Experimental Setups for In Vitro Studies on Radon Exposure in Mammalian Cells—A Critical Overview
Abstract
:1. Introduction
2. In Vitro Studies on Mammalian Cells Exposed to Radon and Progeny
2.1. Radon Exposure Setups for Adherent Mammalian Cell Cultures
2.2. Radon Exposure Setups for Mammalian Cells in Suspension
2.3. Dosimetric Considerations for Cell Exposures Using Radon Exposure Setups
2.4. Radiobiological Findings from Mammalian Cell Experiments with Radon Exposure Setups
Authors | Irradiation Setup | Dosimetry | Radon Source (Activity) | Radon Activity Concentration and/or Dose Rate | Additional Studies Performed with the Setup |
---|---|---|---|---|---|
Setups for adherent cell exposures | |||||
Petitot et al. [64] | Exposure of adherent cells in chamber (10 m3) with humidity and CO2-concentration regulation and thermo-regulated bath inside Exposure in six-well plates on membrane with direct contact of cells with radon | Radon activity concentration: RAD 7 monitor Progeny collection on filter together with 3 independent alpha-particle counts Aerosol concentration + size distribution: Diffusion battery with condensation nuclei counter Alpha-particle flux: CR-39 | 238U + 232Th in underground tanks (uranothorianite) | c(Rn): 45–50 MBq/m3 | |
Cui et al. [67] | Exposure of adherent cells in chamber in water bath with continuously pumped radon gas through chamber Expsoure in Transwell® plates and medium removed above cells before exposure | Not reported | RaCl2 source (25.9 GBq) | c(Rn): 20 kBq/m3 | [84] |
Maier et al. [65] | Exposure of adherent cells in water-jacketed chamber (50 L) with humidity and CO2-concentration regulation | Radon activity concentration: RTM 1688-2 | 226Ra source | Possible c(Rn): 0–620 kBq/m3 | [70] |
Wang et al. [69] | Cell monolayer exposure in Transwell® plates Exposure chamber within water-jacketed incubator with saturated humidity | Radon activity concentration: AB5 radiation monitor Alpha-particle flux: CR-39 Dose calculation using track density and calculated LET (using SRIM program) | 226Ra source (135 kBq) | c(Rn): 1000 kBq/m3 | [66] |
Loiselle et al. [68] | Long term exposure of adherent cells in culture plates with lid on inside incubator together with radon rock source | Radon activity concentration: AB5 radiation monitor | 5 kg of batholith hematite granite (Standard 59033) | c(Rn): 38 Bq/m3 | |
Setups for irradiation of suspension cell cultures | |||||
Jostes et al. [60] | Exposure of cells in suspension elution of 212Bi with HI solution, pH adjustment to 5 and addition of cells | Radon activity concentration: Ls 5801 + NaI detector Solving the Bateman-equation data used to calculate the activity of progeny and respectively ratios between radon and its progeny Measurement of activity associated with the cells compared to medium for dose calculations Assumption: activity associated with cells considered to be distributed uniformly | cation-exchange column containing 224Ra | Dose: 925 MBq | [92,94] |
Exposure of cells in suspension radon gas bubbled through culture medium, after 4–18 h addition of cells | 226Ra source (111 MBq) | Dose rate: 3–8 cGy/h | |||
Exposure of cells in suspension radon gas passed over surface of culture medium while continuously stirring it, cells added afterwards | 226RaCl2 source (25.9 GBq) | Dose rate: 25–45 cGy/h | |||
Wolff et al. [72] | Exposure of cells in suspension within water-jacketed spinner flask Prior to cell addition via injection, radon gas is drawn over the medium | Scintillation spectrometry analogous to Jostes et al., 1991 | 226RaCl2 source (25.9 GBq) | Dose: 18 cGy | |
Bakale et al. [73] | Exposure of cells in suspension in spinner flask System with source containment vessel, a pump and 2 syringes used to pump radon into syringe, after the injection of radon air into spinner flask | Radon activity concentration: NaI detector Calculation of activity of progeny analogous to Jostes et al., 1991 | 226Ra source (2.9 GBq) | Dose rates: 3–4 cGy/h | [83] |
Hamza et al. [74] | Exposure of cells in suspension within glass bottle System with 3-way-valve to connect syringe, radon source and exposure bottle After radon injection: bottles on roller platform inside incubator | Radon activity concentration: Lucas cell Alpha-particle flux: CR-39 + LR-115 Dose calculation using Marinelli-formula | 226Ra source (98.9 kBq) | c(Rn): 122 kBq/m3–1 593 MBq/m3 Dose: 0.01–127 mGy Dose rate: 0.000054–0.708 mGy/min | [93] |
Schumann et al. [75] | Exposure of cells in suspension with 223Ra-dichloride solution by adding the solution to the sample after addition incubated on roller-mixer (35 rpm) | Measurement of radon activity concentration: HPGe detector assumption: alpha- and beta-particles deposited locally, contribution from gamma-rays neglected | 223Ra-dichloride solution | c(Rn) in sample: 0.40–9.13 kBq/mL Dose: 0–136 mGy Dose coefficient: 16.1 mGy/kBq (Alphas: 15.5 mGy/kBq; Betas: 0.6 mGy/kBq) | [79,80] |
3. In Vitro Studies on Mammalian Cells Exposed to Radon Analogues
3.1. Plutonium-239 (239Pu)
3.2. Uranium-234 (234U)
3.3. Plutonium-238 (238Pu)
3.4. Americium-241 (241Am)
Authors | Irradiation Setup | Dosimetry | Source Activity | Dose/Dose Rate | Additional Studies Performed with the Setup |
---|---|---|---|---|---|
Plutonium-239 (239Pu) | |||||
Purrott et al. [98] | Exposure of cells in suspension with 239Pu nitrate and 241Am nitrate solution; samples were gently agitated during irradiation | Measurement of plutonium content in the sample by scintillation counting, americium content by measuring X-ray emission | Variable | ||
Uranium-234 (234U) | |||||
Nikitaki et al. [99] | Exposure of adherent cells growing on Mylar foil; setup can be placed in an incubator | Measurement for source homogeneity, MC simulations for LET and energy deposition | 0.77 ± 0.03 MBq | ||
Plutonium-238 (238Pu) | |||||
Goodhead et al. [97] | Exposure of adherent cells growing on Mylar foil; distance between source and cell culture can be varied | Measurement of energy spectra with surface barrier Si detector, fluence measurement with CR-39 | 1.2 GBq | Variable Maximum: 23.4 Gy/min | [46,102,103,104,105] |
Metting et al. [109] | Exposure of adherent cells growing on Mylar foil; fixed distance between source and sample | Measurement of fluence and homogeneity with CR-39 detectors; calculation of LET with respective software | 296 MBq | 0.1 mGy/min | |
Simmons et al. [108] | Exposure of adherent cells growing on Mylar foil; fixed distance between source and sample; source was rotated to allow uniform irradiation | Fluence measurements with neutron track film badges, LET data from literature | |||
Hakanen et al. [106] | Exposure of adherent cells growing on Mylar foil; adapted setup from Goodhead et al.; distance between source and cell culture can be varied | Measurement of energy spectra with high-resolution spectrometer; validation by MC-simulations | 0.93 ± 0.04 GBq | Variable | |
Tisnek et al. [107] | Exposure of adherent cells growing on Mylar foil; adapted setup from Goodhead et al.; distance between source and cell culture can be varied | Measurement of energy spectra with high-resolution spectrometer; validation by MC-simulations | 1.3 ± 0.1 GBq | Variable | |
Americium-241 (241Am) | |||||
Roos & Kellerer [111] | Exposure of adherent cells growing on Mylar foil; fixed distance between source and sample; source was rotated to allow uniform irradiation | Measurement of energy spectra with semiconductor detector, calculation of fluence, LET and absorbed dose | 0.37 GBq | 0.2 Gy/min | [112] |
Wang et al. [113] | Exposure of adherent cells growing on Mylar foil; fixed distance between source and sample | Measurement of energy spectra with semiconductor detector, measurement of fluence with CR-39; calculation of LET with respective software | 0.37–3700 kBq | Variable | [114] |
Beaton et al. [101] | Exposure of adherent cells growing on Mylar foil; setup can be placed in an incubator | MC-simulations | 65 kBq | 0.98 ± 0.01 Gy/h | [110] |
Lee et al. [100] | Exposure of adherent cells growing on Mylar foil; variable distance between source and sample | Measurement of energy spectra with semiconductor detector, corresponding LET values were derived from a database | 37 kBq 370 kBq 3.7 MBq | Variable | [116] |
Maier et al. [95] | Exposure of adherent cells growing on plasma treated Mylar foil; fixed distance between source and sample | Measurement of energy spectra with semiconductor detector, measurement of fluence with CR-39; calculation of LET with respective software | 25 MBq | 8.2 ± 2.4 Gy/min | |
Moreira et al. [117] | Exposure of adherent cells growing on Mylar foil; variable distance between source and sample | Measurement of source homogeneity with Gafchromic film, fluence with CR-39 detector and energy spectra with a semiconductor silicon detector | 7.4 MBq | Variable |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. WHO Handbook on Indoor Radon: A Public Health Perspective; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Vogiannis, E.G.; Nikolopoulos, D. Radon Sources and Associated Risk in Terms of Exposure and Dose. Front. Public Health 2015, 2, 207. [Google Scholar] [CrossRef] [PubMed]
- ICRP. Occupational Intakes of Radionuclides: Part 3. ICRP Publication 137. Ann. ICRP 2017, 46, 1–486. [Google Scholar] [CrossRef] [PubMed]
- Čeliković, I.; Pantelić, G.; Vukanac, I.; Nikolić, J.K.; Živanović, M.; Cinelli, G.; Gruber, V.; Baumann, S.; Poncela, L.S.Q.; Rabago, D. Outdoor Radon as a Tool to Estimate Radon Priority Areas—A Literature Overview. Int. J. Environ. Res. Public Health 2022, 19, 662. [Google Scholar] [CrossRef]
- Harrison, J.D.; Marsh, J.W. ICRP Recommendations on Radon. Ann. ICRP 2020, 49, 68–76. [Google Scholar] [CrossRef]
- Bouder, F.; Perko, T.; Lofstedt, R.; Renn, O.; Rossmann, C.; Hevey, D.; Siegrist, M.; Ringer, W.; Pölzl-Viol, C.; Dowdall, A.; et al. The Potsdam Radon Communication Manifesto. J. Risk Res. 2019, 24, 909–912. [Google Scholar] [CrossRef]
- Cori, L.; Curzio, O.; Donzelli, G.; Bustaffa, E.; Bianchi, F. A Systematic Review of Radon Risk Perception, Awareness, and Knowledge: Risk Communication Options. Sustainability 2022, 14, 10505. [Google Scholar] [CrossRef]
- Seltenrich, N. Radon Risk: A Global Estimate of Radon’s Contribution to Lung Cancer. Environ. Health Perspect. 2019, 127, 024001. [Google Scholar] [CrossRef]
- Cinelli, G.; Tollefsen, T.; Bossew, P.; Gruber, V.; Bogucarskis, K.; De Felice, L.; De Cort, M. Digital Version of the European Atlas of Natural Radiation. J. Environ. Radioact. 2019, 196, 240–252. [Google Scholar] [CrossRef]
- Michael, S.; Andreas, B.; Claudia, S.; Fabian, R.; Ringer, W.; Josef, M.F. Radon in Waterworks: Dose Assessment, Analysis of Influence Parameters and Improved Methods of Measurement. Radiat. Prot. Dosim. 2014, 160, 138–142. [Google Scholar] [CrossRef]
- ICRP. Occupational Intakes of Radionuclides: Part 2. ICRP Publication 134. Ann ICRP 2016, 45, 7–349. [Google Scholar] [CrossRef]
- Wiegand, J. A Guideline for the Evaluation of the Soil Radon Potential Based on Geogenic and Anthropogenic Parameters. Environ. Geol. 2001, 40, 949–963. [Google Scholar] [CrossRef]
- Craft, B.F.; Oser, J.L. A Method for Determining Relative Amounts of Combined and Uncombined Radon Daughter Activity in Underground Uranium Mines. Am. Ind. Hyg. Assoc. J. 2007, 27, 154–159. [Google Scholar] [CrossRef]
- Hunter, N.; Muirhead, C.R.; Tomasek, L.; Kreuzer, M.; Laurier, D.; Leuraud, K.; Schnelzer, M.; Grosche, B.; Placek, V.; Heribanova, A.; et al. Joint Analysis of Three European Nested Case-Control Studies of Lung Cancer among Radon Exposed Miners: Exposure Restricted to below 300 WLM. Health Phys. 2013, 104, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Kreuzer, M.; Sobotzki, C.; Schnelzer, M.; Fenske, N. Factors Modifying the Radon-Related Lung Cancer Risk at Low Exposures and Exposure Rates among German Uranium Miners. Radiat. Res. 2018, 189, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Tirmarche, M.; Harrison, J.; Laurier, D.; Blanchardon, E.; Paquet, F.; Marsh, J. Risk of Lung Cancer from Radon Exposure: Contribution of Recently Published Studies of Uranium Miners. Ann. ICRP 2012, 41, 368–377. [Google Scholar] [CrossRef]
- IARC Working Group. Man-Made Mineral Fibres and Radon; IARC Monographs on the Evaluation of the Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 1988.
- Darby, S.; Hill, D.; Auvinen, A.; Barros-Dios, J.M.; Baysson, H.; Bochicchio, F.; Deo, H.; Falk, R.; Forastiere, F.; Hakama, M.; et al. Radon in Homes and Risk of Lung Cancer: Collaborative Analysis of Individual Data from 13 European Case-Control Studies. Br. Med. J. 2005, 330, 223–226. [Google Scholar] [CrossRef]
- Krewski, D.; Lubin, J.H.; Zielinski, J.M.; Alavanja, M.; Catalan, V.S.; Field, R.W.; Klotz, J.B.; Létourneau, E.G.; Lynch, C.F.; Lyon, J.L.; et al. A Combined Analysis of North American Case-Control Studies of Residential Radon and Lung Cancer. J. Toxicol. Environ. Health A 2006, 69, 533–597. [Google Scholar] [CrossRef]
- Menzler, S.; Piller, G.; Gruson, M.; Rosario, A.S.; Wichmann, H.E.; Kreienbrock, L. Population Attributable Fraction for Lung Cancer Due to Residential Radon in Switzerland and Germany. Health Phys. 2008, 95, 179–189. [Google Scholar] [CrossRef]
- Kreuzer, M.; Fenske, N.; Schnelzer, M.; Walsh, L. Lung Cancer Risk at Low Radon Exposure Rates in German Uranium Miners. Br. J. Cancer 2015, 113, 1367–1369. [Google Scholar] [CrossRef]
- Maier, A.; Wiedemann, J.; Rapp, F.; Papenfuß, F.; Rödel, F.; Hehlgans, S.; Gaipl, U.S.; Kraft, G.; Fournier, C.; Frey, B. Radon Exposure-Therapeutic Effect and Cancer Risk. Int. J. Mol. Sci. 2020, 22, 316. [Google Scholar] [CrossRef]
- Cheng, E.S.; Egger, S.; Hughes, S.; Weber, M.; Steinberg, J.; Rahman, B.; Worth, H.; Ruano-Ravina, A.; Rawstorne, P.; Yu, X.Q. Systematic Review and Meta-Analysis of Residential Radon and Lung Cancer in Never-Smokers. Eur. Respir. Rev. 2021, 30, 200230. [Google Scholar] [CrossRef] [PubMed]
- Ngoc, L.T.N.; Park, D.; Lee, Y.C. Human Health Impacts of Residential Radon Exposure: Updated Systematic Review and Meta-Analysis of Case-Control Studies. Int. J. Environ. Res. Public Health 2022, 20, 97. [Google Scholar] [CrossRef] [PubMed]
- Mozzoni, P.; Pinelli, S.; Corradi, M.; Ranzieri, S.; Cavallo, D.; Poli, D. Environmental/Occupational Exposure to Radon and Non-Pulmonary Neoplasm Risk: A Review of Epidemiologic Evidence. Int. J. Environ. Res. Public Health 2021, 18, 466. [Google Scholar] [CrossRef] [PubMed]
- Papenfuß, F.; Maier, A.; Fournier, C.; Kraft, G.; Friedrich, T. In-Vivo Dose Determination in a Human after Radon Exposure: Proof of Principle. Radiat. Environ. Biophys. 2022, 61, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Bräuner, E.V.; Loft, S.; Sørensen, M.; Jensen, A.; Andersen, C.E.; Ulbak, K.; Hertel, O.; Pedersen, C.; Tjønneland, A.; Kjær, S.K.; et al. Residential Radon Exposure and Skin Cancer Incidence in a Prospective Danish Cohort. PLoS ONE 2015, 10, e0135642. [Google Scholar] [CrossRef] [PubMed]
- Ruano-Ravina, A.; Aragonés, N.; Kelsey, K.T.; Pérez-Ríos, M.; Piñeiro-Lamas, M.; López-Abente, G.; Barros-Dios, J.M. Residential Radon Exposure and Brain Cancer: An Ecological Study in a Radon Prone Area (Galicia, Spain). Sci. Rep. 2017, 7, 3595. [Google Scholar] [CrossRef]
- Harley, N.H.; Robbins, E.S. Radon and Leukemia in the Danish Study: Another Source of Dose. Health Phys. 2009, 97, 696. [Google Scholar] [CrossRef]
- Henshaw, D.L.; Eatough, J.P.; Richardson, R.B. Radon as a Causative Factor in Induction of Myeloid Leukaemia and Other Cancers. Lancet 1990, 335, 1008–1012. [Google Scholar] [CrossRef]
- Moon, J.; Yoo, H.K. Residential Radon Exposure and Leukemia: A Meta-Analysis and Dose-Response Meta-Analyses for Ecological, Case-Control, and Cohort Studies. Environ. Res. 2021, 202, 111714. [Google Scholar] [CrossRef]
- Barbosa-Lorenzo, R.; Barros-Dios, J.M.; Ruano-Ravina, A. Radon and Stomach Cancer. Int. J. Epidemiol. 2017, 46, 767–768. [Google Scholar] [CrossRef]
- Eatough, J.P.; Henshaw, D.L. Radon and Thoron Associated Dose to the Basal Layer of the Skin. Phys. Med. Biol. 1992, 37, 955–967. [Google Scholar] [CrossRef]
- Stather, J.W. Dosimetric and Epidemiological Approaches to Assessing Radon Doses--Can the Differences Be Reconciled? Radiat. Prot. Dosim. 2004, 112, 487–492. [Google Scholar] [CrossRef] [PubMed]
- Marsh, J.W.; Harrison, J.D.; Laurier, D.; Blanchardon, E.; Paquet, F.; Tirmarche, M. Dose Conversion Factors for Radon: Recent Developments. Health Phys. 2010, 99, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Porstendorfer, J.; Reineking, A. Indoor Behaviour and Characteristics of Radon Progeny. Radiat. Prot. Dosim. 1992, 45, 303–311. [Google Scholar] [CrossRef]
- Knutson, E.O.; Tu, K.W. Size Distribution of Radon Progeny Aerosol in the Working Area of a Dry Former Uranium Mine. Environ. Int. 1996, 22, 617–632. [Google Scholar] [CrossRef]
- Steck, D.J.; Field, R.W. Dosimetric Challenges for Residential Radon Epidemiology. J. Toxicol. Environ. Health A 2006, 69, 655–664. [Google Scholar] [CrossRef]
- Shimo, M.; Ikebe, Y. Measurements of Radon and Its Short-Lived Decay Products and Unattached Fraction in Air. Radiat. Prot. Dosim. 1984, 8, 209–214. [Google Scholar] [CrossRef]
- Sakoda, A.; Ishimori, Y.; Yamaoka, K.; Kataoka, T.; Mitsunobu, F. Absorbed Doses of Lungs from Radon Retained in Airway Lumens of Mice and Rats. Radiat. Environ. Biophys. 2013, 52, 389–395. [Google Scholar] [CrossRef]
- Füri, P.; Farkas, Á.; Madas, B.G.; Hofmann, W.; Winkler-Heil, R.; Kudela, G.; Balásházy, I. The Degree of Inhomogeneity of the Absorbed Cell Nucleus Doses in the Bronchial Region of the Human Respiratory Tract. Radiat. Environ. Biophys. 2020, 59, 173–183. [Google Scholar] [CrossRef]
- Madas, B.G.; Drozsdik, E.J. Effects of Mucus Thickness and Goblet Cell Hyperplasia on Microdosimetric Quantities Characterizing the Bronchial Epithelium upon Radon Exposure. Int. J. Radiat. Biol. 2018, 94, 967–974. [Google Scholar] [CrossRef]
- Markovic, V.M.; Stevanovic, N.; Nikezic, D. Doses from Beta Radiation in Sensitive Layers of Human Lung and Dose Conversion Factors Due to 222Rn/ 220Rn Progeny. Radiat. Environ. Biophys. 2011, 50, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Madas, B.G.; Boei, J.; Fenske, N.; Hofmann, W.; Mezquita, L. Effects of Spatial Variation in Dose Delivery: What Can We Learn from Radon-Related Lung Cancer Studies? Radiat. Environ. Biophys. 2022, 61, 561–577. [Google Scholar] [CrossRef] [PubMed]
- Hall, E.J.; Giaccia, A.J. Radiobiology for the Radiologist, 7th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2011. [Google Scholar]
- Carter, R.J.; Nickson, C.M.; Thompson, J.M.; Kacperek, A.; Hill, M.A.; Parsons, J.L. Complex DNA Damage Induced by High Linear Energy Transfer Alpha-Particles and Protons Triggers a Specific Cellular DNA Damage Response. Int. J. Radiat. Oncol. 2018, 100, 776–784. [Google Scholar] [CrossRef] [PubMed]
- James, A.C.; Birchall, A.; Akabani, G. Comparative Dosimetry of BEIR VI Revisited. Radiat. Prot. Dosim. 2004, 108, 3–26. [Google Scholar] [CrossRef]
- Sgouros, G. Alpha-Particles for Targeted Therapy. Adv. Drug Deliv. Rev. 2008, 60, 1402–1406. [Google Scholar] [CrossRef]
- Gaillard, S.; Pusset, D.; De Toledo, S.M.; Fromm, M.; Azzam, E.I. Propagation Distance of the Alpha-Particle-Induced Bystander Effect: The Role of Nuclear Traversal and Gap Junction Communication. Radiat. Res. 2009, 171, 513–520. [Google Scholar] [CrossRef]
- Szo’ke, I.; Farkas, A.; Balásházy, I.; Hofmann, W.; Madas, B.G.; Szőke, R. 3D-Modelling of Radon-Induced Cellular Radiobiological Effects in Bronchial Airway Bifurcations: Direct versus Bystander Effects. Int. J. Radiat. Biol. 2012, 88, 477–492. [Google Scholar] [CrossRef]
- De Toledo, S.M.; Buonanno, M.; Harris, A.L.; Azzam, E.I. Genomic Instability Induced in Distant Progeny of Bystander Cells Depends on the Connexins Expressed in the Irradiated Cells. Int. J. Radiat. Biol. 2017, 93, 1182–1194. [Google Scholar] [CrossRef]
- Azzam, E.I.; De Toledo, S.M.; Little, J.B. Expression of CONNEXIN43 Is Highly Sensitive to Ionizing Radiation and Other Environmental Stresses. Cancer Res. 2003, 63, 7128–7135. [Google Scholar]
- Deshpande, A.; Goodwin, E.H.; Bailey, S.M.; Marrone, B.L.; Lehnert, B.E. Alpha-Particle-Induced Sister Chromatid Exchange in Normal Human Lung Fibroblasts: Evidence for an Extranuclear Target. Radiat. Res. 1996, 145, 260–267. [Google Scholar] [CrossRef]
- Abu Shqair, A.; Kim, E.H. Multi-Scaled Monte Carlo Calculation for Radon-Induced Cellular Damage in the Bronchial Airway Epithelium. Sci. Rep. 2021, 11, 10230. [Google Scholar] [CrossRef] [PubMed]
- Sgouros, G.; Roeske, J.C.; Mcdevitt, M.R.; Palm, S.; Allen, B.J.; Fisher, D.R.; Brill, A.B.; Song, H.; Howell, R.W.; Akabani, G.; et al. MIRD Pamphlet No. 22 (Abridged): Radiobiology and Dosimetry of a-Particle Emitters for Targeted Radionuclide Therapy* In Collaboration with the SNM MIRD Committee. J. Nucl. Med. 2010, 51, 311–328. [Google Scholar] [CrossRef] [PubMed]
- Brenner, D.J. Radon: Current Challenges in Cellular Radiobiology. Int. J. Radiat. Biol. 1992, 61, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Crawford-Brown, D.J.; Hofmann, W. The Testing of Radiobiological Models of Radon Carcinogenesis Needed for in Vitro to in Vivo Extrapolations. Environ. Int. 1996, 22, 985–994. [Google Scholar] [CrossRef]
- Robertson, A.; Allen, J.; Laney, R.; Curnow, A. The Cellular and Molecular Carcinogenic Effects of Radon Exposure: A Review. Int. J. Mol. Sci. 2013, 14, 14024. [Google Scholar] [CrossRef]
- Riudavets, M.; Garcia de Herreros, M.; Besse, B.; Mezquita, L. Radon and Lung Cancer: Current Trends and Future Perspectives. Cancers 2022, 14, 3142. [Google Scholar] [CrossRef]
- Jostes, R.F.; Hui, T.E.; James, A.C.; Cross, F.T.; Schwartz, J.L.; Rotmensch, J.; Atcher, R.W.; Evans, H.H.; Mencl, J.; Bakale, G.; et al. In Vitro Exposure of Mammalian Cells to Radon: Dosimetric Considerations. Radiat. Res. 1991, 127, 211–219. [Google Scholar] [CrossRef]
- Hinrichs, A.; Schmitt, M.; Papenfuß, F.; Roth, M.; Fournier, C.; Hinrichs, A.; Schmitt, M.; Papenfuß, F.; Roth, M.; Fournier, C.; et al. Radon Solubility in Different Tissues after Short Term Exposure. Int. J. Environ. Res. Public Health 2023, 20, 1773. [Google Scholar] [CrossRef]
- Sanjon, E.P.; Maier, A.; Hinrichs, A.; Kraft, G.; Drossel, B.; Fournier, C. A Combined Experimental and Theoretical Study of Radon Solubility in Fat and Water. Sci. Rep. 2019, 9, 10768. [Google Scholar] [CrossRef]
- NuDat 3. Available online: https://www.nndc.bnl.gov/nudat3/ (accessed on 30 January 2023).
- Petitot, F.; Morlier, J.P.; Debroche, M.; Pineau, J.F.; Chevillard, S. A New Method Specifically Designed to Expose Cells Isolated In Vitro to Radon and Its Decay Products. Radiat. Res. 2002, 157, 693–699. [Google Scholar] [CrossRef]
- Maier, A.; van Beek, P.; Hellmund, J.; Durante, M.; Schardt, D.; Kraft, G.; Fournier, C. Experimental Setup for Radon Exposure and First Diffusion Studies Using Gamma Spectroscopy. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2015, 362, 187–193. [Google Scholar] [CrossRef]
- Ding, D.; Zhang, Y.; Wang, J.; Wang, X.; Fan, D.; He, L.; Zhang, X.; Gao, Y.; Li, Q.; Chen, H. γ-H2AX/53BP1/PKAP-1 Foci and Their Linear Tracks Induced by in Vitro Exposure to Radon and Its Progeny in Human Peripheral Blood Lymphocytes. Sci. Rep. 2016, 6, 38295. [Google Scholar] [CrossRef]
- Cui, F.M.; Li, J.X.; Chen, Q.; Du, H.B.; Zhang, S.Y.; Nie, J.H.; Cao, J.P.; Zhou, P.K.; Hei, T.K.; Tong, J. Radon-Induced Alterations in Micro-RNA Expression Profiles in Transformed BEAS2B Cells. J. Toxicol. Environ. Health A 2013, 76, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Loiselle, J.J.; Knee, J.M.; Sutherland, L.C. Human Lung Epithelial Cells Cultured in the Presence of Radon-Emitting Rock Experience Gene Expression Changes Similar to Those Associated with Tobacco Smoke Exposure. J. Environ. Radioact. 2019, 196, 64–81. [Google Scholar] [CrossRef]
- Wang, J.; He, L.; Fan, D.; Ding, D.; Wang, X.; Gao, Y.; Zhang, X.; Li, Q.; Chen, H. Establishment of a γ-H2AX Foci-Based Assay to Determine Biological Dose of Radon to Red Bone Marrow in Rats. Sci. Rep. 2016, 6, 30018. [Google Scholar] [CrossRef]
- Deloch, L.; Hehlgans, S.; Rückert, M.; Maier, A.; Hinrichs, A.; Flohr, A.S.; Eckert, D.; Weissmann, T.; Seeling, M.; Nimmerjahn, F.; et al. Radon Improves Clinical Response in an Animal Model of Rheumatoid Arthritis Accompanied by Increased Numbers of Peripheral Blood B Cells and Interleukin-5 Concentration. Cells 2022, 11, 689. [Google Scholar] [CrossRef] [PubMed]
- Atcher, R.W.; Friedman, A.M.; Hines, J.J. An Improved Generator for the Production of 212Pb and 212Bi from 224Ra. Int. J. Rad. Appl. Instrum. A 1988, 39, 283–286. [Google Scholar] [CrossRef] [PubMed]
- Wolff, S.; Jostes, R.; Cross, F.T.; Hui, T.E.; Afzal, V.; Wiencke, J.K. Adaptive Response of Human Lymphocytes for the Repair of Radon-Induced Chromosomal Damage. Mutat. Res. 1991, 250, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Bakale, G.; Rao, P.S.; Mencl, J.; Adams, R.B.; Evans, H.H. A Radon Generator/Delivery System. Radiat. Res. 1993, 133, 277–281. [Google Scholar] [CrossRef]
- Hamza, Z.V.; Kumar, V.P.R.; Jeevanram, R.K.; Santanam, R.; Danalaksmi, B.; Mohankumar, M.N. A Simple Method to Irradiate Blood Cells in Vitro with Radon Gas. Radiat. Prot. Dosim. 2008, 130, 343–350. [Google Scholar] [CrossRef]
- Schumann, S.; Eberlein, U.; Muhtadi, R.; Lassmann, M.; Scherthan, H. DNA Damage in Leukocytes after Internal Ex-Vivo Irradiation of Blood with the α-Emitter Ra-223. Sci. Rep. 2018, 8, 2286. [Google Scholar] [CrossRef] [PubMed]
- Bateman, H. The Solution of a System of Differential Equations Occuring in the Theory of Radioactive Transformations. Proc. Camb. Philos. Soc. Math. Phys. Sci. 1910, 15, 423–427. [Google Scholar]
- Thomas, J.W. Modification of the Tsivoglou Method for Radon Daughters in Air. Health Phys. 1970, 19, 691. [Google Scholar] [PubMed]
- Tsivoglou, E.; Ayer, H.; Holaday, D. Occurence of Nonequilibrium Atmospheric Mixtures of Radon and Its Daughters. Nucleon. Ceased Publ. 1953, 11, 9. [Google Scholar]
- Göring, L.; Schumann, S.; Müller, J.; Buck, A.K.; Port, M.; Lassmann, M.; Scherthan, H.; Eberlein, U. Repair of α-Particle-Induced DNA Damage in Peripheral Blood Mononuclear Cells after Internal Ex Vivo Irradiation with 223Ra. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 3981–3988. [Google Scholar] [CrossRef]
- Scherthan, H.; Lee, J.H.; Maus, E.; Schumann, S.; Muhtadi, R.; Chojowski, R.; Port, M.; Lassmann, M.; Bestvater, F.; Hausmann, M. Nanostructure of Clustered DNA Damage in Leukocytes after In-Solution Irradiation with the Alpha Emitter Ra-223. Cancers 2019, 11, 1877. [Google Scholar] [CrossRef]
- Marinelli, L.D. Dosage Determination in the Use of Radioactive Isotopes. J. Clin. Investig. 1949, 28, 1271. [Google Scholar] [CrossRef]
- Franken, N.A.P.; Rodermond, H.M.; Stap, J.; Haveman, J.; van Bree, C. Clonogenic Assay of Cells in Vitro. Nat. Protoc. 2006, 1, 2315–2319. [Google Scholar] [CrossRef]
- Chaudhry, M.A.; Jiang, Q.; Ricanati, M.; Horng, M.F.; Evans, H.H. Characterization of Multilocus Lesions in Human Cells Exposed to X Radiation and Radon. Radiat. Res. 1996, 145, 31–38. [Google Scholar] [CrossRef]
- Chen, H.; Chen, N.; Li, F.; Sun, L.; Du, J.; Chen, Y.; Cheng, F.; Li, Y.; Tian, S.; Jiang, Q.; et al. Repeated Radon Exposure Induced Lung Injury and Epithelial-Mesenchymal Transition through the PI3K/AKT/MTOR Pathway in Human Bronchial Epithelial Cells and Mice. Toxicol. Lett. 2020, 334, 4–13. [Google Scholar] [CrossRef]
- Thiery, J.P.; Acloque, H.; Huang, R.Y.J.; Nieto, M.A. Epithelial-Mesenchymal Transitions in Development and Disease. Cell 2009, 139, 871–890. [Google Scholar] [CrossRef] [PubMed]
- McCarthy-Leo, C.; Darwiche, F.; Tainsky, M.A. DNA Repair Mechanisms, Protein Interactions and Therapeutic Targeting of the MRN Complex. Cancers 2022, 14, 5278. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Huang, J. MRN Complex Is an Essential Effector of DNA Damage Repair. J. Zhejiang Univ. Sci. B 2021, 22, 31–37. [Google Scholar] [CrossRef] [PubMed]
- White, D.; Rafalska-Metcalf, I.U.; Ivanov, A.V.; Corsinotti, A.; Peng, H.; Lee, S.C.; Trono, D.; Janicki, S.M.; Rauscher, F.J. The ATM Substrate KAP1 Controls DNA Repair in Heterochromatin: Regulation by HP1 Proteins and Serine 473/824 Phosphorylation. Mol. Cancer Res. 2012, 10, 401–414. [Google Scholar] [CrossRef]
- Dahl, E.S.; Aird, K.M. Ataxia-Telangiectasia Mutated Modulation of Carbon Metabolism in Cancer. Front. Oncol. 2017, 7, 291. [Google Scholar] [CrossRef]
- Madas, B.G. Radon Exposure and the Definition of Low Doses-The Problem of Spatial Dose Distribution. Health Phys. 2016, 111, 47–51. [Google Scholar] [CrossRef]
- Virsik, R.P.; Harder, D. Statistical Interpretation of the Overdispersed Distribution of Radiation-Induced Dicentric Chromosome Aberrations at High LET. Radiat. Res. 1981, 85, 13–23. [Google Scholar] [CrossRef]
- Khan, M.A.; Cross, F.T.; Jostes, R.; Hui, E.; Morris, J.E.; Brooks, A.L. Micronuclei Induced by Radon and Its Progeny in Deep-Lung Fibroblasts of Rats In Vivo and In Vitro. Radiat. Res. 1994, 139, 53–59. [Google Scholar] [CrossRef]
- Hamza, V.Z.; Mohankumar, M.N. Cytogenetic Damage in Human Blood Lymphocytes Exposed in Vitro to Radon. Mutat. Res. Mol. Mech. Mutagen. 2009, 661, 1–9. [Google Scholar] [CrossRef]
- Jostes, R.F.; Fleck, E.W.; Morgan, T.L.; Stiegler, G.L.; Cross, F.T. Southern Blot and Polymerase Chain Reaction Exon Analyses of HPRT- Mutations Induced by Radon and Radon Progeny. Radiat. Res. 1994, 137, 371–379. [Google Scholar] [CrossRef]
- Maier, A.; Wiedemann, J.; Adrian, J.A.; Dornhecker, M.; Zipf, A.; Kraft-Weyrather, W.; Kraft, G.; Richter, S.; Teuscher, N.; Fournier, C. α-Irradiation Setup for Primary Human Cell Cultures. Int. J. Radiat. Biol. 2019, 96, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Franken, N.A.P.; Hovingh, S.; Ten Cate, R.; Krawczyk, P.; Stap, J.; Hoebe, R.; Aten, J.; Barendsen, G.W. Relative Biological Effectiveness of High Linear Energy Transfer α-Particles for the Induction of DNA-Double-Strand Breaks, Chromosome Aberrations and Reproductive Cell Death in SW-1573 Lung Tumour Cells. Oncol. Rep. 2012, 27, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Goodhead, D.T.; Bance, D.A.; Stretch, A.; Wilkinson, R.E. A Versatile Plutonium-238 Irradiator for Radiobiological Studies with Alpha-Particles. Int. J. Radiat. Biol. 1991, 59, 195–210. [Google Scholar] [CrossRef] [PubMed]
- Purrott, R.J.; Edwards, A.A.; Lloyd, D.C.; Stather, J.W. The Induction of Chromosome Aberrations in Human Lymphocytes by in Vitro Irradiation with Alpha-Particles from Plutonium-239. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1980, 38, 277–284. [Google Scholar] [CrossRef]
- Nikitaki, Z.; Choulilitsa, E.; Kalospyros, S.A.; Kaisaridi, S.; Terzoudi, G.I.; Kokkoris, M.; Georgakilas, A.G. Construction and Evaluation of an α-Particle-Irradiation Exposure Apparatus. Int. J. Radiat. Biol. 2021, 97, 1404–1416. [Google Scholar] [CrossRef]
- Lee, K.M.; Lee, U.S.; Kim, E.H. A Practical Alpha Particle Irradiator for Studying Internal Alpha Particle Exposure. Appl. Radiat. Isot. 2016, 115, 304–311. [Google Scholar] [CrossRef]
- Beaton, L.A.; Burn, T.A.; Stocki, T.J.; Chauhan, V.; Wilkins, R.C. Development and Characterization of an in Vitro Alpha Radiation Exposure System. Phys. Med. Biol. 2011, 56, 3645. [Google Scholar] [CrossRef]
- Jenner, T.J.; DeLara, C.M.; O’Neill, P.; Stevens, D.L. Induction and Rejoining of DNA Double-Strand Breaks in V79-4 Mammalian Cells Following Gamma- and Alpha-Irradiation. Int. J. Radiat. Biol. 1993, 64, 265–273. [Google Scholar] [CrossRef]
- Anderson, R.M.; Marsden, S.J.; Wright, E.G.; Kadhim, M.A.; Goodhead, D.T.; Griffin, C.S. Complex Chromosome Aberrations in Peripheral Blood Lymphocytes as a Potential Biomarker of Exposure to High-LET Alpha-Particles. Int. J. Radiat. Biol. 2009, 76, 31–42. [Google Scholar] [CrossRef]
- Themis, M.; Garimberti, E.; Hill, M.A.; Anderson, R.M. Reduced Chromosome Aberration Complexity in Normal Human Bronchial Epithelial Cells Exposed to Low-LET γ-rays and High-LET α-Particles. Int. J. Radiat. Biol. 2013, 89, 934–943. [Google Scholar] [CrossRef]
- Tracy, B.L.; Stevens, D.L.; Goodhead, D.T.; Hill, M.A. Variation in RBE for Survival of V79-4 Cells as a Function of Alpha-Particle (Helium Ion) Energy. Radiat. Res. 2015, 184, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Hakanen, A.; Siiskonen, T.; Pöllänen, R.; Kosunen, A.; Turunen, A.; Belyakov, O. Design, Spectrum Measurements and Simulations for a 238Pu α-Particle Irradiator for Bystander Effect and Genomic Instability Experiments. Appl. Radiat. Isot. 2006, 64, 864–867. [Google Scholar] [CrossRef] [PubMed]
- Tisnek, N.; Kalanxhi, E.; Serkland, C.W.; Iversen, J.; Belyakov, O.V.; Dahle, J. A 238Pu Irradiator for Exposure of Cultured Cells with Alpha-Radiation: Construction, Calibration and Dosimetry. Appl. Radiat. Isot. 2009, 67, 1998–2002. [Google Scholar] [CrossRef] [PubMed]
- Simmons, J.A.; Cohn, P.; Min, T. Survival and Yields of Chromosome Aberrations in Hamster and Human Lung Cells Irradiated by Alpha Particles. Radiat. Res. 1996, 145, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Metting, N.F.; Koehler, A.M.; Nagasawa, H.; Nelson, J.M.; Little, J.B. Design of a Benchtop Alpha Particle Irradiator. Health Phys. 1995, 68, 710–715. [Google Scholar] [CrossRef]
- Chauhan, V.; Howland, M.; Chen, J.; Kutzner, B.; Wilkins, R.C. Differential Effects of Alpha-Particle Radiation and X-Irradiation on Genes Associated with Apoptosis. Radiol. Res. Pract. 2011, 2011, 679806. [Google Scholar] [CrossRef] [PubMed]
- Roos, H.; Kellerer, A.M. Design Criteria and Performance Parameters of an Alpha Irradiation Device for Cell Studies. Phys. Med. Biol. 1989, 34, 1823. [Google Scholar] [CrossRef]
- Schmid, E.; Hieber, L.; Heinzmann, U.; Roos, H.; Kellerer, A.M. Analysis of Chromosome Aberrations in Human Peripheral Lymphocytes Induced by in Vitro α-Particle Irradiation. Radiat. Environ. Biophys. 1996, 35, 179–184. [Google Scholar] [CrossRef]
- Wang, R.; Coderre, J.A. A Bystander Effect in Alpha-Particle Irradiations of Human Prostate Tumor Cells. Radiat. Res. 2005, 164, 711–722. [Google Scholar] [CrossRef]
- Anzenberg, V.; Chandiramani, S.; Coderre, J.A. LET-Dependent Bystander Effects Caused by Irradiation of Human Prostate Carcinoma Cells with X rays or Alpha Particles. Radiat. Res. 2008, 170, 467–476. [Google Scholar] [CrossRef]
- U.S. Department of Commerce National Institute of Standards and Technology. Available online: http://www.nist.gov (accessed on 7 February 2023).
- Lee, U.S.; Kim, E.H. Combined Effect of Alpha Particles and Cigarette Smoke on Human Lung Epithelial Cells in Vitro. Int. J. Radiat. Biol. 2019, 95, 1276–1286. [Google Scholar] [CrossRef] [PubMed]
- Moreira, H.M.; Guerra Liberal, F.D.; McMahon, S.J.; Prise, K.M. Characterization of a Custom-Made 241Am Alpha-Source for Radiobiological Studies. Appl. Radiat. Isot. 2021, 177, 109931. [Google Scholar] [CrossRef] [PubMed]
- United Nations Scientific Committee on the Effects of Atomic Radiation. Sources, Effects and Risks of Ionizing Radiation; Report to the General Assembly, with Scientific Annexes; UNSCEAR: New York, NY, USA, 2017.
- Lubin, J.H. Models for the Analysis of Radon-Exposed Populations. Yale J. Biol. Med. 1988, 61, 195. [Google Scholar] [PubMed]
- United Nations Scientific Committee on the Effects of Atomic Radiation. Effects of Ionizing Radiation; Report to the General Assembly—Volume II; Scientific Annexes C, D and E; United Nations: New York, NY, USA, 2009.
- Kim, J.; Farré, M.; Auvil, L.; Capitanu, B.; Larkin, D.M.; Ma, J.; Lewin, H.A. Reconstruction and Evolutionary History of Eutherian Chromosomes. Proc. Natl. Acad. Sci. USA 2017, 114, E5379–E5388. [Google Scholar] [CrossRef] [PubMed]
- Balásházy, I.; Hofmann, W. Quantification of Local Deposition Patterns of Inhaled Radon Decay Products in Human Bronchial Airway Bifurcations. Health Phys. 2000, 78, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, W.; Crawford-Brown, D.J.; Menache, M.G.; Martonen, T.B. Carcinogenic Risk of Non-Uniform Alpha Particle Irradiation in the Lungs: Radon Progeny Effects at Bronchial Bifurcations. Radiat. Prot. Dosim. 1991, 38, 91–97. [Google Scholar] [CrossRef]
- Martonen, T.B.; Hofmann, W. Dosimetry of Localised Accumulations of Cigarette Smoke and Radon Progeny at Bifurcations. Radiat. Prot. Dosim. 1991, 38, 81–89. [Google Scholar] [CrossRef]
- Martell, E.A. Alpha-Radiation Dose at Bronchial Bifurcations of Smokers from Indoor Exposure to Radon Progeny. Proc. Natl. Acad. Sci. USA 1983, 80, 1285–1289. [Google Scholar] [CrossRef]
- Hofmann, W.; Li, W.B.; Friedland, W.; Miller, B.W.; Madas, B.; Bardiès, M.; Balásházy, I. Internal Microdosimetry of Alpha-Emitting Radionuclides. Radiat. Environ. Biophys. 2020, 59, 29–62. [Google Scholar] [CrossRef]
- Baiocco, G.; Bartzsch, S.; Conte, V.; Friedrich, T.; Jakob, B.; Tartas, A.; Villagrasa, C.; Prise, K.M. A Matter of Space: How the Spatial Heterogeneity in Energy Deposition Determines the Biological Outcome of Radiation Exposure. Radiat. Environ. Biophys. 2022, 61, 545–559. [Google Scholar] [CrossRef]
- Mc Laughlin, J.P. Dosimetric and epidemiological approaches to radon lung cancer risk assessment. Radiat. Prot. Dosim. 2019, 184, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Lowe, D.; Roy, L.; Tabocchini, M.A.; Rühm, W.; Wakeford, R.; Woloschak, G.E.; Laurier, D. Radiation Dose Rate Effects: What Is New and What Is Needed? Radiat. Environ. Biophys. 2022, 61, 507–543. [Google Scholar] [CrossRef] [PubMed]
- Claesson, A.K.; Stenerlöw, B.; Jacobsson, L.; Elmroth, K. Relative Biological Effectiveness of the Alpha-Particle Emitter (211)At for Double-Strand Break Induction in Human Fibroblasts. Radiat. Res. 2007, 167, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Timm, S.; Lorat, Y.; Jakob, B.; Taucher-Scholz, G.; Rübe, C.E. Clustered DNA Damage Concentrated in Particle Trajectories Causes Persistent Large-Scale Rearrangements in Chromatin Architecture. Radiother. Oncol. 2018, 129, 600–610. [Google Scholar] [CrossRef] [PubMed]
- Lorat, Y.; Timm, S.; Jakob, B.; Taucher-Scholz, G.; Rübe, C.E. Clustered Double-Strand Breaks in Heterochromatin Perturb DNA Repair after High Linear Energy Transfer Irradiation. Radiother. Oncol. 2016, 121, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.; Tracy, B.; Ping, T.; Baweja, A.; Wickstrom, M.; Sidhu, N.; Hiebert, L. Relative Biological Effectiveness (RBE) of Alpha Radiation in Cultured Porcine Aortic Endothelial Cells. Int. J. Radiat. Biol. 2007, 83, 171–179. [Google Scholar] [CrossRef]
- Raju, M.R.; Eisen, Y.; Carpenter, S.; Inkret, W.C. Radiobiology of α Particles. III. Cell Inactivation by α-Particle Traversals of the Cell Nucleus. Radiat. Res. 1991, 128, 204–209. [Google Scholar] [CrossRef]
- Cannan, W.J.; Pederson, D.S. Mechanisms and Consequences of Double-Strand DNA Break Formation in Chromatin. J. Cell. Physiol. 2016, 231, 3–14. [Google Scholar] [CrossRef]
- Azzam, E.I.; Little, J.B. The Radiation-Induced Bystander Effect: Evidence and Significance. Hum. Exp. Toxicol. 2016, 23, 61–65. [Google Scholar] [CrossRef]
- Blyth, B.J.; Sykes, P.J. Radiation-Induced Bystander Effects: What Are They, and How Relevant Are They to Human Radiation Exposures? Radiat. Res. 2011, 176, 139–157. [Google Scholar] [CrossRef]
- Brenner, D.J.; Sachs, R.K. Domestic Radon Risks May Be Dominated by Bystander Effects--but the Risks Are Unlikely to Be Greater than We Thought. Health Phys. 2003, 85, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Flint, D.B.; Bright, S.J.; McFadden, C.H.; Konishi, T.; Ohsawa, D.; Turner, B.; Lin, S.H.; Grosshans, D.R.; Chiu, H.S.; Sumazin, P.; et al. Cell Lines of the Same Anatomic Site and Histologic Type Show Large Variability in Intrinsic Radiosensitivity and Relative Biological Effectiveness to Protons and Carbon Ions. Med. Phys. 2021, 48, 3243–3261. [Google Scholar] [CrossRef] [PubMed]
- Weyrather, W.K.; Ritter, S.; Scholz, M.; Kraft, G. RBE for Carbon Track-Segment Irradiation in Cell Lines of Differing Repair Capacity. Int. J. Radiat. Biol. 1999, 75, 1357–1364. [Google Scholar] [CrossRef] [PubMed]
- Shrivastav, M.; De Haro, L.P.; Nickoloff, J.A. Regulation of DNA Double-Strand Break Repair Pathway Choice. Cell Res. 2008, 18, 134–147. [Google Scholar] [CrossRef] [PubMed]
- Leach, J.P.; Morrisey, E.E. Repairing the Lungs One Breath at a Time: How Dedicated or Facultative Are You? Genes Dev. 2018, 32, 1461–1471. [Google Scholar] [CrossRef] [PubMed]
- Nagarkatti, M.; Nagarkatti, P.S.; Brooks, A. Effect of Radon on the Immune System: Alterations in the Cellularity and Functions of T Cells in Lymphoid Organs of Mouse. J. Toxicol. Environ. Health 1996, 47, 535–552. [Google Scholar] [CrossRef]
- Inghirami, G.; Zhu, B.Y.; Chess, L.; Knowles, D.M. Flow Cytometric and Immunohistochemical Characterization of the Gamma/Delta T-Lymphocyte Population in Normal Human Lymphoid Tissue and Peripheral Blood. Am. J. Pathol. 1990, 136, 357. [Google Scholar]
- Rayner, R.E.; Makena, P.; Prasad, G.L.; Cormet-Boyaka, E. Optimization of Normal Human Bronchial Epithelial (NHBE) Cell 3D Cultures for in Vitro Lung Model Studies. Sci. Rep. 2019, 9, 500. [Google Scholar] [CrossRef]
- Hiemstra, P.S.; Grootaers, G.; van der Does, A.M.; Krul, C.A.M.; Kooter, I.M. Human Lung Epithelial Cell Cultures for Analysis of Inhaled Toxicants: Lessons Learned and Future Directions. Toxicol. In Vitro 2018, 47, 137–146. [Google Scholar] [CrossRef]
- Zamprogno, P.; Wüthrich, S.; Achenbach, S.; Thoma, G.; Stucki, J.D.; Hobi, N.; Schneider-Daum, N.; Lehr, C.M.; Huwer, H.; Geiser, T.; et al. Second-Generation Lung-on-a-Chip with an Array of Stretchable Alveoli Made with a Biological Membrane. Commun. Biol. 2021, 4, 168. [Google Scholar] [CrossRef]
Isotope | Decay Energy Alpha Particle [MeV] | Emission Probability [%] | Half-Life [a] |
---|---|---|---|
234U | 4.722 | 28.4 | 2.455 × 105 |
4.774 | 71.4 | ||
238Pu | 5.456 | 29.0 | 87.7 |
5.499 | 70.9 | ||
239Pu | 5.106 | 11.5 | 2.411 × 104 |
5.144 | 15.1 | ||
5.157 | 73.3 | ||
241Am | 5.443 | 13.0 | 432.2 |
5.486 | 84.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maier, A.; Bailey, T.; Hinrichs, A.; Lerchl, S.; Newman, R.T.; Fournier, C.; Vandevoorde, C. Experimental Setups for In Vitro Studies on Radon Exposure in Mammalian Cells—A Critical Overview. Int. J. Environ. Res. Public Health 2023, 20, 5670. https://doi.org/10.3390/ijerph20095670
Maier A, Bailey T, Hinrichs A, Lerchl S, Newman RT, Fournier C, Vandevoorde C. Experimental Setups for In Vitro Studies on Radon Exposure in Mammalian Cells—A Critical Overview. International Journal of Environmental Research and Public Health. 2023; 20(9):5670. https://doi.org/10.3390/ijerph20095670
Chicago/Turabian StyleMaier, Andreas, Tarryn Bailey, Annika Hinrichs, Sylvie Lerchl, Richard T. Newman, Claudia Fournier, and Charlot Vandevoorde. 2023. "Experimental Setups for In Vitro Studies on Radon Exposure in Mammalian Cells—A Critical Overview" International Journal of Environmental Research and Public Health 20, no. 9: 5670. https://doi.org/10.3390/ijerph20095670
APA StyleMaier, A., Bailey, T., Hinrichs, A., Lerchl, S., Newman, R. T., Fournier, C., & Vandevoorde, C. (2023). Experimental Setups for In Vitro Studies on Radon Exposure in Mammalian Cells—A Critical Overview. International Journal of Environmental Research and Public Health, 20(9), 5670. https://doi.org/10.3390/ijerph20095670