Volatile Organic Compound (VOC) Contamination in Hotel Rooms: A Pilot Study to Understand Sources and Health Risks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hotel Selection and Sample Collection
2.2. Indoor VOC Sampling Methods
2.3. Laboratory Analysis of VOC Samples
2.4. Quality Assurance and Quality Control (QA/QC)
2.5. Health Risk Assessment
3. Results and Discussion
3.1. Presence and Concentrations of Airborne VOCs in Hotel Rooms
3.2. Potential Sources of VOCs in Hotels
3.3. Health Risks from Indoor VOC Exposure
3.4. Comparison with Previous Studies
3.5. Implications for Indoor VOC Sampling Strategies
3.6. Implications for Hotel IAQ Management
3.7. Study Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zanni, S.; Motta, G.; Mura, M.; Longo, M.; Caiulo, D. The challenge of indoor air quality management: A case study in the hospitality industry at the time of the pandemic. Atmosphere 2021, 12, 880. [Google Scholar] [CrossRef]
- UNWTO. UNWTO Tourism Recovery Tracker. 2023. Available online: https://www.unwto.org/tourism-data/unwto-tourism-recovery-tracker (accessed on 30 September 2024).
- Mao, Z.; Yang, Y.; Wang, M. Sleepless nights in hotels? Understanding factors that influence hotel sleep quality. Int. J. Hosp. Manag. 2018, 74, 189–201. [Google Scholar] [CrossRef]
- Kim, M.; Lee, E.; Kim, S.J.; Cha, J.; Cichy, R.F. Impact of indoor environmental quality on hotel guests’ behaviors. Int. J. Hosp. Tour. Adm. 2023, 24, 288–313. [Google Scholar] [CrossRef]
- Shen, Z.; Yang, X.; Liu, C.; Li, J. Assessment of indoor environmental quality in budget hotels using text-mining method: Case study of top five brands in China. Sustainability 2021, 13, 4490. [Google Scholar] [CrossRef]
- Jiménez-Medina, P.; Navarro-Azorín, J.M.; Cubillas-Para, C.; Artal-Tur, A. What Safety and Security Measures Really Matter in the Post-COVID Recovery of the Hospitality Industry? An Analysis of the Visitor’s Intention to Return in Spain. Tour. Hosp. 2022, 3, 606–617. [Google Scholar] [CrossRef]
- Chang, H.; Huh, C.; Legendre, T.S.; Simpson, J.J. Exploring particulate matter pollution in hotel guestrooms. Int. J. Contemp. Hosp. Manag. 2020, 32, 1131–1162. [Google Scholar] [CrossRef]
- Mejia, C.; Ciarlante, K.; Chheda, K. A wearable technology solution and research agenda for housekeeper safety and health. Int. J. Contemp. Hosp. Manag. 2021, 33, 3223–3255. [Google Scholar] [CrossRef]
- Chan, E.S.; Hsu, C.H. Environmental management research in hospitality. Int. J. Contemp. Hosp. Manag. 2016, 28, 886–923. [Google Scholar] [CrossRef]
- Chan, W.; Lee, S.-C.; Chen, Y.; Mak, B.; Wong, K.; Chan, C.-S.; Zheng, C.; Guo, X. Indoor air quality in new hotels’ guest rooms of the major world factory region. Int. J. Hosp. Manag. 2009, 28, 26–32. [Google Scholar] [CrossRef]
- Villeneuve, H.; O’Brien, W. Listen to the guests: Text-mining Airbnb reviews to explore indoor environmental quality. Build. Environ. 2020, 169, 106555. [Google Scholar] [CrossRef]
- Yu, C.; Crump, D. A review of the emission of VOCs from polymeric materials used in buildings. Build. Environ. 1998, 33, 357–374. [Google Scholar] [CrossRef]
- Haines, S.R.; Adams, R.I.; Boor, B.E.; Bruton, T.A.; Downey, J.; Ferro, A.R.; Gall, E.; Green, B.J.; Hegarty, B.; Horner, E.; et al. Ten questions concerning the implications of carpet on indoor chemistry and microbiology. Build. Environ. 2020, 170, 106589. [Google Scholar] [CrossRef]
- Salthammer, T. Data on formaldehyde sources, formaldehyde concentrations and air exchange rates in European housings. Data Brief 2019, 22, 400–435. [Google Scholar] [CrossRef]
- Yan, M.; Zhai, Y.; Shi, P.; Hu, Y.; Yang, H.; Zhao, H. Emission of volatile organic compounds from new furniture products and its impact on human health. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 1886–1906. [Google Scholar] [CrossRef]
- Pang, S.K.; Cho, H.C.; Sohn, J.-Y.; Song, K.D. Assessment of the Emission Characteristics of VOCs from Interior Furniture Materials during the Construction Process. Indoor Built Environ. 2007, 16, 444–455. [Google Scholar] [CrossRef]
- Yu, C.W.F.; Kim, J.T. Long-term Impact of Formaldehyde and VOC Emissions from Wood-based Products on Indoor Environments; and Issues with Recycled Products. Indoor Built Environ. 2012, 21, 137–149. [Google Scholar] [CrossRef]
- Lee, K.; Hahn, E.J.; Riker, C.; Head, S.; Seithers, P. Immediate impact of smoke-free laws on indoor air quality. South Med. J. 2007, 100, 885–889. [Google Scholar] [CrossRef]
- Tong, M.; Goodman, N.; Vardoulakis, S. Impact of secondhand smoke on air quality in partially enclosed outdoor hospitality venues: A review. BMC Public Health 2024, 24, 1872. [Google Scholar] [CrossRef]
- Rumchev, K.; Brown, H.; Spickett, J. Volatile organic compounds: Do they present a risk to our health? Rev. Environ. Health 2007, 22, 39–56. [Google Scholar] [CrossRef]
- Borowski, M.; Zwolińska, K.; Czerwiński, M. An experimental study of thermal comfort and indoor air quality—A case study of a hotel building. Energies 2022, 15, 2026. [Google Scholar] [CrossRef]
- He, Q.; Song, Q.; Yan, Y.; Wang, Z.; Guo, L.; Wang, X. Exposure to particle matters and hazardous volatile organic compounds in selected hot spring hotels in Guangdong, China. Atmosphere 2016, 7, 54. [Google Scholar] [CrossRef]
- Jia, C.; Fu, X.; Chauhan, B.; Xue, Z.; Kedia, R.J.; Mishra, C.S. Exposure to volatile organic compounds (VOCs) at gas stations: A probabilistic analysis. Air Qual. Atmos. Health 2022, 15, 465–477. [Google Scholar] [CrossRef]
- Jia, C.; Fu, X. Diffusive Uptake Rates of Volatile Organic Compounds on Standard ATD Tubes for Environmental and Workplace Applications. Environments 2017, 4, 87. [Google Scholar] [CrossRef]
- ATSDR. Minimal Risk Levels (MRLs) for Hazardous Substances: Agency for Toxic Substances and Disease Registry. 2023. Available online: https://www.atsdr.cdc.gov/mrls/index.html (accessed on 30 September 2024).
- USEPA. Exposure Factors Handbook: 2011 Edition; U.S. Environmental Protection Agency: Washington, DC, USA, 2011. Available online: https://assessments.epa.gov/risk/document/&deid=236252#downloads (accessed on 30 September 2024).
- USEPA. Integrated Risk Information System; U.S. Environmental Protection Agency: Washington, DC, USA, 2023. Available online: http://www.epa.gov/iris/ (accessed on 30 September 2024).
- Fu, X.; Hernández, D.; Attinson, D.N.; Kponee, K.Z.; Bartelli, D.; Gretz, A.M.; Smith, J.N.; Jia, C. Airborne 2,5-dimethylfuran as a marker to indicate exposure to indoor tobacco and biomass burning smoke. Atmos. Environ. 2021, 259, 118509. [Google Scholar] [CrossRef]
- Zanni, S.; Mura, M.; Longo, M.; Motta, G.; Caiulo, D. Indoor air quality monitoring and management in hospitality: An overarching framework. Int. J. Contemp. Hosp. Manag. 2023, 35, 397–418. [Google Scholar] [CrossRef]
- Kwon, K.-D.; Jo, W.-K.; Lim, H.-J.; Jeong, W.-S. Characterization of emissions composition for selected household products available in Korea. J. Hazard. Mater. 2007, 148, 192–198. [Google Scholar] [CrossRef]
- Steinemann, A.C.; MacGregor, I.C.; Gordon, S.M.; Gallagher, L.G.; Davis, A.L.; Ribeiro, D.S.; Wallace, L.A. Fragranced consumer products: Chemicals emitted, ingredients unlisted. Environ. Impact Assess. Rev. 2011, 31, 328–333. [Google Scholar] [CrossRef]
- Zhu, J.; Cao, X.-L.; Beauchamp, R. Determination of 2-butoxyethanol emissions from selected consumer products and its application in assessment of inhalation exposure associated with cleaning tasks. Environ. Int. 2001, 26, 589–597. [Google Scholar] [CrossRef]
- Wakayama, T.; Ito, Y.; Sakai, K.; Miyake, M.; Shibata, E.; Ohno, H.; Kamijima, M. Comprehensive review of 2-ethyl-1-hexanol as an indoor air pollutant. J. Occup. Health 2019, 61, 19–35. [Google Scholar] [CrossRef]
- Wieslander, G.; Kumlin, A.; Norbäck, D. Dampness and 2-ethyl-1-hexanol in floor construction of rehabilitation center: Health effects in staff. Arch. Environ. Occup. Health 2010, 65, 3–11. [Google Scholar] [CrossRef]
- Shepherd, J.L.; Corsi, R.L.; Kemp, J. Chloroform in Indoor Air and Wastewater: The Role of Residential Washing Machines. J. Air Waste Manag. Assoc. 1996, 46, 631–642. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, P.A.; Corsi, R.L. Emissions of p-dichlorobenzene and naphthalene from consumer products. J. Air Waste Manag. Assoc. 2012, 62, 1075–1084. [Google Scholar] [CrossRef] [PubMed]
- Salthammer, T. Volatile Organic Ingredients of Household. In Organic Indoor Air Pollutants: Occurence, Measurement, Evaluation; WILEY-VCH: Weinheim, Germany, 1999; p. 219. [Google Scholar]
- Liu, Y.; Shao, M.; Fu, L.; Lu, S.; Zeng, L.; Tang, D. Source profiles of volatile organic compounds (VOCs) measured in China: Part I. Atmos. Environ. 2008, 42, 6247–6260. [Google Scholar] [CrossRef]
- Chen, Q.F.; Milburn, R.K.; Karellas, N.S. Real time monitoring of hazardous airborne chemicals: A styrene investigation. J. Hazard. Mater. 2006, 132, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Hartzell, A.; Wilcoxon, F. Naphthalene fumigation at controlled concentrations. J. Econ. Entomol. 1930, 23, 608–618. [Google Scholar] [CrossRef]
- de Paoli, M.; Taccheo-Barbina, M.; Bontempelli, G. Gas chromatographic system for the identification of halogenated pesticides by retention indices using n-alkanes as standards. J. Chromatogr. A 1991, 547, 355–365. [Google Scholar] [CrossRef]
- Pichersky, E.; Raguso, R.A.; Lewinsohn, E.; Croteau, R. Floral scent production in Clarkia (Onagraceae)(I. Localization and developmental modulation of monoterpene emission and linalool synthase activity). Plant Physiol. 1994, 106, 1533–1540. [Google Scholar] [CrossRef]
- Wang, C.; Yang, X.; Guan, J.; Li, Z.; Gao, K. Source apportionment of volatile organic compounds (VOCs) in aircraft cabins. Build. Environ. 2014, 81, 1–6. [Google Scholar] [CrossRef]
- Çakmak, A.; Kapusuz, M.; Özcan, H. Experimental research on ethyl acetate as novel oxygenated fuel in the spark-ignition (SI) engine. Energy Sources Part A Recovery Util. Environ. Eff. 2023, 45, 178–193. [Google Scholar] [CrossRef]
- Lapczynski, A.; Jones, L.; McGinty, D.; Bhatia, S.; Letizia, C.; Api, A. Fragrance material review on methyl salicylate. Food Chem. Toxicol. 2007, 45, S428–S452. [Google Scholar] [CrossRef]
- Huang, J.; Xiao, H.; Yang, X.; Guo, F. Combustion Characteristics and Emission Analysis of Tetrahydrofuran–Biodiesel-Blended Fuel in a Diesel Engine. Energy Fuels 2021, 35, 3164–3173. [Google Scholar] [CrossRef]
- Shao, M.; Sasaki, K.; Marinkovic, N.S.; Zhang, L.; Adzic, R.R. Synthesis and characterization of platinum monolayer oxygen-reduction electrocatalysts with Co–Pd core–shell nanoparticle supports. Electrochem. Commun. 2007, 9, 2848–2853. [Google Scholar] [CrossRef]
- Correa, S.M.; Arbilla, G. Carbonyl emissions in diesel and biodiesel exhaust. Atmos. Environ. 2008, 42, 769–775. [Google Scholar] [CrossRef]
- Jia, C.; Fu, X.; Webster, T.F.; Ceballos, D.M. Fragrance chemicals in nail salons: Personal inhalation exposures and potential sources. Atmos. Pollut. Res. 2024, 15, 102236. [Google Scholar] [CrossRef]
- Sempere, F.; Gabaldón, C.; Martínez-Soria, V.; Penya-roja, J.M.; Álvarez-Hornos, F.J. Evaluation of a combined activated carbon prefilter and biotrickling filter system treating variable ethanol and ethyl acetate gaseous emissions. Eng. Life Sci. 2009, 9, 317–323. [Google Scholar] [CrossRef]
- NATA AirToxScreen. 2019. Available online: https://www.epa.gov/AirToxScreen/2019-airtoxscreen (accessed on 30 September 2024).
- Lin, N.; Rosemberg, M.-A.; Li, W.; Meza-Wilson, E.; Godwin, C.; Batterman, S. Occupational exposure and health risks of volatile organic compounds of hotel housekeepers: Field measurements of exposure and health risks. Indoor Air 2021, 31, 26–39. [Google Scholar] [CrossRef]
- Chan, C.S.; Lee, S.C.; Chan, W.; Ho, K.F.; Tian, L.; Lai, S.C.; Li, Y.S.; Huang, Y. Characterisation of Volatile Organic Compounds at Hotels in Southern China. Indoor Built Environ. 2011, 20, 420–429. [Google Scholar] [CrossRef]
- Carbon Lighthouse. U.S. Consumer Sentiment on Indoor Air Quality and COVID-19. 2020. Available online: https://www.carbonlighthouse.com (accessed on 30 September 2024).
- Seo, K. Asset-Light Business Model: Strategies for Hotels During the Pandemic. Boston Hospitality Review. 2021. Available online: https://www.bu.edu (accessed on 30 September 2024).
- OTA Insight. OTA Insight. Share of Hospitality Operators Who Changed Standard Operating Procedures for Cleaning Hotel Rooms as a Result of the Coronavirus (COVID-19) Pandemic Worldwide as of June 2020. Statista. 2020. Available online: https://www.statista.com/statistics/1265596/covid-19-hotel-operators-who-changed-room-cleaning-sops (accessed on 30 September 2024).
- Kulkarni, S. Hotel Cleaning Services Market Anticipates Upsurge in Hospitality Sector Requirements 2024–2032. WhatTech. 2024. Available online: https://www.whatech.com (accessed on 30 September 2024).
- Mateer, N. Hotel Tech-In: Purifying Hotel Room Air for Wellness Travelers. Hotel Dive. 2023. Available online: https://www.hoteldive.com/news/pure-rooms-air-quality-wellness/701143 (accessed on 30 September 2024).
- OSHA. Protecting Workers Who Use Cleaning Chemicals. 2012. Available online: https://www.osha.gov/sites/default/files/publications/OSHA3512.pdf (accessed on 30 September 2024).
- He, Y.; Qi, R.; So, K.K.F.; Li, Y. Which ESG dimensions matter in the hotel industry? Evidence from the cost of debt. Int. J. Hosp. Manag. 2024, 122, 103866. [Google Scholar] [CrossRef]
- Host Hotels & Resorts. Environmental Policy. 2024. Available online: https://www.hosthotels.com/-/media/hosthotels/files/esg-performance/host_hotels_resorts_inc_environmental_policy.pdf (accessed on 25 October 2024).
- Jia, C.; Cao, K.; Valaulikar, R.; Fu, X.; Sorin, A.B. Variability of Total Volatile Organic Compounds (TVOC) in the Indoor Air of Retail Stores. Int. J. Environ. Res. Public Health 2019, 16, 4622. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Barney, J. Firm Resources and Sustained Competitive Advantage. J. Manag. 1991, 17, 99–120. [Google Scholar] [CrossRef]
VOCs | Hotel 1 (2.5-Star) | Hotel 2 (4-Star) | Hotel 3 (3-Star) | Hotel 4 (2-Star) | Median | MRLs |
---|---|---|---|---|---|---|
Alcohols | 4872 | 838 | 115 | 96 | 477 | |
Ethyl alcohol | 1597 | 615 | n.a. | n.a. | 1106 | n.a. |
Isopropyl alcohol | 3046 | 210 | n.a. | n.a. | 1628 | n.a. |
2-Butoxyethanol | 122 | 6.75 | 52.9 | 3.71 | 29.8 | 2900 |
2-Ethyl-1-hexanol | 101 | 4.14 | 59.0 | 84.0 | 71.5 | n.a. |
Halocarbons | 14.4 | 3.70 | 0.35 | 0.45 | 2.07 | |
Chloroform | 12.7 | 3.11 | 0.01 * | 0.01 * | 1.56 | 490 |
Aromatics | 37.1 | 4.38 | 13.8 | 41.0 | 25.5 | |
1,4-Dichlorobenzene | 11.3 | 0.03 * | 0.24 | 0.22 | 0.23 | 12,000 |
Benzene | 3.71 | 0.56 | 2.73 | 27.9 | 3.22 | 29 |
Toluene | 5.30 | 0.88 | 2.32 | 5.08 | 3.70 | 7500 |
Ethylbenzene | 0.95 | 0.27 | 0.65 | 0.71 | 0.68 | 22,000 |
Xylenes | 4.89 | 1.20 | 2.80 | 3.50 | 3.15 | 8700 |
Styrene | 1.87 | 0.25 | 2.83 | 0.35 | 1.11 | 21,000 |
Naphthalene | 4.58 | 0.13 | 0.21 | 0.23 | 0.22 | n.a. |
Alkanes | 267 | 7.03 | 90.9 | 15.8 | 53.3 | |
n-Tetradecane | 179 | 0.65 | 6.05 | 4.86 | 5.46 | n.a. |
n-Pentadecane | 69.5 | 0.73 | 1.87 | 1.66 | 1.76 | n.a. |
Terpenes | 156 | 22.1 | 94.4 | 48.6 | 71.5 | |
d-Limonene | 63.1 | 8.75 | 57.5 | 17.7 | 37.6 | n.a. |
β-Pinene | 8.15 | 0.87 | 4.18 | 2.72 | 3.45 | n.a. |
α-Terpinene | 1.52 | 2.73 | 14.6 | 0.07 | 2.13 | n.a. |
Linalool | 40.0 | 2.86 | 0.12 * | 7.60 | 5.23 | n.a. |
Menthol | 13.2 | 2.55 | 9.87 | 15.5 | 11.5 | n.a. |
Terpineol | 8.20 | 0.50 | 0.12 * | 0.12 * | 0.31 | n.a. |
Ethers and Esters | 25.8 | 3.96 | 7.47 | 4.07 | 5.77 | |
Ethyl acetate | 8.86 | 1.20 | 6.33 | 2.94 | 4.64 | n.a. |
Methyl salicylate | 4.51 | 0.68 | 0.09 * | 0.09 * | 0.39 | n.a. |
Tetrahydrofuran | 7.69 | 1.08 | 0.04 * | 0.04 * | 0.56 | n.a. |
Carbonyls | 29.5 | 4.14 | 13.7 | 13.8 | 13.8 | |
Benzaldehyde | 27.4 | 3.89 | 13.5 | 13.5 | 13.5 | n.a. |
ΣVOCs | 5404 | 882 | 339 | 217 | 610 |
VOCs | Possible Emissions Sources |
---|---|
Alcohols | |
Ethyl alcohol | Sanitizer, disinfectant [30,31] |
Isopropyl alcohol | Sanitizer, disinfectant, deoderizer [30,31] |
2-Butoxyethanol | All-purpose cleaner [32], cleaner [30,31] |
2-Ethyl-1-hexanol | Plastics, wood stain [33], water damage [34] |
Halocarbons | |
Chloroform | Tap water, bleach [35] |
1,4-Dichlorobenzene | Deodorizer, air freshener [36] |
Aromatics | |
Benzene | Wood stain, adhesives [37], exhaust [38] |
Toluene | Antibacterial spray [32], paint [30], exhaust [38] |
Styrene | Wax, resins [39] |
Naphthalene | Deodorizer [36], pesticide, grass killer [40] |
Alkanes | |
n-Tetradecane | Disinfectant [30], pest control, biocide [41] |
n-Pentadecane | Pest control, biocide [41] |
Terpenes | |
d-Limonene | Air freshener [37], detergent, cleaner [30] |
β-Pinene | Antibacterial cleaner [32], disinfectant [30] |
α-Terpinene | Cleaner [31], toilet deodorizer [37] |
Linalool | Air freshener [31], fragrance [42] |
Menthol | Air freshener [31], moist wipes [43] |
Terpineol | Cleaner, air freshener [37] |
Ethers and Esters | |
Ethyl acetate | Air freshener [30], nail polish [30], exhaust [44] |
Methyl salicylate | Fragrance, soap [45] |
Tetrahydrofuran | Exhaust [46,47] |
Carbonyls | |
Benzaldehyde | Vehicle exhaust [48], cosmetics [43] |
VOCs | Median (µg/m3) | IUR 1 (×10−6) | Risk (×10−6) | Contrib 2 (%) | Nat’l Ave 3 (×10−6) |
---|---|---|---|---|---|
Benzene | 3.22 | 7.8 | 0.75 | 33 | 1.91 |
Ethylbenzene | 0.68 | 2.5 | 0.05 | 2 | 0.23 |
Naphthalene | 0.22 | 34 | 0.22 | 10 | 0.82 |
Chloroform | 1.56 | 23 | 1.07 | 47 | n.a. |
1,2-Dichloroethane | 0.03 | 26 | 0.02 | 1 | 0.026 |
1,4-Dichlorobenzene | 0.23 | 11 | 0.08 | 3 | 0.017 |
Carbon tetrachloride | 0.38 | 6 | 0.07 | 3 | 3.02 |
Tetrachloroethylene | 0.13 | 0.26 | 0.001 | 0.04 | 0.006 |
Cumulative 4 | 6.45 | 2.25 | 100 | 6.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nored, A.; Fu, X.; Qi, R.; Batbaatar, N.; Jia, C. Volatile Organic Compound (VOC) Contamination in Hotel Rooms: A Pilot Study to Understand Sources and Health Risks. Int. J. Environ. Res. Public Health 2024, 21, 1464. https://doi.org/10.3390/ijerph21111464
Nored A, Fu X, Qi R, Batbaatar N, Jia C. Volatile Organic Compound (VOC) Contamination in Hotel Rooms: A Pilot Study to Understand Sources and Health Risks. International Journal of Environmental Research and Public Health. 2024; 21(11):1464. https://doi.org/10.3390/ijerph21111464
Chicago/Turabian StyleNored, Adam, Xianqiang Fu, Rui Qi, Namuun Batbaatar, and Chunrong Jia. 2024. "Volatile Organic Compound (VOC) Contamination in Hotel Rooms: A Pilot Study to Understand Sources and Health Risks" International Journal of Environmental Research and Public Health 21, no. 11: 1464. https://doi.org/10.3390/ijerph21111464
APA StyleNored, A., Fu, X., Qi, R., Batbaatar, N., & Jia, C. (2024). Volatile Organic Compound (VOC) Contamination in Hotel Rooms: A Pilot Study to Understand Sources and Health Risks. International Journal of Environmental Research and Public Health, 21(11), 1464. https://doi.org/10.3390/ijerph21111464