Effect of Aerobic Exercise Training on Sleep and Core Temperature in Middle-Aged Women with Chronic Insomnia: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedures
2.4. Randomizations and Interventions
2.5. Intervention Group
2.6. Control Group
2.7. Data Collected
2.8. Body Composition
2.9. Sleep
- -
- Total Sleep Time (TST, min): duration between falling asleep and waking up, not including wakefulness periods.
- -
- Sleep Efficiency (SE, %): ratio of total sleep duration to duration in bed;
- -
- Wake After Sleep Onset (WASO, min): total time awake after sleep onset. For a better understanding, WASO was expressed as a function of TST: WASO/TST × 100 (%);
- -
- Sleep Latency (SL, min): refers to the duration for a subject to fall asleep, between the time of bedtime, reported by the participant, and the moment when the subject was asleep, reported by the algorithm.
2.10. Core Temperature
2.11. Cardiorespiratory Fitness
2.12. Stress, Anxiety and Depression
2.13. Statistical Analysis
2.14. Sample Size Calculation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Psychiatric Association (Ed.) Diagnostic and Statistical Manual of Mental Disorders: DSM-5-TR, 5th ed.; Text, Revision; American Psychiatric Association Publishing: Washington, DC, USA, 2022; ISBN 978-0-89042-577-0. [Google Scholar]
- Riemann, D.; Spiegelhalder, K.; Feige, B.; Voderholzer, U.; Berger, M.; Perlis, M.; Nissen, C. The Hyperarousal Model of Insomnia: A Review of the Concept and Its Evidence. Sleep Med. Rev. 2010, 14, 19–31. [Google Scholar] [CrossRef]
- Lack, L.C.; Gradisar, M.; Van Someren, E.J.W.; Wright, H.R.; Lushington, K. The Relationship between Insomnia and Body Temperatures. Sleep Med. Rev. 2008, 12, 307–317. [Google Scholar] [CrossRef]
- Hein, M.; Hubain, P. Prise en charge de l’insomnie: Recommandations pour la pratique en médecine générale. Rev. Med. Brux. 2016, 37, 207–213. [Google Scholar]
- Van Straten, A.; Cuijpers, P. Self-Help Therapy for Insomnia: A Meta-Analysis. Sleep Med. Rev. 2009, 13, 61–71. [Google Scholar] [CrossRef]
- Amiri, S.; Hasani, J.; Satkin, M. Effect of Exercise Training on Improving Sleep Disturbances: A Systematic Review and Meta-Analysis of Randomized Control Trials. Sleep Med. 2021, 84, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Liu, S.; Chen, X.-J.; Yu, H.-H.; Yang, Y.; Wang, W. Effects of Exercise on Sleep Quality and Insomnia in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Psychiatry 2021, 12, 664499. [Google Scholar] [CrossRef]
- D’Aurea, C.V.R.; Frange, C.; Poyares, D.; de Souza, A.A.L.; Lenza, M. Physical Exercise as a Therapeutic Approach for Adults with Insomnia: Systematic Review and Meta-Analysis. Einstein 2022, 20, eAO8058. [Google Scholar] [CrossRef] [PubMed]
- Chennaoui, M.; Arnal, P.J.; Sauvet, F.; Léger, D. Sleep and Exercise: A Reciprocal Issue? Sleep Med. Rev. 2015, 20, 59–72. [Google Scholar] [CrossRef]
- Zhai, X.; Wu, N.; Koriyama, S.; Wang, C.; Shi, M.; Huang, T.; Wang, K.; Sawada, S.S.; Fan, X. Mediating Effect of Perceived Stress on the Association between Physical Activity and Sleep Quality among Chinese College Students. Int. J. Environ. Res. Public Health 2021, 18, 289. [Google Scholar] [CrossRef]
- Driver, H.S.; Taylor, S.R. Exercise and Sleep. Sleep Med. Rev. 2000, 4, 387–402. [Google Scholar] [CrossRef]
- Krauchi, K.; Wirz-Justice, A. Circadian Rhythm of Heat Production, Heart Rate, and Skin and Core Temperature under Unmasking Conditions in Men. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1994, 267, R819–R829. [Google Scholar] [CrossRef]
- Somers, V.K.; Dyken, M.E.; Mark, A.L.; Abboud, F.M. Sympathetic-Nerve Activity during Sleep in Normal Subjects. N. Engl. J. Med. 1993, 328, 303–307. [Google Scholar] [CrossRef]
- Tseng, T.-H.; Chen, H.-C.; Wang, L.-Y.; Chien, M.-Y. Effects of Exercise Training on Sleep Quality and Heart Rate Variability in Middle-Aged and Older Adults with Poor Sleep Quality: A Randomized Controlled Trial. J. Clin. Sleep Med. 2020, 16, 1483–1492. [Google Scholar] [CrossRef] [PubMed]
- Uchida, S.; Shioda, K.; Morita, Y.; Kubota, C.; Ganeko, M.; Takeda, N. Exercise Effects on Sleep Physiology. Front. Neur. 2012, 3, 48. [Google Scholar] [CrossRef] [Green Version]
- Murphy, P.J.; Campbell, S.S. Nighttime Drop in Body Temperature: A Physiological Trigger for Sleep Onset? Sleep 1997, 20, 505–511. [Google Scholar] [CrossRef]
- Hermand, E.; Cassirame, J.; Ennequin, G.; Hue, O. Validation of a Photoplethysmographic Heart Rate Monitor: Polar OH1. Int. J. Sport. Med. 2019, 40, 462–467. [Google Scholar] [CrossRef]
- Morin, C.M. Insomnia: Psychological Assessment and Management; Treatment Manuals for Practitioners; Guilford Press: New York, NY, USA, 1993; ISBN 978-0-89862-210-2. [Google Scholar]
- Scharf, M.T. Reliability and Efficacy of the Epworth Sleepiness Scale: Is There Still a Place for It? Nat. Sci. Sleep 2022, 14, 2151–2156. [Google Scholar] [CrossRef] [PubMed]
- Galasso, L.; Calogiuri, G.; Castelli, L.; Mulè, A.; Esposito, F.; Caumo, A.; Montaruli, A.; Roveda, E. Theoretical Construct into Blocks of Actigraphic-Derived Sleep Parameters. Chronobiol. Int. 2022, 1–12. [Google Scholar] [CrossRef]
- Cole, R.J.; Kripke, D.F.; Gruen, W.; Mullaney, D.J.; Gillin, J.C. Automatic Sleep/Wake Identification From Wrist Activity. Sleep 1992, 15, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Bongers, C.C.W.G.; Daanen, H.A.M.; Bogerd, C.P.; Hopman, M.T.E.; Eijsvogels, T.M.H. Validity, Reliability, and Inertia of Four Different Temperature Capsule Systems. Med. Sci. Sport. Exerc. 2018, 50, 169–175. [Google Scholar] [CrossRef]
- Golding, L.A.; Myers, C.R.; Sinning, W.E. The YMCA Physical Fitness Test Battery. Y’s Way Phys. Fit. Complet. Guide Fit. Test. Instr. Leeds Hum. Kinet. 1989, 1–138. [Google Scholar]
- Gerber, M.; Lindwall, M.; Lindegård, A.; Börjesson, M.; Jonsdottir, I.H. Cardiorespiratory Fitness Protects against Stress-Related Symptoms of Burnout and Depression. Patient Educ. Couns. 2013, 93, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; Kamarck, T.; Mermelstein, R. A Global Measure of Perceived Stress. J. Health Soc. Behav. 1983, 24, 385. [Google Scholar] [CrossRef]
- Dabrowska-Galas, M.; Dabrowska, J. Physical Activity Improves Sleep Quality in Women. Ginekol. Pol. 2021, 92, 487–490. [Google Scholar] [CrossRef]
- Kredlow, M.A.; Capozzoli, M.C.; Hearon, B.A.; Calkins, A.W.; Otto, M.W. The Effects of Physical Activity on Sleep: A Meta-Analytic Review. J. Behav. Med. 2015, 38, 427–449. [Google Scholar] [CrossRef]
- Galasso, L.; Castelli, L.; Roveda, E.; Oliverio, A.; Baldassari, I.; Esposito, F.; Mulè, A.; Montaruli, A.; Pasanisi, P.; Bruno, E. Author Correction: Physical Activity and Sleep Behaviour in Women Carrying BRCA1/2 Mutations. Sci. Rep. 2022, 12, 20516. [Google Scholar] [CrossRef]
- Hartescu, I.; Morgan, K.; Stevinson, C.D. Increased Physical Activity Improves Sleep and Mood Outcomes in Inactive People with Insomnia: A Randomized Controlled Trial. J. Sleep Res. 2015, 24, 526–534. [Google Scholar] [CrossRef] [Green Version]
- Kline, C.E.; Irish, L.A.; Krafty, R.T.; Sternfeld, B.; Kravitz, H.M.; Buysse, D.J.; Bromberger, J.T.; Dugan, S.A.; Hall, M.H. Consistently High Sports/Exercise Activity Is Associated with Better Sleep Quality, Continuity and Depth in Midlife Women: The SWAN Sleep Study. Sleep 2013, 36, 1279–1288. [Google Scholar] [CrossRef] [PubMed]
- D’Aurea, C.V.R.; Poyares, D.; Passos, G.S.; Santana, M.G.; Youngstedt, S.D.; Souza, A.A.; Bicudo, J.; Tufik, S.; de Mello, M.T. Effects of Resistance Exercise Training and Stretching on Chronic Insomnia. Braz. J. Psychiatry 2019, 41, 51–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dishman, R.K.; Sui, X.; Church, T.S.; Kline, C.E.; Youngstedt, S.D.; Blair, S.N. Decline in Cardiorespiratory Fitness and Odds of Incident Sleep Complaints. Med. Sci. Sport. Exerc. 2015, 47, 960–966. [Google Scholar] [CrossRef] [Green Version]
- Almojali, A.I.; Almalki, S.A.; Alothman, A.S.; Masuadi, E.M.; Alaqeel, M.K. The Prevalence and Association of Stress with Sleep Quality among Medical Students. J. Epidemiol. Glob. Health 2017, 7, 169. [Google Scholar] [CrossRef] [PubMed]
- Jansson-Fröjmark, M.; Lindblom, K. A Bidirectional Relationship between Anxiety and Depression, and Insomnia? A Prospective Study in the General Population. J. Psychosom. Res. 2008, 64, 443–449. [Google Scholar] [CrossRef]
- Horne, J.; Moore, V. Sleep EEG Effects of Exercise with and without Additional Body Cooling. Electroencephalogr. Clin. Neurophysiol. 1985, 60, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Casanova-Lizón, A.; Manresa-Rocamora, A.; Flatt, A.A.; Sarabia, J.M.; Moya-Ramón, M. Does Exercise Training Improve Cardiac-Parasympathetic Nervous System Activity in Sedentary People? A Systematic Review with Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 13899. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.L.; Gibbins, I.L. (Eds.) Autonomic Innervation of the Skin; Harwood Academic: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Baker, F.C.; Siboza, F.; Fuller, A. Temperature Regulation in Women: Effects of the Menstrual Cycle. Temperature 2020, 7, 226–262. [Google Scholar] [CrossRef] [PubMed]
T0 | T1 | |||
---|---|---|---|---|
Exercise Group | Control Group | Exercise Group | Control Group | |
Age (years) | 46.4 ± 5.67 | 44.8 ± 7.82 | 46.6 ± 5.67 | 44.8 ± 7.82 |
BMI (kg·m−2) | 24.9 ± 4.69 | 23.8 ± 2.34 | 24.8 ± 3.98 | 24.0 ± 2.55 |
Fat mass (%) | 29.1 ± 6.76 | 27.4 ± 4.15 | 28.4 ± 5.81 | 27.6 ± 4.80 |
Epworth | 11.8 ± 7.47 | 13.3 ± 3.63 | 6.97 ± 4.36 * | 12.6 ± 6.92 |
ISI | 17.1 ± 3.32 | 17.5 ± 2.11 | 8.93 ± 3.63 *** | 18.5 ± 2.67 |
TST (min) | 432 ± 80.5 | 435 ± 29.5 | 465 ± 68.5 | 442 ± 26.2 |
WASO (%) | 16.7 ± 11.6 | 16.5 ± 10.0 | 12.6 ± 9.03 | 15.86 ± 8.99 |
SE (%) | 79.8 ± 8.01 | 81.1 ± 7.59 | 83.6 ± 6.43 | 82.13 ± 6.09 |
SL (min) | 6.98 ± 4.29 | 7.72 ± 3.91 | 6.26 ± 4.74 | 3.91 ± 1.53 |
PSS-10 | 30.1 ± 5.52 | 28.3 ± 5.48 | 25.4 ± 4.44 | 26.9 ± 4.29 |
HAD | 17.3 ± 6.20 | 17.8 ± 3.07 | 14.6 ± 5.76 | 16.6 ± 3.37 |
O2max (mL·min−1·kg−1) | 29.4 ± 4.34 | 31.7 ± 6.02 | 31.0 ±4.46 | 31.5 ± 5.63 |
Nocturnal mean temperature (°C) | 36.8 ± 0.15 | 36.8 ± 0.15 | 36.7 ± 0.19 | 36.9 ± 0.23 |
Batyphase (°C) | 36.5 ± 0.20 | 36.5 ± 0.25 | 36.3 ± 0.22 | 36.5 ± 0.315 |
Acrophase (°C) | 37.6 ± 0.23 | 37.7 ± 0.27 | 37.7 ± 0.20 | 37.6 ± 0.07 |
Amplitude (°C) | 1.15 ± 0.29 | 1.23 ± 0.54 | 1.40 ± 0.24 ** | 1.13 ± 0.28 |
Exercise Group | Control Group | |||||
---|---|---|---|---|---|---|
Standardized β-Coefficient (95% Confidence Interval) | p | Standardized β-Coefficient (95% Confidence Interval) | p | Net Effect | p | |
ISI | −8.17 (−10.8; −5.54) | <0.001 | 0.95 (−1.29; 3.21) | 0.102 | −9.12 | <0.001 |
SE (%) | 3.84 (1.12–6.56) | 0.015 | 1.03 (−0.04; 2.10) | 0.075 | 2.81 | 0.222 |
SL (min) | −0.72 (−2.46; 1.02) | 0.416 | −3.81 (−7.06; −0.56) | 0.036 | −3.09 | 0.152 |
TST (min) | 32.8 (11.1; 54.5) | 0.011 | 7.12 (−5.25; 19.5) | 0.266 | 25.7 | 0.033 |
WASO (%) | −4.12 (−7.59; −0.65) | 0.034 | −0.64 (−1.68; 0.40) | 0.234 | −3.48 | 0.011 |
Epworth | −4.83 (−8.68; −0.99) | 0.026 | −0.67 (−2.00; −0.16) | 0.198 | −4.16 | 0.021 |
BMI (kg/m2) | −0.13 (−0.33; 0.59) | 0.570 | 0.22 (0.12; 0.94) | 0.619 | −0.35 | 0.518 |
Fat mass (%) | −0.68 (−1.47; 0.12) | 0.111 | 0.17 (0.01; 0.31) | 0.405 | −0.85 | 0.196 |
PSS-10 | −4.67 (−7.10; −2.23) | 0.003 | −1.41 (−2.10; −0.35) | 0.315 | −3.26 | 0.029 |
HAD | −2.67 (−5.08; −0.26) | 0.046 | −1.25 (−2.05; −0.45) | 0.009 | −1.42 | 0.396 |
O2max (mL·min−1·kg−1) | 1.55 (0.73; 2.37) | 0.003 | −0.20 (−0.47;0.07) | 0.166 | 1.75 | 0.022 |
Nocturnal mean temperature (°C) | −0.12 (−0.25; −0.01) | 0.096 | 0.10 (0.04; 0.16) | 0.078 | −0.22 | 0.032 |
Batyphase (°C) | −0.16 (−0.29; −0.02) | 0.037 | 0.04 (0.01; 0.09) | 0.063 | −0.20 | 0.048 |
Acrophase (°C) | 0.10 (0.01; 0.21) | 0.084 | −0.06 (−0.10; 0.13) | 0.496 | 0.16 | 0.413 |
Amplitude (°C) | 0.26 (0.13; 0.38) | 0.002 | −0.10 (−0.28; 0.08) | 0.280 | 0.36 | 0.037 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baron, P.; Hermand, É.; Bourlois, V.; Pezé, T.; Aron, C.; Lombard, R.; Hurdiel, R. Effect of Aerobic Exercise Training on Sleep and Core Temperature in Middle-Aged Women with Chronic Insomnia: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2023, 20, 5452. https://doi.org/10.3390/ijerph20085452
Baron P, Hermand É, Bourlois V, Pezé T, Aron C, Lombard R, Hurdiel R. Effect of Aerobic Exercise Training on Sleep and Core Temperature in Middle-Aged Women with Chronic Insomnia: A Randomized Controlled Trial. International Journal of Environmental Research and Public Health. 2023; 20(8):5452. https://doi.org/10.3390/ijerph20085452
Chicago/Turabian StyleBaron, Pauline, Éric Hermand, Valentin Bourlois, Thierry Pezé, Christophe Aron, Remi Lombard, and Rémy Hurdiel. 2023. "Effect of Aerobic Exercise Training on Sleep and Core Temperature in Middle-Aged Women with Chronic Insomnia: A Randomized Controlled Trial" International Journal of Environmental Research and Public Health 20, no. 8: 5452. https://doi.org/10.3390/ijerph20085452
APA StyleBaron, P., Hermand, É., Bourlois, V., Pezé, T., Aron, C., Lombard, R., & Hurdiel, R. (2023). Effect of Aerobic Exercise Training on Sleep and Core Temperature in Middle-Aged Women with Chronic Insomnia: A Randomized Controlled Trial. International Journal of Environmental Research and Public Health, 20(8), 5452. https://doi.org/10.3390/ijerph20085452