An Exploratory Analysis of Firefighter Reproduction through Survey Data and Biomonitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Survey
2.2. Sample Collection
2.3. Chemical Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Characteristics of Participants
Surveyed Firefighters’ Reproductive History
3.2. Exploratory Analysis into Firefighter Semen
3.3. Exploratory Analysis into Firefighter Breast Milk
3.3.1. Exploratory Analysis of Chemicals in Breast Milk
3.3.2. Exploratory Analysis of Child Health Effects
3.4. Blood and Urine Analysis
3.4.1. Polycyclic Aromatic Hydrocarbons (Urine)
3.4.2. Metals (Whole Blood and Urine)
3.4.3. Phthalates (Urine)
3.4.4. VOCs (Urine)
3.4.5. OPEs (Urine)
3.4.6. PFAS (Plasma)
3.4.7. PBDEs (Plasma)
3.5. Study Strength and Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Easter, E.; Lander, D.; Huston, T. Risk assessment of soils identified on firefighter turnout gear. J. Occup. Environ. Hyg. 2016, 13, 647–657. [Google Scholar] [CrossRef] [PubMed]
- Engelsman, M.; Snoek, M.F.; Banks, A.P.W.; Cantrell, P.; Wang, X.; Toms, L.M.; Koppel, D.J. Exposure to metals and semivolatile organic compounds in Australian fire stations. Environ. Res. 2019, 179, 108745. [Google Scholar] [CrossRef] [PubMed]
- Banks, A.P.W.; Engelsman, M.; He, C.; Wang, X.; Mueller, J.F. The occurrence of PAHs and flame-retardants in air and dust from Australian fire stations. J. Occup. Environ. Hyg. 2020, 17, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Alexander, B.M.; Baxter, C.S. Flame-retardant contamination of firefighter personal protective clothing—A potential health risk for firefighters. J. Occup. Environ. Hyg. 2016, 13, D148–D155. [Google Scholar] [CrossRef] [PubMed]
- Engelsman, M.; Toms, L.-M.L.; Banks, A.P.W.; Wang, X.; Mueller, J.F. Biomonitoring in firefighters for volatile organic compounds, semivolatile organic compounds, persistent organic pollutants, and metals: A systematic review. Environ. Res. 2020, 188, 109562. [Google Scholar] [CrossRef] [PubMed]
- Barros, B.; Oliveira, M.; Morais, S. Biomonitoring of firefighting forces: A review on biomarkers of exposure to health-relevant pollutants released from fires. J. Toxicol. Environ. Health Part B 2023, 26, 127–171. [Google Scholar] [CrossRef]
- Ponsonby, A.L.; Symeonides, C.; Vuillermin, P.; Mueller, J.; Sly, P.D.; Saffery, R. Epigenetic regulation of neurodevelopmental genes in response to in utero exposure to phthalate plastic chemicals: How can we delineate causal effects? Neurotoxicology 2016, 55, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Annamalai, J.; Namasivayam, V. Endocrine disrupting chemicals in the atmosphere: Their effects on humans and wildlife. Environ. Int. 2015, 76, 78–97. [Google Scholar] [CrossRef]
- Jurewicz, J.; Radwan, M.; Sobala, W.; Brzeźnicki, S.; Ligocka, D.; Radwan, P.; Bochenek, M.; Hanke, W. Association between a biomarker of exposure to polycyclic aromatic hydrocarbons and semen quality. Int. J. Occup. Med. Environ. Health 2013, 26, 790–801. [Google Scholar] [CrossRef]
- Mima, M.; Greenwald, D.; Ohlander, S. Environmental Toxins and Male Fertility. Curr. Urol. Rep. 2018, 19, 50. [Google Scholar] [CrossRef]
- Albert, O.; Huang, J.Y.; Aleksa, K.; Hales, B.F.; Goodyer, C.G.; Robaire, B.; Chevrier, J.; Chan, P. Exposure to polybrominated diphenyl ethers and phthalates in healthy men living in the greater Montreal area: A study of hormonal balance and semen quality. Environ. Int. 2018, 116, 165–175. [Google Scholar] [CrossRef]
- Cordier, S.; Monfort, C.; Filippini, G.; Preston-Martin, S.; Lubin, F.; Mueller, B.; Holly, E.; Peris-Bonet, R.; McCredie, M.; Choi, W.; et al. Parental Exposure to Polycyclic Aromatic Hydrocarbons and the Risk of Childhood Brain Tumors. Am. J. Epidemiol. 2004, 159, 1109–1116. [Google Scholar] [CrossRef]
- Padula, A.M.; Noth, E.M.; Hammond, S.K.; Lurmann, F.W.; Yang, W.; Tager, I.B.; Shaw, G.M. Exposure to airborne polycyclic aromatic hydrocarbons during pregnancy and risk of preterm birth. Environ. Res. 2014, 135, 221–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valvi, D.; Oulhote, Y.; Weihe, P.; Dalgård, C.; Bjerve, K.S.; Steuerwald, U.; Grandjean, P. Gestational diabetes and offspring birth size at elevated environmental pollutant exposures. Environ. Int. 2017, 107, 205–215. [Google Scholar] [CrossRef]
- Peng, F.; Ji, W.; Zhu, F.; Peng, D.; Yang, M.; Liu, R.; Pu, Y.; Yin, L. A study on phthalate metabolites, bisphenol A and nonylphenol in the urine of Chinese women with unexplained recurrent spontaneous abortion. Environ. Res. 2016, 150, 622–628. [Google Scholar] [CrossRef] [PubMed]
- Lefevre, P.L.C.; Wade, M.; Goodyer, C.; Hales, B.F.; Robaire, B. A Mixture Reflecting Polybrominated Diphenyl Ether (PBDE) Profiles Detected in Human Follicular Fluid Significantly Affects Steroidogenesis and Induces Oxidative Stress in a Female Human Granulosa Cell Line. Endocrinology 2016, 157, 2698–2711. [Google Scholar] [CrossRef] [PubMed]
- Ruark, C.D.; Song, G.; Yoon, M.; Verner, M.A.; Andersen, M.E.; Clewell, H.J., 3rd; Longnecker, M.P. Quantitative bias analysis for epidemiological associations of perfluoroalkyl substance serum concentrations and early onset of menopause. Environ. Int. 2017, 99, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.J.; Xie, Y.; Tian, Y.K.; Liu, H.; He, C.D.; An, S.L.; Chen, W.; Zhou, Y.Z.; Zhong, X.N. Associations Between Polybrominated Diphenyl Ethers Concentrations in Human Placenta and Small for Gestational Age in Southwest China. Front. Public Health 2022, 10, 812268. [Google Scholar] [CrossRef]
- Al-Saleh, I.; Alsabbahen, A.; Shinwari, N.; Billedo, G.; Mashhour, A.; Al-Sarraj, Y.; Mohamed, G.E.D.; Rabbah, A. Polycyclic aromatic hydrocarbons (PAHs) as determinants of various anthropometric measures of birth outcome. Sci. Total Environ. 2013, 444, 565–578. [Google Scholar] [CrossRef]
- Bhardwaj, J.K.; Paliwal, A.; Saraf, P. Effects of heavy metals on reproduction owing to infertility. J. Biochem. Mol. Toxicol. 2021, 35, e22823. [Google Scholar] [CrossRef]
- Nickerson, K. Environmental contaminants in breast milk. J. Midwifery Womens Health 2006, 51, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.; Duarte, S.; Delerue-Matos, C.; Pena, A.; Morais, S. Exposure of nursing mothers to polycyclic aromatic hydrocarbons: Levels of un-metabolized and metabolized compounds in breast milk, major sources of exposure and infants’ health risks. Environ. Pollut. 2020, 266, 115243. [Google Scholar] [CrossRef] [PubMed]
- Mori, C. Application of toxicogenomic analysis to risk assessment of delayed long-term effects of multiple chemicals including endocrine disruptors in human fetuses. Environ. Health Perspect. 2003, 111, 803–804. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, C.F.; Christoph, G.R.; Julien, E.; Kelley, J.M.; Kronenberg, J.; McCarthy, J.; Reiss, R. Assessing the Risks of Exposures to Multiple Chemicals with a Common Mechanism of Toxicity: How to Cumulate? Regul. Toxicol. Pharmacol. 2000, 31, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Govarts, E.; Remy, S.; Bruckers, L.; Den Hond, E.; Sioen, I.; Nelen, V.; Baeyens, W.; Nawrot, T.S.; Loots, I.; Van Larebeke, N.; et al. Combined Effects of Prenatal Exposures to Environmental Chemicals on Birth Weight. Int. J. Environ. Res. Public Health 2016, 13, 495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández, A.F.; Gil, F.; Tsatsakis, A.M. Chapter 38—Biomarkers of chemical mixture toxicity. In Biomarkers in Toxicology; Gupta, R.C., Ed.; Academic Press: Boston, MA, USA, 2014; pp. 655–669. [Google Scholar] [CrossRef]
- Koppe, J.G.; Bartonova, A.; Bolte, G.; Bistrup, M.L.; Busby, C.; Butter, M.; Dorfman, P.; Fucic, A.; Gee, D.; van den Hazel, P.; et al. Exposure to multiple environmental agents and their effect. Acta Paediatr. Suppl. 2006, 95, 106–113. [Google Scholar] [CrossRef]
- Engelsman, M.; Toms, L.-M.L.; Wang, X.; Banks, A.P.W.; Blake, D. Effects of firefighting on semen parameters: An exploratory study. Reprod. Fertil. 2021, 2, L13–L15. [Google Scholar] [CrossRef]
- Jung, A.M.; Beitel, S.C.; Gutenkunst, S.L.; Billheimer, D.; Jahnke, S.A.; Littau, S.R.; White, M.; Hoppe-Jones, C.; Cherrington, N.; Burgess, J.L. Excretion of polybrominated diphenyl ethers and AhR activation in breastmilk among firefighters. Toxicol. Sci. 2023, kfad017. [Google Scholar] [CrossRef]
- Aronson, K.J.; Dodds, L.A.; Marrett, L.; Wall, C. Congenital anomalies among the offspring of fire fighters. Am. J. Ind. Med. 1996, 30, 83–86. [Google Scholar] [CrossRef]
- Chia, S.; Shi, L.; Chia, S.E.; Shi, L.M. Review of recent epidemiological studies on paternal occupations and birth defects. Occup. Environ. Med. 2002, 59, 149–155. [Google Scholar] [CrossRef]
- Petersen, K.U.; Hansen, J.; Ebbehoej, N.E.; Bonde, J.P. Infertility in a Cohort of Male Danish Firefighters: A Register-Based Study. Am. J. Epidemiol. 2019, 188, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Siegel, M.R.; Rocheleau, C.M.; Hollerbach, B.S.; Omari, A.; Jahnke, S.A.; Almli, L.M.; Olshan, A.F. Birth defects associated with paternal firefighting in the National Birth Defects Prevention Study. Am. J. Ind. Med. 2022, 66, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Jahnke, S.A.; Poston, W.S.C.; Jitnarin, N.; Haddock, C.K. Maternal and Child Health Among Female Firefighters in the U.S. Matern. Child Health J. 2018, 22, 922–931. [Google Scholar] [CrossRef]
- Barr, D.B.; Wilder, L.C.; Caudill, S.P.; Gonzalez, A.J.; Needham, L.L.; Pirkle, J.L. Urinary creatinine concentrations in the U.S. population: Implications for urinary biologic monitoring measurements. Environ. Health Perspect. 2005, 113, 192–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smarr, M.M.; Sapra, K.J.; Gemmill, A.; Kahn, L.G.; Wise, L.A.; Lynch, C.D.; Factor-Litvak, P.; Mumford, S.L.; Skakkebaek, N.E.; Slama, R.; et al. Is human fecundity changing? A discussion of research and data gaps precluding us from having an answer. Hum. Reprod. 2017, 32, 499–504. [Google Scholar] [CrossRef] [Green Version]
- FSANZ. Fertility Society of Australia and New Zealand. Available online: https://www.fertilitysociety.com.au/ (accessed on 11 February 2023).
- Robinson, L.; Gallos, I.D.; Conner, S.J.; Rajkhowa, M.; Miller, D.; Lewis, S.; Kirkman-Brown, J.; Coomarasamy, A. The effect of sperm DNA fragmentation on miscarriage rates: A systematic review and meta-analysis. Hum. Reprod. 2012, 27, 2908–2917. [Google Scholar] [CrossRef] [Green Version]
- Jeve, Y.B.; Davies, W. Evidence-based management of recurrent miscarriages. J. Hum. Reprod. Sci. 2014, 7, 159–169. [Google Scholar] [CrossRef]
- Hellstrom, W.J.G.; Overstreet, J.W.; Sikka, S.C.; Denne, J.; Ahuja, S.; Hoover, A.M.; Sides, G.D.; Cordell, W.H.; Harrison, L.M.; Whitaker, J.S. Semen and Sperm Reference Ranges for Men 45 Years of Age and Older. J. Androl. 2006, 27, 421–428. [Google Scholar] [CrossRef]
- Arora, P.; Sudhan, M.D.; Sharma, R.K. Incidence of Anti-Sperm Antibodies in Infertile Male Population. Med. J. Armed Forces India 1999, 55, 206–208. [Google Scholar] [CrossRef] [Green Version]
- Berger, G.; Smith-Harrison, L.; Sandlow, J. Sperm agglutination: Prevalence and contributory factors. Andrologia 2019, 51, e13254. [Google Scholar] [CrossRef]
- Sengupta, P. Reviewing reports of semen volume and male aging of last 33 years: From 1980 through 2013. Asian Pac. J. Reprod. 2015, 4, 242–246. [Google Scholar] [CrossRef]
- Stone, B.A.; Alex, A.; Werlin, L.B.; Marrs, R.P. Age thresholds for changes in semen parameters in men. Fertil. Steril. 2013, 100, 952–958. [Google Scholar] [CrossRef]
- Sharpe, R.M. Environmental/lifestyle effects on spermatogenesis. Phil. Trans. R. Soc. B 2010, 365, 1697–1712. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Wang, X.; Li, Y.; Toms, L.M.; Gallen, M.; Hearn, L.; Aylward, L.L.; McLachlan, M.S.; Sly, P.D.; Mueller, J.F. Persistent organic pollutants in matched breast milk and infant faeces samples. Chemosphere 2015, 118, 309–314. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zhao, X.; Shi, Z. Organophosphorus flame retardants in breast milk from Beijing, China: Occurrence, nursing infant’s exposure and risk assessment. Sci. Total Environ. 2021, 771, 145404. [Google Scholar] [CrossRef]
- LaKind, J.S.; Berlin, C.M., Jr.; Sjödin, A.; Turner, W.; Wang, R.Y.; Needham, L.L.; Paul, I.M.; Stokes, J.L.; Naiman, D.Q.; Patterson, D.G., Jr. Do human milk concentrations of persistent organic chemicals really decline during lactation? Chemical concentrations during lactation and milk/serum partitioning. Environ. Health Perspect. 2009, 117, 1625–1631. [Google Scholar] [CrossRef] [Green Version]
- Hooper, K.; She, J.; Sharp, M.; Chow, J.; Jewell, N.; Gephart, R.; Holden, A. Depuration of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in breast milk from California first-time mothers (primiparae). Environ. Health Perspect. 2007, 115, 1271–1275. [Google Scholar] [CrossRef] [Green Version]
- Bramwell, L.; Fernandes, A.; Rose, M.; Harrad, S.; Pless-Mulloli, T. PBDEs and PBBs in human serum and breast milk from cohabiting UK couples. Chemosphere 2014, 116, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Thomsen, C.; Haug, L.S.; Stigum, H.; Frøshaug, M.; Broadwell, S.L.; Becher, G. Changes in concentrations of perfluorinated compounds, polybrominated diphenyl ethers, and polychlorinated biphenyls in Norwegian breast-milk during twelve months of lactation. Environ. Sci. Technol. 2010, 44, 9550–9556. [Google Scholar] [CrossRef]
- Harrad, S.; Abdallah, M.A.-E. Concentrations of Polybrominated Diphenyl Ethers, Hexabromocyclododecanes and Tetrabromobisphenol-A in Breast Milk from United Kingdom Women Do Not Decrease over Twelve Months of Lactation. Environ. Sci. Technol. 2015, 49, 13899–13903. [Google Scholar] [CrossRef]
- Wheeler, A.J.; Dobbin, N.A.; Héroux, M.-E.; Fisher, M.; Sun, L.; Khoury, C.F.; Hauser, R.; Walker, M.; Ramsay, T.; Bienvenu, J.-F.; et al. Urinary and breast milk biomarkers to assess exposure to naphthalene in pregnant women: An investigation of personal and indoor air sources. Environ. Health 2014, 13, 30. [Google Scholar] [CrossRef] [Green Version]
- WHO. Human Biomonitoring: Facts and Figures. 2015. Available online: https://apps.who.int/iris/handle/10665/164588 (accessed on 11 February 2023).
- WHO. WHO Child Growth Standards: Length/Height-for-Age, Weight-for-Age, Weight-for-Length, Weight-for-Height and Body Mass Index-for-Age: Methods and Development; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Marks, K. Infant and Toddler Nutrition. Aust. Fam. Physician 2015, 44, 886–889. [Google Scholar]
- Ma, J.; Zhu, H.; Kannan, K. Organophosphorus Flame Retardants and Plasticizers in Breast Milk from the United States. Environ. Sci. Technol. Lett. 2019, 6, 525–531. [Google Scholar] [CrossRef] [Green Version]
- Lyche, J.L.; Rosseland, C.; Berge, G.; Polder, A. Human health risk associated with brominated flame-retardants (BFRs). Environ. Int. 2015, 74, 170–180. [Google Scholar] [CrossRef]
- Van den Eede, N.; Dirtu, A.C.; Neels, H.; Covaci, A. Analytical developments and preliminary assessment of human exposure to organophosphate flame retardants from indoor dust. Environ. Int. 2011, 37, 454–461. [Google Scholar] [CrossRef]
- Laitinen, J.; Makela, M.; Mikkola, J.; Huttu, I. Firefighters’ multiple exposure assessments in practice. Toxicol. Lett. 2012, 213, 129–133. [Google Scholar] [CrossRef]
- Ribas-Fitó, N.; Cardo, E.; Sala, M.; Eulàlia de Muga, M.; Mazón, C.; Verdú, A.; Kogevinas, M.; Grimalt, J.O.; Sunyer, J. Breastfeeding, exposure to organochlorine compounds, and neurodevelopment in infants. Pediatrics 2003, 111 Pt 1, e580–e585. [Google Scholar] [CrossRef] [Green Version]
- Mead, M.N. Contaminants in human milk: Weighing the risks against the benefits of breastfeeding. Environ. Health Perspect. 2008, 116, A427–A434. [Google Scholar] [CrossRef] [Green Version]
- Fabian, T.Z.; Borgerson, J.L.; Gandhi, P.D.; Baxter, C.S.; Ross, C.S.; Lockey, J.E.; Dalton, J.M. Characterization of Firefighter Smoke Exposure. Fire Technol. 2014, 50, 993–1019. [Google Scholar] [CrossRef]
- WHO. Biological Monitoring of Chemical Exposure in the Workplace; WHO: Geneva, Switzerland, 1996. [Google Scholar]
- Thai, P.K.; Banks, A.P.W.; Toms, L.L.; Choi, P.M.; Wang, X.; Hobson, P.; Mueller, J.F. Analysis of urinary metabolites of polycyclic aromatic hydrocarbons and cotinine in pooled urine samples to determine the exposure to PAHs in an Australian population. Environ. Res. 2020, 182, 109048. [Google Scholar] [CrossRef]
- Li, Z.; Romanoff, L.; Bartell, S.; Pittman, E.N.; Trinidad, D.A.; McClean, M.; Webster, T.F.; Sjödin, A. Excretion Profiles and Half-Lives of Ten Urinary Polycyclic Aromatic Hydrocarbon Metabolites after Dietary Exposure. Chem. Res. Toxicol. 2012, 25, 1452–1461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NDFEM. Guidance for Compartment Fire Behaviour Training; 2010; p. 88. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiEtZ6WxqH-AhXmhv0HHRjAAfAQFnoECBMQAQ&url=https%3A%2F%2Fassets.gov.ie%2F117515%2Ff7837ff6-4d4d-413f-a9cb-56d088f351b3.pdf&usg=AOvVaw2xNTXgfOy6jySmE4aiaO_D (accessed on 11 February 2023).
- WCNSW. Chemical Analysis Branch Handbook: Workplace and Biological Monitoring Exposure Analysis; WorkCover NSW: Gosford, NSW, Australia, 2010; p. 40. [Google Scholar]
- Fent, K.W.; Toennis, C.; Sammons, D.; Robertson, S.; Bertke, S.; Calafat, A.M.; Pleil, J.D.; Geer Wallace, M.A.; Kerber, S.; Smith, D.L.; et al. Firefighters’ and instructors’ absorption of PAHs and benzene during training exercises. Int. J. Hyg. Environ. Health 2019, 222, 991–1000. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Wang, Y.-X.; Chen, Y.-J.; Sun, L.; Li, J.; Liu, C.; Huang, Z.; Lu, W.-Q.; Zeng, Q. Urinary Polycyclic Aromatic Hydrocarbon Metabolites and Human Semen Quality in China. Environ. Sci. Technol. 2017, 51, 958–967. [Google Scholar] [CrossRef]
- Jeng, H.A.; Pan, C.-H.; Chao, M.-R. 1-Hydroxypyrene as a biomarker for assessing the effects of exposure to polycyclic aromatic hydrocarbons on semen quality and sperm DNA integrity. J. Environ. Sci. Health Part A 2013, 48, 152–158. [Google Scholar] [CrossRef]
- Jeng, H.A.C.; Lin, W.Y.; Chao, M.R.; Lin, W.Y.; Pan, C.H. Semen quality and sperm DNA damage associa–revised–final-finalted with oxidative stress in relation to exposure to polycyclic aromatic hydrocarbons. J. Environ. Sci. Health Part A 2018, 53, 1221–1228. [Google Scholar] [CrossRef]
- Wilhelm, M.; Hardt, J.; Schulz, C.; Angerer, J. New reference value and the background exposure for the PAH metabolites 1-hydroxypyrene and 1- and 2-naphthol in urine of the general population in Germany: Basis for validation of human biomonitoring data in environmental medicine. Int. J. Hyg. Environ. Health 2008, 211, 447–453. [Google Scholar] [CrossRef]
- Luderer, U.; Christensen, F.; Johnson, W.O.; She, J.; Ip, H.S.S.; Zhou, J.; Alvaran, J.; Krieg, E.F.; Kesner, J.S. Associations between urinary biomarkers of polycyclic aromatic hydrocarbon exposure and reproductive function during menstrual cycles in women. Environ. Int. 2017, 100, 110–120. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.; Tang, M.; Chen, F.; Li, T.; Liu, W. Environmental exposure to polycyclic aromatic hydrocarbons (PAHs): The correlation with and impact on reproductive hormones in umbilical cord serum. Environ. Pollut. 2017, 220, 1429–1437. [Google Scholar] [CrossRef]
- Ye, X.; Pan, W.; Li, C.; Ma, X.; Yin, S.; Zhou, J.; Liu, J. Exposure to polycyclic aromatic hydrocarbons and risk for premature ovarian failure and reproductive hormones imbalance. J. Environ. Sci. 2020, 91, 1–9. [Google Scholar] [CrossRef]
- Zeng, Q.; Feng, W.; Zhou, B.; Wang, Y.-X.; He, X.-S.; Yang, P.; You, L.; Yue, J.; Li, Y.-F.; Lu, W.-Q. Urinary Metal Concentrations in Relation to Semen Quality: A Cross-Sectional Study in China. Environ. Sci. Technol. 2015, 49, 5052–5059. [Google Scholar] [CrossRef]
- Mendiola, J.; Moreno, J.M.; Roca, M.; Vergara-Juárez, N.; Martínez-García, M.J.; García-Sánchez, A.; Elvira-Rendueles, B.; Moreno-Grau, S.; López-Espín, J.J.; Ten, J.; et al. Relationships between heavy metal concentrations in three different body fluids and male reproductive parameters: A pilot study. Environ. Health 2011, 10, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Zou, L.; Luo, W.; Yi, Z.; Yang, P.; Yu, S.; Liu, N.; Ji, J.; Guo, Y.; Liu, P.; et al. Heavy metal exposure, oxidative stress and semen quality: Exploring associations and mediation effects in reproductive-aged men. Chemosphere 2020, 244, 125498. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-X.; Wang, P.; Feng, W.; Liu, C.; Yang, P.; Chen, Y.-J.; Sun, L.; Sun, Y.; Yue, J.; Gu, L.-J.; et al. Relationships between seminal plasma metals/metalloids and semen quality, sperm apoptosis and DNA integrity. Environ. Pollut. 2017, 224, 224–234. [Google Scholar] [CrossRef]
- Rivera-Núñez, Z.; Ashrap, P.; Barrett, E.S.; Watkins, D.J.; Cathey, A.L.; Vélez-Vega, C.M.; Rosario, Z.; Cordero, J.F.; Alshawabkeh, A.; Meeker, J.D. Association of biomarkers of exposure to metals and metalloids with maternal hormones in pregnant women from Puerto Rico. Environ. Int. 2021, 147, 106310. [Google Scholar] [CrossRef]
- Jurewicz, J.; Radwan, M.; Sobala, W.; Ligocka, D.; Radwan, P.; Bochenek, M.; Hawuła, W.; Jakubowski, L.; Hanke, W. Human urinary phthalate metabolites level and main semen parameters, sperm chromatin structure, sperm aneuploidy and reproductive hormones. Reprod. Toxicol. 2013, 42, 232–241. [Google Scholar] [CrossRef]
- Cai, H.; Zheng, W.; Zheng, P.; Wang, S.; Tan, H.; He, G.; Qu, W. Human urinary/seminal phthalates or their metabolite levels and semen quality: A meta-analysis. Environ. Res. 2015, 142, 486–494. [Google Scholar] [CrossRef]
- Chen, Q.; Yang, H.; Zhou, N.; Sun, L.; Bao, H.; Tan, L.; Chen, H.; Ling, X.; Zhang, G.; Huang, L.; et al. Phthalate exposure, even below US EPA reference doses, was associated with semen quality and reproductive hormones: Prospective MARHCS study in general population. Environ. Int. 2017, 104, 58–68. [Google Scholar] [CrossRef]
- Chang, W.-H.; Wu, M.-H.; Pan, H.-A.; Guo, P.-L.; Lee, C.-C. Semen quality and insulin-like factor 3: Associations with urinary and seminal levels of phthalate metabolites in adult males. Chemosphere 2017, 173, 594–602. [Google Scholar] [CrossRef]
- Yao, H.Y.; Han, Y.; Gao, H.; Huang, K.; Ge, X.; Xu, Y.Y.; Xu, Y.Q.; Jin, Z.X.; Sheng, J.; Yan, S.Q.; et al. Maternal phthalate exposure during the first trimester and serum thyroid hormones in pregnant women and their newborns. Chemosphere 2016, 157, 42–48. [Google Scholar] [CrossRef]
- Villanueva, M.B.; Jonai, H.; Kanno, S.; Takeuchi, Y. Dietary sources and background levels of hippuric acid in urine: Comparison of Philippine and Japanese levels. Ind. Health 1994, 32, 239–246. [Google Scholar] [CrossRef] [Green Version]
- ACGIH. Threshold limit values and biological exposure indices. 2014. Available online: https://www.acgih.org/science/tlv-bei-guidelines/ (accessed on 11 June 2014).
- Decharat, S. Hippuric Acid levels in paint workers at steel furniture manufacturers in Thailand. Saf. Health Work 2014, 5, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Bukowski, J.A. Review of the Epidemiological Evidence Relating Toluene to Reproductive Outcomes. Regul. Toxicol. Pharmacol. 2001, 33, 147–156. [Google Scholar] [CrossRef]
- Migliore, L.; Naccarati, A.; Zanello, A.; Scarpato, R.; Bramanti, L.; Mariani, M. Assessment of sperm DNA integrity in workers exposed to styrene. Hum. Reprod. 2002, 17, 2912–2918. [Google Scholar] [CrossRef] [Green Version]
- Van den Eede, N.; Heffernan, A.L.; Aylward, L.L.; Hobson, P.; Neels, H.; Mueller, J.F.; Covaci, A. Age as a determinant of phosphate flame retardant exposure of the Australian population and identification of novel urinary PFR metabolites. Environ. Int. 2015, 74, 1–8. [Google Scholar] [CrossRef]
- Trowbridge, J.; Gerona, R.; McMaster, M.; Ona, K.; Clarity, C.; Bessonneau, V.; Rudel, R.; Buren, H.; Morello-Frosch, R. Organophosphate and Organohalogen Flame-Retardant Exposure and Thyroid Hormone Disruption in a Cross-Sectional Study of Female Firefighters and Office Workers from San Francisco. Environ. Sci. Technol. 2022, 56, 440–450. [Google Scholar] [CrossRef]
- Hales, B.F.; Robaire, B. Effects of brominated and organophosphate ester flame retardants on male reproduction. Andrology 2020, 8, 915–923. [Google Scholar] [CrossRef] [Green Version]
- Carignan, C.C.; Mínguez-Alarcón, L.; Williams, P.L.; Meeker, J.D.; Stapleton, H.M.; Butt, C.M.; Toth, T.L.; Ford, J.B.; Hauser, R. Paternal urinary concentrations of organophosphate flame retardant metabolites, fertility measures, and pregnancy outcomes among couples undergoing in vitro fertilization. Environ. Int. 2018, 111, 232–238. [Google Scholar] [CrossRef]
- Doherty, B.T.; Hammel, S.C.; Daniels, J.L.; Stapleton, H.M.; Hoffman, K. Organophosphate esters: Are these flame retardants and plasticizers affecting children’s health? Curr. Environ. Health Rep. 2019, 6, 201–213. [Google Scholar] [CrossRef]
- Wang, X.; Hales, B.F.; Robaire, B. Effects of flame retardants on ovarian function. Reprod. Toxicol. 2021, 102, 10–23. [Google Scholar] [CrossRef]
- Eriksson, U.; Mueller, J.F.; Toms, L.L.; Hobson, P.; Kärrman, A. Temporal trends of PFSAs, PFCAs and selected precursors in Australian serum from 2002 to 2013. Environ. Pollut. 2017, 220, 168–177. [Google Scholar] [CrossRef]
- Rotander, A.; Toms, L.M.L.; Aylward, L.; Kay, M.; Mueller, J.F. Elevated levels of PFOS and PFHxS in firefighters exposed to aqueous film forming foam (AFFF). Environ. Int. 2015, 82, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Toms, L.M.L.; Bräunig, J.; Vijayasarathy, S.; Phillips, S.; Hobson, P.; Aylward, L.L.; Kirk, M.D.; Mueller, J.F. Per- and polyfluoroalkyl substances (PFAS) in Australia: Current levels and estimated population reference values for selected compounds. Int. J. Hyg. Environ. Health 2019, 222, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Bach, C.C.; Vested, A.; Jørgensen, K.T.; Bonde, J.P.; Henriksen, T.B.; Toft, G. Perfluoroalkyl and polyfluoroalkyl substances and measures of human fertility: A systematic review. Crit. Rev. Toxicol. 2016, 46, 735–755. [Google Scholar] [CrossRef] [PubMed]
- Kirk, M.; Smurthwaite, K.; Braunig, J.; Trevenar, S.; D’Este, C.; Lucas, R.; Lal, A.; Korda, R.; Clements, A.; Mueller, J.F.; et al. The PFAS Health Study; Systematic Literature Review; The Australian National University: Canberra, NSW, Australia, 2018. [Google Scholar]
- Minatoya, M.; Itoh, S.; Miyashita, C.; Araki, A.; Sasaki, S.; Miura, R.; Goudarzi, H.; Iwasaki, Y.; Kishi, R. Association of prenatal exposure to perfluoroalkyl substances with cord blood adipokines and birth size: The Hokkaido Study on environment and children’s health. Environ. Res. 2017, 156, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.H.; Ng, S.; Hsieh, C.J.; Lin, C.C.; Hsieh, W.S.; Chen, P.C. The impact of prenatal perfluoroalkyl substances exposure on neonatal and child growth. Sci. Total Environ. 2017, 607–608, 669–675. [Google Scholar] [CrossRef]
- McCoy, J.A.; Bangma, J.T.; Reiner, J.L.; Bowden, J.A.; Schnorr, J.; Slowey, M.; O’Leary, T.; Guillette, L.J., Jr.; Parrott, B.B. Associations between perfluorinated alkyl acids in blood and ovarian follicular fluid and ovarian function in women undergoing assisted reproductive treatment. Sci. Total Environ. 2017, 605–606, 9–17. [Google Scholar] [CrossRef]
- Chen, F.; Yin, S.; Kelly, B.C.; Liu, W. Chlorinated Polyfluoroalkyl Ether Sulfonic Acids in Matched Maternal, Cord, and Placenta Samples: A Study of Transplacental Transfer. Environ. Sci. Technol. 2017, 51, 6387–6394. [Google Scholar] [CrossRef]
- Kim, Y.R.; White, N.; Bräunig, J.; Vijayasarathy, S.; Mueller, J.F.; Knox, C.L.; Harden, F.A.; Pacella, R.; Toms, L.L. Per- and poly-fluoroalkyl substances (PFASs) in follicular fluid from women experiencing infertility in Australia. Environ. Res. 2020, 190, 109963. [Google Scholar] [CrossRef]
- Tarapore, P.; Ouyang, B. Perfluoroalkyl Chemicals and Male Reproductive Health: Do PFOA and PFOS Increase Risk for Male Infertility? Int. J. Environ. Res. Public Health 2021, 18, 3794. [Google Scholar] [CrossRef]
- Toft, G.; Lenters, V.; Vermeulen, R.; Heederik, D.; Thomsen, C.; Becher, G.; Giwercman, A.; Bizzaro, D.; Manicardi, G.C.; Spanò, M.; et al. Exposure to polybrominated diphenyl ethers and male reproductive function in Greenland, Poland and Ukraine. Reprod. Toxicol. 2014, 43, 1–7. [Google Scholar] [CrossRef]
- Yu, Y.-j.; Lin, B.-g.; Liang, W.-b.; Li, L.-z.; Hong, Y.-d.; Chen, X.-c.; Xu, X.-y.; Xiang, M.-d.; Huang, S. Associations between PBDEs exposure from house dust and human semen quality at an e-waste areas in South China—A pilot study. Chemosphere 2018, 198, 266–273. [Google Scholar] [CrossRef]
- Peltier, M.R.; Fassett, M.J.; Arita, Y.; Chiu, V.Y.; Shi, J.M.; Takhar, H.S.; Mahfuz, A.; Garcia, G.S.; Menon, R.; Getahun, D. Women with high plasma levels of PBDE-47 are at increased risk of preterm birth. J. Perinat. Med. 2021, 49, 439–447. [Google Scholar] [CrossRef]
Contributed a Biosample | Survey Only | |||
---|---|---|---|---|
Characteristic | n | % | n | % |
Total Participants | 97 | 677 | ||
Male | 64 | 546 | ||
Female | 33 | 131 | ||
Age Mean * ± Standard Deviation | 44 ± 11 | 43 ± 11 | ||
Active Duty (Current Fire Exposure) | 91 (94%) | 546 (81%) | ||
Years served Mean * ± Standard Deviation | 25 ± 8.5 | 17 ± 11 | ||
Tobacco Smoker ** | 3 (3.1%) | 48 (7.1%) | ||
Reported on fertility (% of total surveys in group) | 59 | 61% | 382 | 56% |
Naturally conceived at least one child | 53 | 90% | 325 | 85% |
Unsuccessful at conceiving | 4 | 7% | 36 | 9% |
Unknown cause | 11 | 19% | 29 | 8% |
low sperm count | 1 | 2% | 20 | 5% |
abnormal sperm | 0 | 0% | 7 | 2% |
did not ovulate | 1 | 2% | 8 | 2% |
did not menstruate | 0 | 0% | 1 | 0% |
hormone imbalance | 1 | 2% | 3 | 1% |
other | 0 | 0% | 6 | 2% |
Miscarriage *** | 14 | 24% | 91 | 24% |
Still Birth | 0 | 0% | 5 | 1% |
preterm birth | 3 | 5% | 25 | 7% |
gestational diabetes | 3 | 5% | 10 | 3% |
low birth weight | 3 | 5% | 12 | 3% |
high birth weight | 1 | 2% | 4 | 1% |
spina bifida | 1 | 2% | 2 | 1% |
congenital heart abnormalities | 0 | 0% | 4 | 1% |
club foot | 1 | 2% | 2 | 1% |
hydrocephalus, Duane Syndrome, autism spectrum disorder, other neural tube defects | 0 | 0% | 2 | 1% |
other physical disabilities | 1 | 2% | 6 | 2% |
other | 5 | 8% | 31 | 8% |
No, none of these | 31 | 53% | 252 | 66% |
Other negative birth outcomes reported included (maximum of one firefighter per group, but could involve multiple children by that individual): cleft pallet, gastroschisis, astigmatisms, attention deficit disorder, hyperactivity disorder, dyspraxia, craniosynostosis, childhood cancer, hyper twisted umbilical cord, dyslexia, encephalocele, cerebral palsy, down syndrome, Trisomy 13, diabetes, oculocutaneous albinism, migraines, tongue tied and jaundice |
Study | Cohort | N | Rate of Agglutination |
---|---|---|---|
This Study | Total Firefighters | 23 | 26% |
This Study | Age < 45 Years | 12 | 33% |
This Study | Age ≥ 45 Years | 11 | 18% |
[41] | Infertile men age 20–50 | 100 | 18% |
[42] | All men via reproductive centre, age not defined | 1095 | 12% |
Analyte | RfD | EDI Med (ng/kg/day) | EDI 95th% (ng/kg/day) | Detection Frequency |
---|---|---|---|---|
BDE-47 | 100 | 220 | 630 | 68% |
BDE-99 | 100 | 170 | 220 | 100% |
BDE-153 | 200 | 170 | 630 | 68% |
TCIPP | 3600 | 72,000 | 420,000 | 50% |
TCEP | 2200 | * | 5200 | 15% |
TBOEP | 1500 | 10,000 | 14,000 | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Engelsman, M.; Banks, A.P.W.; He, C.; Nilsson, S.; Blake, D.; Jayarthne, A.; Ishaq, Z.; Toms, L.-M.L.; Wang, X. An Exploratory Analysis of Firefighter Reproduction through Survey Data and Biomonitoring. Int. J. Environ. Res. Public Health 2023, 20, 5472. https://doi.org/10.3390/ijerph20085472
Engelsman M, Banks APW, He C, Nilsson S, Blake D, Jayarthne A, Ishaq Z, Toms L-ML, Wang X. An Exploratory Analysis of Firefighter Reproduction through Survey Data and Biomonitoring. International Journal of Environmental Research and Public Health. 2023; 20(8):5472. https://doi.org/10.3390/ijerph20085472
Chicago/Turabian StyleEngelsman, Michelle, Andrew P. W. Banks, Chang He, Sandra Nilsson, Debbie Blake, Ayomi Jayarthne, Zubaria Ishaq, Leisa-Maree L. Toms, and Xianyu Wang. 2023. "An Exploratory Analysis of Firefighter Reproduction through Survey Data and Biomonitoring" International Journal of Environmental Research and Public Health 20, no. 8: 5472. https://doi.org/10.3390/ijerph20085472
APA StyleEngelsman, M., Banks, A. P. W., He, C., Nilsson, S., Blake, D., Jayarthne, A., Ishaq, Z., Toms, L. -M. L., & Wang, X. (2023). An Exploratory Analysis of Firefighter Reproduction through Survey Data and Biomonitoring. International Journal of Environmental Research and Public Health, 20(8), 5472. https://doi.org/10.3390/ijerph20085472