The Associations of Trans-3′-Hydroxy Cotinine, Cotinine, and the Nicotine Metabolite Ratio in Pediatric Patients with Tobacco Smoke Exposure
Abstract
:1. Introduction
2. Materials and Methods
Self-Reported Child Sociodemographics and TSE Patterns
3. Sample Collection and Analysis
Urine Collection and Analysis
4. Statistical Analysis
5. Results
5.1. Child Sociodemographics and TSE Patterns
5.2. Urinary 3HC, COT, 3HC + COT Sum, and 3HC/Cotinine Ratio Levels
5.3. Association of Child Sociodemographic Characteristics and TSE Patterns with 3HC and COT Levels
5.4. Associations of Child Age and Child Sex and Urinary 3HC, COT, 3HC + COT Sum, and 3HC/COT Ratio Levels Conditional on Child Race
5.5. Associations of Child Cumulative TSE and Urinary 3HC, COT, 3HC + COT Sum, and 3HC/COT Ratio Levels Conditional on Child Race
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cornelius, M.E.; Loretan, C.G.; Wang, T.W.; Jamal, A.; Homa, D.M. Tobacco Product Use Among Adults—United States, 2020. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Merianos, A.L.; Jandarov, R.A.; Choi, K.; Mahabee-Gittens, E.M. Tobacco smoke exposure disparities persist in U.S. children: NHANES 1999–2014. Prev. Med. 2019, 123, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Avila-Tang, E.; Al-Delaimy, W.K.; Ashley, D.L.; Benowitz, N.; Bernert, J.T.; Kim, S.; Samet, J.M.; Hecht, S.S. Assessing secondhand smoke using biological markers. Tob. Control. 2013, 22, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Benowitz, N.L.; Hukkanen, J.; Jacob, P., 3rd. Nicotine chemistry, metabolism, kinetics and biomarkers. Handb. Exp. Pharmacol. 2009, 192, 29–60. [Google Scholar]
- Benowitz, N.L.; Bernert, J.T.; Foulds, J.; Hecht, S.S.; Jacob, P.; Jarvis, M.J.; Joseph, A.; Oncken, C.; Piper, M.E. Biochemical Verification of Tobacco Use and Abstinence: 2019 Update. Nicotine Tob. Res. 2020, 22, 1086–1097. [Google Scholar] [CrossRef] [PubMed]
- Mahabee-Gittens, E.M.; Merianos, A.L.; Stone, L.; Tabangin, M.E.; Khoury, J.C.; Gordon, J.S. Tobacco Use Behaviors and Perceptions of Parental Smokers in the Emergency Department Setting. Tob. Use Insights 2019, 12, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Mahabee-Gittens, E.M.; Mazzella, M.J.; Doucette, J.T.; Merianos, A.L.; Stone, L.; Wullenweber, C.A.; Busgang, S.A.; Matt, G.E. Comparison of Liquid Chromatography Mass Spectrometry and Enzyme-Linked Immunosorbent Assay Methods to Measure Salivary Cotinine Levels in Ill Children. Int. J. Environ. Res. Public Health 2020, 17, 1157. [Google Scholar] [CrossRef]
- Mahabee-Gittens, E.M.; Ammerman, R.T.; Khoury, J.C.; Tabangin, M.E.; Ding, L.; Merianos, A.L.; Stone, L.; Gordon, J.S. A Parental Smoking Cessation Intervention in the Pediatric Emergency Setting: A Randomized Trial. Int. J. Environ. Res. Public Health 2020, 17, 8151. [Google Scholar] [CrossRef]
- Benowitz, N.L. Cotinine as a biomarker of environmental tobacco smoke exposure. Epidemiol. Rev. 1996, 18, 188–204. [Google Scholar] [CrossRef]
- Benowitz, N.L. Pharmacology of nicotine: Addiction, smoking-induced disease, and therapeutics. Annu. Rev. Pharmacol. Toxicol. 2009, 49, 57–71. [Google Scholar] [CrossRef]
- Tanner, J.A.; Tyndale, R.F. Variation in CYP2A6 Activity and Personalized Medicine. J. Pers. Med. 2017, 7, 18. [Google Scholar] [CrossRef] [PubMed]
- Dempsey, D.A.; Sambol, N.C.; Jacob, P., 3rd; Hoffmann, E.; Tyndale, R.F.; Fuentes-Afflick, E.; Benowitz, N.L. CYP2A6 genotype but not age determines cotinine half-life in infants and children. Clin. Pharmacol. Ther. 2013, 94, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Torres, S.; Merino, C.; Paton, B.; Correig, X.; Ramirez, N. Biomarkers of Exposure to Secondhand and Thirdhand Tobacco Smoke: Recent Advances and Future Perspectives. Int. J. Environ. Res. Public Health 2018, 15, 2693. [Google Scholar] [CrossRef]
- Dempsey, D.; Tutka, P.; Jacob, P., 3rd; Allen, F.; Schoedel, K.; Tyndale, R.F.; Benowitz, N.L. Nicotine metabolite ratio as an index of cytochrome P450 2A6 metabolic activity. Clin. Pharmacol. Ther. 2004, 76, 64–72. [Google Scholar] [CrossRef]
- Benowitz, N.L.; Bernert, J.T.; Caraballo, R.S.; Holiday, D.B.; Wang, J. Optimal serum cotinine levels for distinguishing cigarette smokers and nonsmokers within different racial/ethnic groups in the United States between 1999 and 2004. Am. J. Epidemiol. 2009, 169, 236–248. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.E.; Wickham, K.M.; Lindgren, B.R.; Spector, L.G.; Joseph, A. Cotinine and trans 3′-hydroxycotinine in dried blood spots as biomarkers of tobacco exposure and nicotine metabolism. J. Expo. Sci. Environ. Epidemiol. 2013, 23, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Matt, G.E.; Quintana, P.J.; Liles, S.; Hovell, M.F.; Zakarian, J.M.; Jacob, P., 3rd; Benowitz, N.L. Evaluation of urinary trans-3′-hydroxycotinine as a biomarker of children’s environmental tobacco smoke exposure. Biomark. Biochem. Indic. Expo. Response Susceptibility Chem. 2006, 11, 507–523. [Google Scholar]
- Hukkanen, J.; Jacob, P., 3rd; Benowitz, N.L. Metabolism and disposition kinetics of nicotine. Pharmacol. Rev. 2005, 57, 79–115. [Google Scholar] [CrossRef]
- Benowitz, N.L.; Jacob, P., 3rd. Trans-3′-hydroxycotinine: Disposition kinetics, effects and plasma levels during cigarette smoking. Br. J. Clin. Pharmacol. 2001, 51, 53–59. [Google Scholar] [CrossRef]
- Neurath, G.B.; Dunger, M.; Orth, D.; Pein, F.G. Trans-3′-hydroxycotinine as a main metabolite in urine of smokers. Int. Arch. Occup. Environ. Health 1987, 59, 199–201. [Google Scholar] [CrossRef]
- Jacob, P., 3rd; Yu, L.; Duan, M.; Ramos, L.; Yturralde, O.; Benowitz, N.L. Determination of the nicotine metabolites cotinine and trans-3′-hydroxycotinine in biologic fluids of smokers and non-smokers using liquid chromatography-tandem mass spectrometry: Biomarkers for tobacco smoke exposure and for phenotyping cytochrome P450 2A6 activity. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011, 879, 267–276. [Google Scholar]
- Liakoni, E.; Tyndale, R.F.; Jacob, P.; Dempsey, D.A.; Addo, N.; Benowitz, N.L. Effect of race and glucuronidation rates on the relationship between nicotine metabolite ratio and nicotine clearance. Pharm. Genom. 2021, 31, 97–107. [Google Scholar] [CrossRef]
- Benowitz, N.L.; Perez-Stable, E.J.; Fong, I.; Modin, G.; Herrera, B.; Jacob, P., 3rd. Ethnic differences in N-glucuronidation of nicotine and cotinine. J. Pharmacol. Exp. Ther. 1999, 291, 1196–1203. [Google Scholar]
- Allenby, C.E.; Boylan, K.A.; Lerman, C.; Falcone, M. Precision Medicine for Tobacco Dependence: Development and Validation of the Nicotine Metabolite Ratio. J. Neuroimmune Pharmacol. 2016, 11, 471–483. [Google Scholar] [CrossRef]
- Wilson, S.E.; Kahn, R.S.; Khoury, J.; Lanphear, B.P. Racial differences in exposure to environmental tobacco smoke among children. Environ. Health Persp. 2005, 113, 362–367. [Google Scholar] [CrossRef]
- Wilson, S.E.; Kahn, R.S.; Khoury, J.; Lanphear, B.P. The role of air nicotine in explaining racial differences in cotinine among tobacco-exposed children. Chest 2007, 131, 856–862. [Google Scholar] [CrossRef] [PubMed]
- Mahabee-Gittens, E.M.; Ammerman, R.T.; Khoury, J.C.; Stone, L.; Meyers, G.T.; Witry, J.K.; Merianos, A.L.; Mancuso, T.F.; Stackpole, K.M.W.; Bennett, B.L.; et al. Healthy families: Study protocol for a randomized controlled trial of a screening, brief intervention, and referral to treatment intervention for caregivers to reduce secondhand smoke exposure among pediatric emergency patients. BMC Public Health 2017, 17, 374. [Google Scholar] [CrossRef]
- Mahabee-Gittens, E.M.; Matt, G.E.; Jandarov, R.J.; Merianos, A.L. Hand Nicotine and Cotinine In Children Exposed to Cigars: A Pilot Study. Tob. Regul. Sci. 2021, 7, 170–176. [Google Scholar] [CrossRef]
- Chang, C.M.; Rostron, B.L.; Chang, J.T.; Corey, C.G.; Kimmel, H.L.; Sosnoff, C.S.; Goniewicz, M.L.; Edwards, K.C.; Hatsukami, D.K.; Wang, Y.; et al. Biomarkers of Exposure among U.S. Adult Cigar Smokers: Population Assessment of Tobacco and Health (PATH) Study Wave 1 (2013–2014). Cancer Epidemiol. Biomark. Prev. 2019, 28, 943–953. [Google Scholar] [CrossRef] [PubMed]
- Mahabee-Gittens, E.M.; Matt, G.E.; Merianos, A.L. High Levels of the Carcinogenic Tobacco-Specific Nitrosamine NNAL and Associated Findings in Children of Smokers: A Case Series. Biomark. Insights 2022, 17, 11772719221118868. [Google Scholar] [CrossRef]
- Kutner, M.H.; Nachtsheim, C.; Neter, J. Applied Linear Regression Models, 4th ed.; McGraw-Hill/Irwin: New York, NY, USA, 2004. [Google Scholar]
- Mahabee-Gittens, E.M.; Merianos, A.L.; Gordon, J.S.; Stone, L.; Semenova, O.; Matt, G.E. Electronic Health Record Classification of Tobacco Smoke Exposure and Cotinine Levels in Hospitalized Pediatric Patients. Hosp. Pediatr. 2019, 9, 659–664. [Google Scholar] [CrossRef] [PubMed]
- Baurley, J.W.; Edlund, C.K.; Pardamean, C.I.; Conti, D.V.; Krasnow, R.; Javitz, H.S.; Hops, H.; Swan, G.E.; Benowitz, N.L.; Bergen, A.W. Genome-Wide Association of the Laboratory-Based Nicotine Metabolite Ratio in Three Ancestries. Nicotine Tob. Res. 2016, 18, 1837–1844. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, M.; Fukami, T.; Yamanaka, H.; Higashi, E.; Sakai, H.; Yoshida, R.; Kwon, J.T.; McLeod, H.L.; Yokoi, T. Comprehensive evaluation of variability in nicotine metabolism and CYP2A6 polymorphic alleles in four ethnic populations. Clin. Pharmacol. Ther. 2006, 80, 282–297. [Google Scholar] [CrossRef]
- Chenoweth, M.J.; Novalen, M.; Hawk, L.W., Jr.; Schnoll, R.A.; George, T.P.; Cinciripini, P.M.; Lerman, C.; Tyndale, R.F. Known and novel sources of variability in the nicotine metabolite ratio in a large sample of treatment-seeking smokers. Cancer Epidemiol. Biomark. Prev. 2014, 23, 1773–1782. [Google Scholar] [CrossRef]
- Ho, J.T.K.; Tyndale, R.F.; Baker, T.B.; Amos, C.I.; Chiu, A.; Smock, N.; Chen, J.; Bierut, L.J.; Chen, L.S. Racial disparities in intensity of smoke exposure and nicotine intake among low-dependence smokers. Drug Alcohol Depend. 2021, 221, 108641. [Google Scholar]
- St Helen, G.; Dempsey, D.; Wilson, M.; Jacob, P., 3rd; Benowitz, N.L. Racial differences in the relationship between tobacco dependence and nicotine and carcinogen exposure. Addiction 2013, 108, 607–617. [Google Scholar] [CrossRef]
- Ryan, B.M. Lung cancer health disparities. Carcinogenesis 2018, 39, 741–751. [Google Scholar] [CrossRef]
- Muscat, J.E.; Djordjevic, M.V.; Colosimo, S.; Stellman, S.D.; Richie, J.P., Jr. Racial differences in exposure and glucuronidation of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Cancer 2005, 103, 1420–1426. [Google Scholar] [CrossRef]
- Babb, S.; Malarcher, A.; Schauer, G.; Asman, K.; Jamal, A. Quitting Smoking Among Adults—United States, 2000–2015. MMWR Morb. Mortal. Wkly. Rep. 2017, 65, 1457–1464. [Google Scholar] [CrossRef]
- Sakuma, K.K.; Pierce, J.P.; Fagan, P.; Nguyen-Grozavu, F.T.; Leas, E.C.; Messer, K.; White, M.M.; Tieu, A.S.; Trinidad, D.R. Racial/Ethnic Disparities Across Indicators of Cigarette Smoking in the Era of Increased Tobacco Control, 1992–2019. Nicotine Tob. Res. 2021, 23, 909–919. [Google Scholar] [CrossRef]
- Trinidad, D.R.; Xie, B.; Fagan, P.; Pulvers, K.; Romero, D.R.; Blanco, L.; Sakuma, K.L. Disparities in the Population Distribution of African American and Non-Hispanic White Smokers Along the Quitting Continuum. Health Educ. Behav. 2015, 42, 742–751. [Google Scholar] [CrossRef] [PubMed]
- Muscat, J.E.; Liu, A.; Richie, J.P., Jr. A comparison of creatinine vs. specific gravity to correct for urinary dilution of cotinine. Biomark. Biochem. Indic. Expo. Response Susceptibility Chem. 2011, 16, 206–211. [Google Scholar] [CrossRef] [PubMed]
Characteristic (N = 288) | n (%) a |
---|---|
Child Race | |
Black White | 167 (58.0) 89 (30.9) |
Other | 26 (9.0) |
Unknown | 6 (2.1) |
Child Ethnicity | |
Non-Hispanic | 280 (97.2) |
Hispanic | 4 (1.4) |
Unknown | 4 (1.4) |
Child Age, M (SD) | 6.42 (4.8) |
Child Sex | |
Male | 151 (52.4) |
Female | 137 (47.6) |
Child Insurance Type | |
Public/self-pay Commercial | 265 (92.0) 23 (8.0) |
Parent Education Level | |
≤High school graduate/equivalent | 149 (51.7) |
≥Some college | 139 (48.3) |
Income Level (U.S. Dollars, $) | |
≤$15,000 | 189 (65.9) |
>$15,000 | 98 (34.1) |
Housing Type | |
Single-Family | 124 (43.0) |
Multi-Family | 65 (22.6) |
Apartment | 99 (34.4) |
Child Cumulative TSE, b M (SD) | 10.32 (21.3) |
Home Smoking Ban c | |
No | 80 (60.6) |
Yes | 52 (39.4) |
Urinary Biomarker (N = 288) | GeoM (95%CI) | Mdn (IQR) | Range (Min–Max) |
---|---|---|---|
3HC (ng/mL) | 32.03 (26.97, 38.04) | 36.89 (12.81, 97.36) | 0.19–780.32 |
COT (ng/mL) | 10.24 (8.82, 11.89) | 11.82 (4.65, 25.73) | 0.04–169.01 |
3HC + COT Sum (pmol/mL) | 45.13 (38.42, 53.00) | 53.63 (19.00, 121.93) | 0.22–842.11 |
3HC/COT Ratio | 3.13 (2.84, 3.45) | 3.17 (1.85, 5.73) | 0.12–34.69 |
Urinary 3HC Model (N = 288) |
Urinary COT Model (N = 288) | |||
---|---|---|---|---|
Model Fit Statistics | R2 = 0.157 p = 0.048 | R2 = 0.300 p < 0.001 | ||
(95%CI) | p-value a | (95%CI) | p-value a | |
Child Race | ||||
White | Ref | Ref | ||
Black | 0.49 (−0.12, 1.10) | 0.119 | 0.92 (0.42, 1.41) | <0.001 |
Other | 0.37 (−0.65, 1.39) | 0.481 | 0.42 (−0.40, 1.24) | 0.319 |
Unknown | 0.46 (−1.24, 2.15) | 0.600 | 0.89 (−0.48, 2.26) | 0.205 |
Child Age | −0.04 (−0.09, 0.02) | 0.229 | −0.06 (−0.11, −0.02) | 0.009 |
Child Sex | ||||
Male | Ref | Ref | ||
Female | −0.18 (−0.71, 0.34) | 0.498 | 0.14 (−0.29, 0.56) | 0.533 |
Child Insurance Type | ||||
Commercial | Ref | Ref | ||
Public/self-pay | 0.10 (−0.82, 1.01) | 0.836 | 0.50 (−0.24, 1.24) | 0.189 |
Parent Education Level | ||||
≤High school graduate/equivalent | Ref | Ref | ||
≥Some college | 0.01 (−0.54, 0.53) | 0.996 | −0.13 (−0.56, 0.30) | 0.554 |
Income Level | ||||
≤$15,000 | Ref | Ref | ||
>$15,000 | −0.29 (−0.90, 0.32) | 0.3519 | −0.23 (−0.72, 0.26) | 0.354 |
Housing Type | ||||
Single-Family | Ref | Ref | ||
Multi-Family | 0.11 (−0.55, 0.78) | 0.739 | −0.16 (−0.69, 0.38) | 0.566 |
Apartment | 0.11 (−0.50, 0.72) | 0.722 | 0.07 (−0.43, 0.56) | 0.788 |
Child Cumulative TSE b | 0.03 (0.01, 0.06) | 0.015 | 0.03 (0.01, 0.05) | 0.013 |
Home Smoking Ban c | ||||
No | Ref | Ref | ||
Yes | −0.51 (−1.12, 0.10) | 0.107 | −0.46 (−0.95, 0.04) | 0.073 |
Urinary 3HC + COT Sum Model (N = 288) | Urinary 3HC/COT Ratio Model (N = 288) | |||
Model Fit Statistics | R2 = 0.187 p = 0.012 | R2 = 0.132 p = 0.133 | ||
(95%CI) | p-value a | (95%CI) | p-value a | |
Child Race | ||||
White | Ref | Ref | ||
Black | 0.60 (0.04, 1.17) | 0.039 | −0.42 (−0.78, −0.07) | 0.021 |
Other | 0.36 (−0.58, 1.29) | 0.460 | −0.05 (−0.65, 0.54) | 0.862 |
Unknown | 0.53 (−1.04, 2.09) | 0.510 | −0.44 (−1.42, 0.55) | 0.387 |
Child Age | −0.05 (−0.10, 0.01) | 0.081 | 0.03 (−0.01, 0.06) | 0.108 |
Child Sex | ||||
Male | Ref | Ref | ||
Female | −0.05 (−0.54, 0.44) | 0.841 | −0.32 (−0.62, −0.01) | 0.044 |
Child Insurance Type | ||||
Commercial | Ref | Ref | ||
Public/self-pay | 0.20 (−0.64, 1.04) | 0.642 | −0.40 (−0.93, 0.13) | 0.141 |
Parent Education Level | ||||
≤High school graduate/equivalent | Ref | Ref | ||
≥Some college | −0.06 (−0.55, 0.44) | 0.823 | 0.13 (−0.18, 0.44) | 0.416 |
Income Level | ||||
≤$15,000 | Ref | Ref | ||
>$15,000 | −0.23 (−0.79, 0.33) | 0.427 | −0.06 (−0.41, 0.30) | 0.754 |
Housing Type | ||||
Single-Family | Ref | Ref | ||
Multi-Family | 0.05 (−0.56, 0.66) | 0.866 | 0.27 (−0.12, 0.66) | 0.173 |
Apartment | 0.16 (−0.4, 0.72) | 0.579 | 0.04 (−0.31, 0.40) | 0.812 |
Child Cumulative TSE b | 0.03 (0.01, 0.06) | 0.015 | 0.01 (−0.01, 0.02) | 0.468 |
Home Smoking Ban c | ||||
No | Ref | Ref | ||
Yes | −0.49 (−1.05, 0.07) | 0.088 | −0.05 (−0.41, 0.30) | 0.778 |
Urinary 3HC Model (N = 288) | Urinary COT Model (N = 288) | Urinary 3HC + COT Sum Model (N = 288) | Urinary 3HC/COT Ratio Model (N = 288) | |||||
---|---|---|---|---|---|---|---|---|
Child Race and Child Age Models | ||||||||
Model Fit Statistics | R2 = 0.039 p = 0.131 | R2 = 0.112 p < 0.001 | R2 = 0.058 p = 0.018 | R2 = 0.052 p = 0.034 | ||||
p-Value a | p-Value a | p-Value | p-Value a | |||||
Child Race | ||||||||
White | Ref | Ref | Ref | Ref | ||||
Black | −0.10 | 0.755 | 0.20 | 0.462 | −0.04 | 0.893 | −0.29 | 0.100 |
Other | −0.48 | 0.377 | 0.04 | 0.935 | −0.42 | 0.413 | −0.52 | 0.092 |
Unknown | −0.13 | 0.895 | 0.12 | 0.884 | −0.10 | 0.912 | −0.24 | 0.652 |
Child Age | −0.08 | 0.013 | −0.10 | <0.001 | −0.09 | 0.002 | 0.02 | 0.211 |
Child Race*Age Interactions | ||||||||
Child Black Race*Age | 0.08 | 0.044 | 0.09 | 0.008 | 0.09 | 0.019 | −0.01 | 0.687 |
Child Other Race*Age | 0.12 | 0.090 | 0.08 | 0.208 | 0.12 | 0.081 | 0.05 | 0.252 |
Child Unknown Race*Age | 0.18 | 0.510 | 0.13 | 0.536 | 0.16 | 0.509 | 0.04 | 0.803 |
Child Race and Child Sex Models | ||||||||
Model Fit Statistics | R2 = 0.0213 p = 0.532 | R2 = 0.0705 p = 0.004 | R2 = 0.0302 p = 0.278 | R2 = 0.045 p = 0.069 | ||||
p-Value a | p-Value a | p-Value a | p-Value a | |||||
Child Race | ||||||||
White | Ref | Ref | Ref | Ref | ||||
Black | 0.48 | 0.081 | 0.74 | 0.002 | 0.55 | 0.034 | −0.26 | 0.092 |
Other | 0.35 | 0.420 | 0.74 | 0.046 | 0.42 | 0.298 | −0.39 | 0.113 |
Unknown | 0.49 | 0.586 | 0.92 | 0.222 | 0.57 | 0.492 | −0.44 | 0.380 |
Child Sex | ||||||||
Male | Ref | Ref | Ref | Ref | ||||
Female | −0.07 | 0.821 | −0.03 | 0.909 | −0.06 | 0.843 | −0.04 | 0.817 |
Child Race*Sex Interactions | ||||||||
Child Black Race*Sex | −0.22 | 0.581 | −0.05 | 0.872 | −0.15 | 0.675 | −0.16 | 0.459 |
Child Other Race*Sex | −0.28 | 0.679 | −0.66 | 0.250 | −0.38 | 0.553 | 0.38 | 0.315 |
Child Unknown Race*Sex | 0.22 | 0.864 | −0.23 | 0.830 | 0.11 | 0.926 | 0.44 | 0.529 |
Urinary 3HC Model (N = 288) | Urinary COT Model (N = 288) | Urinary 3HC + COT Sum Model (N = 288) | Urinary 3HC/COT Ratio Model (N = 288) | |||||
---|---|---|---|---|---|---|---|---|
Child Race and Child Cumulative TSE Models | ||||||||
Model Fit Statistics | R2 = 0.083 p = 0.002 | R2 = 0.142 p < 0.001 | R2 = 0.098 p < 0.001 | R2 = 0.035 p = 0.225 | ||||
p-Value a | p-Value a | p-Value a | p-Value a | |||||
Child Race | ||||||||
White | Ref | Ref | Ref | Ref | ||||
Black | 0.73 | 0.001 | 1.03 | <0.001 | 0.81 | <0.001 | −0.30 | 0.020 |
Other | 0.51 | 0.230 | 0.83 | 0.020 | 0.56 | 0.154 | −0.32 | 0.211 |
Unknown | 1.32 | 0.185 | 1.49 | 0.074 | 1.36 | 0.140 | −0.17 | 0.775 |
Child Cumulative TSE b | 0.03 | <0.001 | 0.03 | <0.001 | 0.03 | <0.001 | 0.00 | 0.557 |
Child Race*Cumulative TSE Interactions | ||||||||
Child Black Race*Cumulative TSE | −0.03 | 0.005 | −0.02 | 0.002 | −0.03 | 0.003 | −0.00 | 0.724 |
Child Other Race*Cumulative TSE | −0.00 | 0.969 | −0.02 | 0.586 | −0.01 | 0.885 | 0.02 | 0.480 |
Child Unknown Race* Cumulative TSE | 0.00 | 0.985 | −0.03 | 0.871 | −0.02 | 0.955 | 0.03 | 0.794 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahabee-Gittens, E.M.; Matt, G.E.; Jandarov, R.A.; Merianos, A.L. The Associations of Trans-3′-Hydroxy Cotinine, Cotinine, and the Nicotine Metabolite Ratio in Pediatric Patients with Tobacco Smoke Exposure. Int. J. Environ. Res. Public Health 2023, 20, 5639. https://doi.org/10.3390/ijerph20095639
Mahabee-Gittens EM, Matt GE, Jandarov RA, Merianos AL. The Associations of Trans-3′-Hydroxy Cotinine, Cotinine, and the Nicotine Metabolite Ratio in Pediatric Patients with Tobacco Smoke Exposure. International Journal of Environmental Research and Public Health. 2023; 20(9):5639. https://doi.org/10.3390/ijerph20095639
Chicago/Turabian StyleMahabee-Gittens, E. Melinda, Georg E. Matt, Roman A. Jandarov, and Ashley L. Merianos. 2023. "The Associations of Trans-3′-Hydroxy Cotinine, Cotinine, and the Nicotine Metabolite Ratio in Pediatric Patients with Tobacco Smoke Exposure" International Journal of Environmental Research and Public Health 20, no. 9: 5639. https://doi.org/10.3390/ijerph20095639
APA StyleMahabee-Gittens, E. M., Matt, G. E., Jandarov, R. A., & Merianos, A. L. (2023). The Associations of Trans-3′-Hydroxy Cotinine, Cotinine, and the Nicotine Metabolite Ratio in Pediatric Patients with Tobacco Smoke Exposure. International Journal of Environmental Research and Public Health, 20(9), 5639. https://doi.org/10.3390/ijerph20095639