Method Development for Detecting Low Level Volatile Organic Compounds (VOCs) among Workers and Residents from a Carpentry Work Shop in a Palestinian Village
Abstract
:1. Introduction
2. Materials and Experimental
2.1. Study Area
2.2. Materials
2.3. Standards Calibration
2.4. Instruments and Apparatus
2.5. Sampling Sites
2.6. Field Sampling and Chemical Analysis
2.7. Human Subjects and Sampling
2.8. Blood Collection Vial Preparation
2.9. Method Validation
2.10. Quality Assurance
2.11. Quality Control Samples
2.12. Blank Analysis
2.13. Proficiency Testing
3. Results and Discussion
3.1. Summary of Data
3.2. Volatile Blood and Room Air C-+Onstituents
4. Conclusions
5. General Recommendations and a Warrens
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chambers, D.M.; Blount, B.C. Impact of cigarette smoking on Volatile Organic Compound (VOC) blood levels in the U.S. Population: NHANES 2003–2004. Environ. Int. 2011, 37, 1321–1328. [Google Scholar] [CrossRef] [PubMed]
- Rumchev, K.; Spickett, J.; Bulsara, M.; Phillips, M.; Stick, S. Association of domestic exposure to volatile organic compounds with asthma in young children. Thorax 2004, 59, 746–751. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Smith, K.R. Indoor air pollution: A global health concern. Br. Med. Bull. 2003, 68, 209–225. [Google Scholar] [CrossRef] [PubMed]
- Agency for Toxic Substances and Disease Registry. Available online: http://www.atsdr.cdc.gov/ (accessed on 14 June 2021).
- Zhu, J.; Wong, S.L.; Cakmak, S. Nationally representative levels of selected volatile organic compounds in Canadian residential indoor air: Population-based survey. Environ. Sci. Technol. 2013, 47, 13276–13283. [Google Scholar] [CrossRef]
- Patry-Parisien, J.; Zhu, J.; Wong, S.L. Implementation ofthe indoor air component of cycle 2 of the Canadian health measures survey. Health Rep. 2013, 24, 3–10. [Google Scholar]
- Huang, Z.H.; Zhang, Y.L.; Yan, Q.; Wang, Z.Y.; Zhang, Z.; Wang, X.M. Decreased human respiratory absorption factors of aromatic hydrocarbons at lower exposure levels: The dual effect in reducing ambient air toxics. Environ. Sci. Technol. Lett. 2017, 4, 463–469. [Google Scholar] [CrossRef]
- Zhou, J.; You, Y.; Bai, Z.; Hu, Y.; Zhang, J.; Zhang, N. Health risk assessment of personal inhalation exposure to volatile organic compounds in Tianjin, China. Sci. Total Environ. 2011, 409, 452–459. [Google Scholar] [CrossRef]
- Weisel, C.P.; Indoor, R.O. Outdoor, and Personal Air (RIOPA). Part I. Collection Methods and Descriptive Analyses; Research report; Health Effects Institute: Boston, MA, USA, 2005. [Google Scholar]
- Jia, C.; D’Souza, J.; Batterman, S. Distributions of personal VOC exposures: A population-based analysis. Environ. Int. 2008, 34, 922–931. [Google Scholar] [CrossRef]
- Ashley, D.L.; Bonin, M.A.; Cardinali, F.L.; McCraw, J.M.; Wooten, J.V. Blood concentrations of volatile organic compounds in a nonoccupationally exposed US population and in groups with suspected exposure. Clin. Chem. 1994, 40, 1401–1404. [Google Scholar] [CrossRef]
- Mathias, P.I.; B’Hymer, C. A survey of liquid chromatographic–mass spectrometric analysis of mercapturic acid biomarkers in occupational and environmental exposure monitoring. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 964, 136–145. [Google Scholar] [CrossRef]
- Heinrich-Ramm, R.; Jakubowski, M.; Heinzow, B.; Christensen, J.M.; Olsen, E.; Hertel, O. Biological monitoring for exposure to volatile organic compounds (VOCs) (IUPAC recommendations 2000). Pure Appl. Chem. 2000, 72, 385–436. [Google Scholar] [CrossRef]
- Eckert, E.; Schmid, K.; Schaller, B.; Hiddemann-Koca, K.; Drexler, H.; Göen, T. Mercapturic acids as metabolites of alkylating substances in urine samples of German inhabitants. Int. J. Hyg. Environ. Health 2011, 214, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Španěl, P.; Dryahina, K.; Smith, D. A quantitative study of the influence of inhaled compounds on their concentrations in exhaled breath. J. Breath Res. 2013, 7, 017106. [Google Scholar] [CrossRef] [PubMed]
- Sukul, P.; Oertel, P.; Kamysek, S.; Trefz, P. Oral or nasal breathing? Real-time effects of switching sampling route onto exhaled VOC concentrations. J. Breath Res. 2017, 11, 027101. [Google Scholar] [CrossRef] [PubMed]
- Sukul, P.; Schubert, J.K.; Kamysek, S.; Trefz, P.; Miekisch, W. Applied upper airway resistance instantly affects breath components: A unique insight into pulmonary medicine. J. Breath Res. 2017, 11, 047108. [Google Scholar] [CrossRef]
- Perbellini, L.; Princivalle, A.; Cerpelloni, M.; Pasini, F.; Brugnone, F. Comparison of breath, blood and urine concentrations in the biomonitoring of environmental exposure to 1,3-butadiene, 2,5-dimethylfuran, and benzene. Int. Arch. Occup. Environ. Health 2003, 76, 461–466. [Google Scholar] [CrossRef]
- Lim, D.-H.; Ahmadi, Y.; Kim, Y.-H.; Kim, K.H. The extent of harmful volatile organic compounds released when smoking after breaking the flavor capsules of heat-not-burn (HNB) cigarette products. Environ. Res. 2023, 216, 114501. [Google Scholar] [CrossRef]
- Du, X.; Li, X.; Qian, P.; Wu, H. Indoor air pollution from solid fuels use, inflammation, depression and cognitive function in middle-aged and older Chinese adults. J. Affect. Disord. 2022, 319, 370–376. [Google Scholar] [CrossRef]
- Berenguer, C.; Pereira, J.; Câmara, J. Fingerprinting the volatile profile of traditional tobacco and e-cigarettes: A comparative study. Microchem. J. 2021, 166, 106196. [Google Scholar] [CrossRef]
- Kong, M.; Kim, H.; Hong, T. An effective alerting strategy to facilitate occupants’ perception of indoor air quality: By alarming concentration of indoor air pollution. Environ. Pollut. 2023, 325, 121428. [Google Scholar] [CrossRef]
- Kalisa, E.; Kuuire, V.; Adams, M. Children’s exposure to indoor and outdoor black carbon and particulate matter air pollution at school in Rwanda, Central-East Africa. Environ. Adv. 2023, 11, 100334. [Google Scholar] [CrossRef]
- Amodio, M.; Dambruoso, P.R.; de Gennaro, G.; de Gennaro, L.; Loiotile, A.D.; Marzocca, A.; Stasi, F.; Trizio, L.; Tutino, M. Indoor air quality (IAQ) assessment in a multistorey 309 shopping mall by high-spatial-resolution monitoring of volatile organic compounds (VOC). Environ. Sci. Pollut. Res. Int. 2014, 21, 13186–13195. [Google Scholar] [CrossRef] [PubMed]
- Antoine, S.R.; DeLeon, I.R.; Smith, R.M.O. Environmentally significant volatile organic pollutants in human blood. Bull. Environ. Contam. Toxicol. 1986, 36, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Ashley, D.L.; Bonin, M.A.; Cardinali, F.L.; McCraw, J.M.; Holler, J.S.; Needham, L.L.; Patterson, D.G., Jr. Determining volatile organic compounds in human blood from a large sample population by using purge and trap gas chromatography/mass spectrometry. Anal. Chem. 1992, 64, 1021. [Google Scholar] [CrossRef] [PubMed]
- Bonin, M.A.; Silva, L.K.; Smith, M.M.; Ashley, D.L.; Blount, B.C. Measurement of Trihalomethanes and Methyl tert-Butyl Ether in Whole Blood Using Gas Chromatography with High-Resolution Mass Spectrometry. J. Anal. Toxicol. 2005, 29, 81. [Google Scholar] [CrossRef]
- Cardinali, F.L.; Ashley, D.L.; Wooten, J.V.; McCraw, J.M.; Lemire, S.W. The Use of Solid-Phase Microextraction in Conjunction with a Benchtop Quadrupole Mass Spectrometer for the Analysis of Volatile Organic Compounds in Human Blood at the Low Parts-Per-Trillion Level. J. Chromatogr. Sci. 2000, 38, 49. [Google Scholar] [CrossRef]
- Cardinali, F.L.; McCraw, J.M.; Ashley, D.L.; Bonin, M.A. Production of Blank Water for the Analysis of Volatile Organic Compounds in Human Blood at the Low Parts-Per-Trillion Level. J. Chromatogr. Sci. 1994, 32, 41. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, S.; Lee, J.T.; Choi, J.H.; Lee, J.; Pyo, H. Rapid Determination of Volatile Organic Compounds in Human Whole Blood Using Static Headspace Sampling with Gas Chromatography and Mass Spectrometry. Bull. Korean Chem. Soc. 2012, 33, 3963. [Google Scholar] [CrossRef]
- Jia, C.; Batterman, S.; Godwin, C. Continuous, intermittent and passive sampling of airborne VOCs. J. Environ. Monit. 2007, 9, 1220–1230. [Google Scholar] [CrossRef]
- King, J.; Koc, H.; Unterko, K.; Mochalski, P.; Kupferthaler, A.; Teschl, G.; Teschl, S.; Hinterhuber, H.; Amann, A. Physiological modeling of isoprene dynamics in exhaled breath. J. Theor. Biol. 2010, 267, 626–637. [Google Scholar] [CrossRef]
- Cardinali, F.L.; McCraw, J.M.; Ashley, D.L.; Bonin, M.; Wooten, J. Treatment of Vacutainers for Use in the Analysis of Volatile Organic Compounds in Human Blood at the Low Parts-Per-Tri11ion Level. J. Chromatogr. Sci. 1995, 33, 557. [Google Scholar] [CrossRef] [PubMed]
- Westgard, J.O.; Barry, P.L.; Hunt, M.R.; Groth, T. A multi-rule Shewhart chart for quality control in clinical chemistry. Clin. Chem. 1981, 27, 493. [Google Scholar] [CrossRef] [PubMed]
- Huber, W. Basic calculations about the limit of detection and its optimal determination. Accredit. Qual. Assur. 2003, 8, 213–217. [Google Scholar] [CrossRef]
- Li, N.; Deng, C.; Yin, X.; Yao, N.; Shen, X.; Zhang, X. Gas chromatography–mass spectrometric analysis of hexanal and heptanal in human blood by headspace single-drop microextraction with droplet derivatization. Anal. Biochem. 2005, 342, 318–326. [Google Scholar] [CrossRef]
- Deng, C.; Li, N.; Zhang, X. Development of headspace solid-phase microextraction with on-fiber derivatization for determination of hexanal and heptanal in human blood. J. Chromatogr. B 2004, 813, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.; Burden, H.; Persad, R.; Whittington, K.; de Lacy Costello, B.; Ratcliffe, N.M.; Probert, C.S. A comparative study of the analysis of human urine headspace using gas chromatography–mass spectrometry. J. Breath Res. 2008, 2, 037022. [Google Scholar] [CrossRef]
- Wahl, H.G.; Hoffmann, A.; Lu, D.; Liebich, H.M. Analysis of volatile organic compounds in human urine by headspace gas chromatography–mass spectrometry with a multipurpose sampler. J. Chromatogr. 1999, 847, 117–125. [Google Scholar] [CrossRef]
- Mochalski, P.; King, J.; Kupferthaler, A.; Unterko, K.; Hinterhuber, H.; Amann, A. Human blood and plasma partition coefficients for C4-C8 n-alkanes, isoalkanes, and 1-alkenes. Int. J. Toxicol. 2012, 31, 267–275. [Google Scholar] [CrossRef]
- Dibble, T.S. A quantum chemical study of the C− C bond fission pathways of alkoxy radicals formed following OH addition to isoprene. J. Phys. Chem. A 1999, 103, 8559–8565. [Google Scholar] [CrossRef]
- Schwarz, K.; Pizzini, A.; Arendacka, B.; Zerlauth, K.; Filipiak, W.; Schmid, A.; Dzien, A.; Neuner, S.; Lechleitner, M.; SchollBurgi, S.; et al. Breath acetone—Aspects of normal physiology related to age and gender as determined in a PTR-MS study. J. Breath Res. 2009, 3, 027003. [Google Scholar] [CrossRef]
- Houeto, P.; Hoffman, J.R.; Got, P.; Dang Vu, B.; Baud, F.J. Acetonitrile as a possible marker of current cigarette smoking. Hum. Exp. Toxicol. 1997, 16, 658–661. [Google Scholar] [CrossRef] [PubMed]
- Cacho, C.; Silva, G.V.A.; Martins, A.; De Oliveira Fernandes, E.; Saraga, D.E.; Dimitroulopoulou, C.; Bartzis, J.G.; Rembges, D.; Barrero-Moreno, J.; Kotzias, D. Air pollutants in office environments and emissions from electronic equipment: A review. Fresenius Environ. Bull. 2013, 22, 2488–2497. [Google Scholar]
- Bolden, A.L.; Kwiatkowski, C.F.; Colborn, T. New look at BTEX: Are ambient levels a problem? Environ. Sci. Technol. 2015, 49, 5261–5276. [Google Scholar] [CrossRef] [PubMed]
- Huff, J. Benzene-induced cancers: Abridged history and occupational health impact. Int. J. Occup. Environ. Health 2007, 13, 213–221. [Google Scholar] [CrossRef]
Employee |
|
|
|
|
|
|
|
|
|
|
Residence |
|
|
|
|
|
|
|
|
|
|
Students |
|
|
|
|
|
|
|
|
|
|
Retention Time | Analyte | Structure | Quant (m/z) | Average Value in Blood (ng/L) Mean ± SD | Average Value in Air (ng/L) Mean ± SD | MDL (ug/L) (GC) | Permissible Limit |
---|---|---|---|---|---|---|---|
5.98 | acetonitrile | 41 | 57 ± 0.105 | 127 ± 0.214 | 0.031 | 4.1 mg/day | |
6.95 | ethyl acetate | 88.11 | 65 ± 0.113 | 87 ± 0.193 | 0.5 | 400 mg/L | |
8.24 | 1,1-Dichloroethene | 96 | 13.6 ± 0.081 | 25.6 ± 0.094 | 0.018 | 0.03 mg/L | |
9.13 | 2-propenal | 56 | 39 ± 0.092 | 74 ± 0.113 | 0.001 | 0.1 mg/L | |
9.26 | Methylene chloride | 84 | 32.6 ± 0.088 | 38.5 ± 0.098 | 0.089 | 0–0.5 mg/kg body weight | |
9.54 | Transe-1,2-Di Dichloroethene | 96 | 14.7 ± 0.076 | 32.4 ± −084 | 0.014 | 6.0 mL/kg body weight | |
10.28 | propanal | 58 | 65 ± 0.121 | 83 ± 0.203 | 0.04 mg/L | 0.104 mg/dL | |
10.75 | Methyl tert-butyl ether | 73 | 22 ± 0.072 | 51 ± 0.121 | 0.01 | NA | |
11.41 | Methyl acetate | 74 | 37 ± 0.082 | 61 ± 0.121 | 0.03 | 200 mg/L/10 h | |
11.75 | cis-1,2-Dichloroethene | 96 | 13.5 ± 0.056 | 17.2 ± 0.078 | 0.013 | 0.07 mg/L | |
11.90 | chloroform | 83 | 14.8 ± 0.065 | 18.2 ± 0.084 | 0.05 | 0.07 mg/L | |
12.65 | 1,2-Dichloroethane | 62 | 13.8 ± 0.072 | 16.5 ± 0.075 | 0.012 | 0.7 mg/m3 | |
12.84 | 1,1,1-Trichloroethane | 97 | 28 ± 0.092 | 28.5 ± 0.104 | 0.01 | 2000 μg/L | |
13.13 | Carbon tetrachloride | 117 | 13 ± 0.084 | 22 ± 0.095 | 0.0 19 | 5 ppb | |
13.81 | Benzene | 78 | 18 ± 0.093 | 28 ± 0.117 | 0.05 | 1 mg/L | |
13.96 | Dibromomethane | 174 | 29 ± 0.084 | 47 ± 0.201 | 0.044 | 10 mg/L | |
14.68 | 1,2-Dichloropropane | 63 | 9.4 ± 0.103 | 14 ± 0.053 | 0.008 | 1.2 μg/m3 | |
14.98 | Trichloroethene | 130 | 3 ± 0.004 | 7.5 ± 0.002 | 0.01 | 100 mg/L | |
15.72 | Bromodichloromethane | 83 | 9 ± 0.009 | 4.7 ± 0.001 | 0.183 | 0.08 mg/L | |
15.91 | Methyl proprionate | 88 | 25 ± 0.08 | 81 ± 0.243 | 0.25 mg/L | 200 mg/100 mL | |
16.79 | 2,5-Dimethylfuran | 96 | 9 ± 0.009 | 4.8 ± 0.001 | 0.23 | NA | |
16.82 | 1,1,2-Trichloroethane | 97 | 9.5 ± 0.008 | 12.8 ± 0.003 | 0.016 | NA | |
17.14 | n-butyl acetate | 116.16 | 37 ± 0.072 | 42 ± 0.094 | 0.31 | 150 mg/L | |
17.66 | Toluene | 91 | 83 ± 0.321 | 115 ± 0.386 | 0.03 | 5 mg/L | |
17.86 | Dibromochloromethane | 129 | 47.9 ± 0.075 | 148 ± 0.412 | 0.01 | 100 mg/L | |
18.22 | Tetrachloroethene | 166 | 19 ± 0.045 | 26.4 ± 0.053 | 0.03 | 100 mg/L | |
18.31 | Chlorobenzene | 112 | 8.8 ± 0.008 | 15.2 ± 0.019 | 0.007 | 62 mg/L | |
18.68 | Ethylbenzene | 91 | 14 ± 0.104 | 16.7 ± 0.021 | 0.02 | 125 mg/L | |
18.83 | m/p-Xylene | 91 | 68 ± 0.328 | 123 ± 0.331 | 0.033 | 150 mg/L | |
19.43 | Bromoform | 173 | 23 ± 0.129 | 38 ± 0.189 | 0.027 | 0.5 mg/L | |
19.62 | Styrene | 104 | 29 ± 0.183 | 118 ± 0.326 | 0.1 | 200 mg/L | |
19.74 | 1,1,2,2-Tetrachlroethane | 83 | 7 ± 0.005 | 26 ± 0.217 | 0.008 | NA | |
20.63 | o- Xylene | 91 | 38 ± 0.213 | 53 ± 0.316 | 0.08 | 9 mg/L | |
21.27 | 1,3-Dichlorobenzene | 146 | 33 ± 0.141 | 48 ± 0.327 | 0.019 | NA | |
22.01 | 1,2-Dichlorobenzene | 146 | 32 ± 0.170 | 48 ± 0.214 | 0.044 | 50 mg/l | |
22.85 | 1,4-Dichlorobenzene | 146 | 28 ± 0.140 | 42 ± −0.173 | 0.073 | 75 mg/L | |
23.15 | toluene 2,4-diisocyanate | 174.2 | 270 ± 2.73 | 291.5 ± 2.94 | 0.02 | 0.005 mg/L | |
24.62 | Hexachloroethane | 201 | 6.5 ± 0.004 | 13.4 ± 0.007 | 0.001 | 1 mg/L |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jodeh, S.; Chakir, A.; Hanbali, G.; Roth, E.; Eid, A. Method Development for Detecting Low Level Volatile Organic Compounds (VOCs) among Workers and Residents from a Carpentry Work Shop in a Palestinian Village. Int. J. Environ. Res. Public Health 2023, 20, 5613. https://doi.org/10.3390/ijerph20095613
Jodeh S, Chakir A, Hanbali G, Roth E, Eid A. Method Development for Detecting Low Level Volatile Organic Compounds (VOCs) among Workers and Residents from a Carpentry Work Shop in a Palestinian Village. International Journal of Environmental Research and Public Health. 2023; 20(9):5613. https://doi.org/10.3390/ijerph20095613
Chicago/Turabian StyleJodeh, Shehdeh, Abdelkhaleq Chakir, Ghadir Hanbali, Estelle Roth, and Abdelrahman Eid. 2023. "Method Development for Detecting Low Level Volatile Organic Compounds (VOCs) among Workers and Residents from a Carpentry Work Shop in a Palestinian Village" International Journal of Environmental Research and Public Health 20, no. 9: 5613. https://doi.org/10.3390/ijerph20095613
APA StyleJodeh, S., Chakir, A., Hanbali, G., Roth, E., & Eid, A. (2023). Method Development for Detecting Low Level Volatile Organic Compounds (VOCs) among Workers and Residents from a Carpentry Work Shop in a Palestinian Village. International Journal of Environmental Research and Public Health, 20(9), 5613. https://doi.org/10.3390/ijerph20095613