COVID-19 pandemic: A multiple mediation model. BMC Psychol. 2022, 10, 238. [Google Scholar] [CrossRef] [PubMed]
- Zhi, K.; Yang, J.; Chen, Y.; Akebaijiang, N.; Liu, M.; Yang, X.; Zhang, S. The Relationship Between Future Time Perspective and Psychological Violence Among Chinese College Students. Front. Psychol. 2021, 12, 585837. [Google Scholar] [CrossRef] [PubMed]
- Knight, T. The Relationship between Affect and Time Perspective; Michigan School of Professional Psychology ProQuest Dissertations Publishing: Farmington Hills, MI, USA, 2015. [Google Scholar]
- Simons, J.; Vansteenkiste, M.; Lens, W.; Lacante, M. Placing Motivation and Future Time Perspective Theory in a Temporal Perspective: Effects of Time Perspective on Student Motivation, Part 2. Educ. Psychol. Rev. 2004, 16, 1023. [Google Scholar] [CrossRef]
- Anagnostopoulos, F.; Griva, F. Exploring time perspective in Greek young adults: Validation of the Zimbardo Time Perspective Inventory and relationships with mental health indicators. Soc. Indic. Res. 2012, 106, 41–59. [Google Scholar] [CrossRef]
- van Beek, W.; Berghuis, H.; Kerkhof, A.J.F.M.; Beekman, A.T.F. Time perspective, personality and psychopathology: Zimbardo’s time perspective inventory in psychiatry. Time Soc. 2011, 20, 364–374. [Google Scholar] [CrossRef]
- Nolen-Hoeksema, S. The role of rumination in depressive disorders and mixed anxiety/depressive symptoms. J. Abnorm. Psychol. 2000, 109, 504–511. [Google Scholar] [CrossRef]
- Chan, S.M.; Kwok, W.W.; Fung, T.W. Psychometric properties of the Zimbardo time perspective inventory in Hong Kong adolescents. Time Soc. 2019, 28, 33–49. [Google Scholar] [CrossRef]
- Lefever, S.; Dal, M.; Matthíasdóttir, Á. Online data collection in academic research: Advantages and limitations. Br. J. Educ. Technol. 2007, 38, 574–582. [Google Scholar] [CrossRef]
Fit Indexes | Models | ||
---|---|---|---|
1. Time Perspective (ZTPI) | 2. Student Burnout (SSBS) | 3. Time Perspective and Student Burnout (ZTPI & SSBS) | |
Variance estimation type | VVE | VEI | VEE |
G | 5 | 7 | 3 |
LL | −10,655.36 | −11,875.89 | −22,600.77 |
df | 64 | 68 | 140 |
BIC | −21,727.00 | −24,194.07 | −46,112.14 |
ICL | −22,035.83 | −24,454.74 | −46,271.18 |
Variables | Profile 1 (N = 334) | Profile 2 (N = 169) | Profile 3 (N = 114) | Profile 4 (N = 29) | Profile 5 (N = 22) | (ART) F | Post Hoc | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |||
PP | 30.22 | 4.34 | 28.78 | 5.71 | 24.03 | 5.65 | 34.97 | 0.78 | 27.86 | 2.49 | 34.95 *** | [1–3;1–4;2–3;2–4;3–4;4–5] |
PN | 33.18 | 6.32 | 32.51 | 8.93 | 34.95 | 7.75 | 27.93 | 2.05 | 27.91 | 4.26 | 5.36 *** | [1–4;3–4;3–5] |
PF | 27.98 | 3.06 | 21.23 | 3.45 | 30.46 | 5.13 | 23.14 | 3.11 | 25.73 | 0.63 | 155.64 *** | [1–2;1–3;1–4;2–3;2–5;3–4;3–5] |
PH | 54.25 | 5.56 | 52.93 | 6.99 | 51.37 | 12.43 | 44.03 | 3.31 | 41.91 | 2.18 | 14.40 *** | [1–2;1–3;1–4;1–5;2–4;2–5;3–4;3–5] |
F | 37.07 | 5.70 | 44.14 | 6.93 | 37.63 | 11.36 | 45.79 | 2.70 | 30.45 | 3.20 | 47.66 *** | [1–2;1–4;1–5;2–3;2–5;3–4;3–5;4–5] |
Variables | Profile 1 (N = 334) | Profile 2 (N = 169) | Profile 3 (N = 114) | Profile 4 (N = 29) | Profile 5 (N = 22) | (ART) F | Post Hoc | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |||
PFA | 4.44 | 0.04 | 4.40 | 0.06 | 4.18 | 0.08 | 4.79 | 0.08 | 4.18 | 0.20 | 5.44 *** | [1–3;2–3] |
LIS | 14.85 | 0.23 | 15.65 | 0.38 | 17.17 | 0.47 | 15.52 | 0.68 | 16.64 | 0.83 | 7.16 *** | [2–3] |
BFS | 15.98 | 0.20 | 14.57 | 0.31 | 16.36 | 0.39 | 16.38 | 0.81 | 22.64 | 1.04 | 7.90 *** | [1–2;1–3;1–5;2–3;2–5;3–5] |
BFF | 13.03 | 0.21 | 12.35 | 0.36 | 13.59 | 0.44 | 11.69 | 0.40 | 19.00 | 0.60 | 5.64 *** | [1–5;2–5;3–5;4–5] |
BFH | 14.75 | 0.19 | 13.39 | 0.30 | 15.54 | 0.36 | 16.21 | 1.05 | 20.18 | 0.68 | 12.07 *** | [1–2;1–5;2–3;2–5;3–5] |
BFTA | 10.26 | 0.16 | 10.12 | 0.25 | 11.36 | 0.32 | 9.10 | 0.41 | 13.91 | 0.45 | 6.48 *** | [1–3;1–5;2–3;2–5;3–4;4–5] |
NRTF | 11.35 | 0.17 | 11.12 | 0.27 | 12.13 | 0.34 | 11.21 | 0.76 | 15.82 | 0.35 | 5.17 *** | [1–5;2–5;3–5;4–5] |
FIS | 12.12 | 0.17 | 12.12 | 0.28 | 13.31 | 0.35 | 11.93 | 0.38 | 16.77 | 0.39 | 8.56 *** | [1–3;1–5;2–3;2–5;3–5;4–5] |
SSBS | 92.34 | 0.89 | 89.33 | 1.38 | 99.45 | 1.81 | 92.03 | 3.44 | 124.95 | 3.11 | 14.28 *** | [1–3;1–5;2–3;2–5;3–5;4–5] |
KADS | 4.78 | 0.22 | 4.81 | 0.35 | 7.84 | 0.47 | 2.55 | 0.36 | 8.23 | 0.63 | 14.15 *** | [1–3;1–5;2–3;2–5;3–4;4–5] |
Variables | Pre-COVID-19 Sample M ± SE | Post-COVID-19 Sample M ± SE | (ART) F | d Cohen | Effect-Size r |
---|---|---|---|---|---|
PFA | 4.52 ± 0.03 | 4.25 ± 0.06 | 0.79 | 5.69 | 0.94 |
LIS | 15.38 ± 0.20 | 15.71 ± 0.30 | 0.03 | 1.29 | 0.54 |
BFS | 15.26 ± 0.22 | 17.01 ± 0.36 | 4.52 ** | 5.87 | 0.94 |
BFF | 14.99 ± 0.17 | 16.98 ± 0.27 | 9.21 ** | 8.82 | 0.98 |
BFH | 12.00 ± 0.18 | 14.33 ± 0.27 | 16.38 *** | 10.15 | 0.98 |
BFTA | 13.53 ± 0.15 | 16.20 ± 0.25 | 5.22 * | 12.95 | 0.99 |
NRTF | 9.84 ± 0.13 | 11.21 ± 0.21 | 13.76 *** | 7.84 | 0.97 |
FIS | 10.46 ± 0.14 | 12.82 ± 0.22 | 27.95 *** | 12.80 | 0.99 |
SSBS | 11.11 ± 0.13 | 14.01 ± 0.20 | 22.43 *** | 17.19 | 0.99 |
KADS | 87.32 ± 0.69 | 101.26 ± 1.18 | 0.17 | 14.42 | 0.99 |
Variables | Perceived Family Acceptance (PFA) | Student School Burnout (SSBS) | Adolescent Depression (KADS) | |||
---|---|---|---|---|---|---|
Sum Sq | (ART) F | Sum Sq | (ART) F | Sum Sq | (ART) F | |
Profiles | 21,387,937.98 | 5.44 *** | 21,679,710.43 | 14.28 *** | 22,206,830.75 | 14.15 *** |
COVID-19 experience | 21,854,006.93 | 0.79 | 20,804,165.83 | 22.43 *** | 24,626,170.88 | 0.17 |
Profiles × COVID-19 experience | 22,292,943.34 | 3.58 ** | 23,924,081.84 | 4.34 ** | 23,638,245.56 | 7.52 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kossewska, J.; Tomaszek, K.; Macałka, E. Time Perspective Latent Profile Analysis and Its Meaning for School Burnout, Depression, and Family Acceptance in Adolescents. Int. J. Environ. Res. Public Health 2023, 20, 5433. https://doi.org/10.3390/ijerph20085433
Kossewska J, Tomaszek K, Macałka E. Time Perspective Latent Profile Analysis and Its Meaning for School Burnout, Depression, and Family Acceptance in Adolescents. International Journal of Environmental Research and Public Health. 2023; 20(8):5433. https://doi.org/10.3390/ijerph20085433
Chicago/Turabian StyleKossewska, Joanna, Katarzyna Tomaszek, and Emilia Macałka. 2023. "Time Perspective Latent Profile Analysis and Its Meaning for School Burnout, Depression, and Family Acceptance in Adolescents" International Journal of Environmental Research and Public Health 20, no. 8: 5433. https://doi.org/10.3390/ijerph20085433
APA StyleKossewska, J., Tomaszek, K., & Macałka, E. (2023). Time Perspective Latent Profile Analysis and Its Meaning for School Burnout, Depression, and Family Acceptance in Adolescents. International Journal of Environmental Research and Public Health, 20(8), 5433. https://doi.org/10.3390/ijerph20085433