Importance of Return to Usual and School Activities After Social Isolation in Recovering Vitamin D Concentrations, Physical Fitness, and Motor Performance in Adolescents
Abstract
:1. Introduction
2. Materials and Methods
3. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Pate, R.R.; Davis, M.G.; Robinson, T.N.; Stone, E.J.; McKenzie, T.L.; Young, J.C. Promoting physical activity in children and youth: A leadership role for schools: A scientific statement from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism (Physical Activity Committee) in collaboration with the Councils on Cardiovascular Disease in the Young and Cardiovascular Nursing. Circulation 2006, 114, 1214–1224. [Google Scholar] [CrossRef] [PubMed]
- WHO. Clinical Management of COVID-19: Living Guidance; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- House, D.; Walker, R.; Salway, R.; Emm-Collison, L.; Breheny, K.; Sansum, K.; Churchward, S.; Williams, J.G.; de Vocht, F.; Jago, R. The impact of the COVID-19 pandemic on the physical activity environment in English primary schools: A multi-perspective qualitative analysis. Public Health Res. 2024, 1–37. [Google Scholar] [CrossRef] [PubMed]
- Beyazgül, G.; Bağ, Ö.; Yurtseven, İ.; Coşkunol, F.; Başer, S.; Çiçek, D.; Kanberoğlu, G.; Çelik, F.; Nalbantoğlu, Ö.; Özkan, B. How Vitamin D Levels of Children Changed During COVID-19 Pandemic: A Comparison of Pre-pandemic and Pandemic Periods. J. Clin. Res. Pediatr. Endocrinol. 2022, 14, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Brito, L.M.S.; de Lima, V.A.; Mascarenhas, L.P.; Mota, J.; Leite, N. Physical activity, eating habits and sleep during social isolation: From young adult to elderly. Rev. Bras. Med. Esporte 2021, 27, 21–25. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, Y.; Zhao, J.; Zhang, J.; Jiang, F. Mitigate the effects of home confinement on children during the COVID-19 outbreak. Lancet 2020, 395, 945–947. [Google Scholar] [CrossRef]
- Duncan, M.J.; Foweather, L.; Bardid, F.; Barnett, A.L.; Rudd, J.; O’brien, W.; Foulkes, J.D.; Roscoe, C.; Issartel, J.; Stratton, G.; et al. Motor Competence Among Children in the United Kingdom and Ireland: An Expert Statement on Behalf of the International Motor Development Research Consortium. J. Mot. Learn. Dev. 2022, 10, 7–26. [Google Scholar] [CrossRef]
- Brito, L.M.S.; de Lima, V.A.; Carli, M.E.C.; Mota, J.; Leite, N.; Boguszewski, M.C.d.S. Atividade física, alimentação e sono em atletas após um ano da pandemia de COVID-19. Rev. Bras. Med. Esporte 2024, 30, e2022_0128. [Google Scholar] [CrossRef]
- Rundle, A.G.; Park, Y.; Herbstman, J.B.; Kinsey, E.W.; Wang, Y.C. COVID-19 Related School Closings and Risk of Weight Gain Among Children. Obesity 2020, 28, 1008–1009. [Google Scholar] [CrossRef]
- Ortega, F.B.; Ruiz, J.R.; Castillo, M.J.; Sjöström, M. Physical fitness in childhood and adolescence: A powerful marker of health. Int. J. Obes. 2008, 32, 1–11. [Google Scholar] [CrossRef]
- Tadiotto, M.C.; Duncan, M.; Mota, J.; Moraes-Junior, F.B.; Corazza, P.R.; Czoczuk, M.; de Menezes-Junior, F.J.; Tozo, T.A.; Coelho-E-Silva, M.J.; Rodacki, A.L.; et al. Excess adiposity and low physical fitness hamper Supine-to-Stand test performance among sedentary adolescents. J. Pediatr. 2021, 97, 658–664. [Google Scholar] [CrossRef]
- Moore, S.A.; Sharma, R.; Martin Ginis, K.A.; Arbour-Nicitopoulos, K.P. Adverse Effects of the COVID-19 Pandemic on Movement and Play Behaviours of Children and Youth Living with Disabilities: Findings from the National Physical Activity Measurement (NPAM) Study. Int. J. Environ. Res. Public Health 2021, 18, 12950. [Google Scholar] [CrossRef] [PubMed]
- Xiang, M.; Zhang, Z.; Kuwahara, K. Impact of COVID-19 pandemic on children and adolescents’ lifestyle behavior larger than expected. Prog. Cardiovasc. Dis. 2020, 63, 531–532. [Google Scholar] [CrossRef] [PubMed]
- Corrigan, N.M.; Rokem, A.; Kuhl, P.K. COVID-19 lockdown effects on adolescent brain structure suggest accelerated maturation that is more pronounced in females than in males. Proc. Natl. Acad. Sci. USA 2024, 121, e2403200121. [Google Scholar] [CrossRef] [PubMed]
- Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics Books: Champaign, IL, USA, 1988. [Google Scholar]
- Wilson, J.P.; Mulligan, K.; Fan, B.; Sherman, J.L.; Murphy, E.J.; Tai, V.W.; Powers, C.L.; Marquez, L.; Ruiz-Barros, V.; A Shepherd, J. Dual-energy X-ray absorptiometry-based body volume measurement for 4-compartment body composition. Am. J. Clin. Nutr. 2012, 95, 25–31. [Google Scholar] [CrossRef]
- Mirwald, R.L.; Baxter-Jones, A.D.G.; Bailey, D.A.; Beunen, G.P. An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc. 2002, 34, 689–694. [Google Scholar] [CrossRef]
- VanSant, A.F. Age differences in movement patterns used by children to rise from a supine position to erect stance. Phys. Ther. 1988, 68, 1330–1339. [Google Scholar] [CrossRef]
- Léger, L.A.; Mercier, D.; Gadoury, C.; Lambert, J. The multistage 20 metre shuttle run test for aerobic fitness. J. Sports Sci. 1988, 6, 93–101. [Google Scholar] [CrossRef]
- de Menezes-Junior, F.J.; de Jesus, C.; Mota, J.; Lopes, M.d.F.A.; Corazza, P.R.P.; Tadiotto, M.C.; Tozo, T.A.A.; Purim, K.S.M.; Ronque, E.R.V.; Leite, N. Validation of equations to estimate the peak oxygen uptake in adolescents from 20 metres shuttle run test. J. Sports Sci. 2020, 38, 2588–2596. [Google Scholar] [CrossRef]
- Plowman, S.A.; Meredith, M.D. Fitnessgram®/Activitygram® Referencia Guia, 4th ed.; Human Kinetics: Champaign, IL, USA, 2013; p. 202. [Google Scholar]
- Wells, K.; Dillon, E. The sit and reach: A test of back and leg flexibility. Res. Q. Am. Assoc. Health Phys. Educ. Recreat. 1952, 23, 115. [Google Scholar] [CrossRef]
- Hopkins, W.G. A spreadsheet for deriving a confidence interval, mechanistic inference and clinical inference from a P value. Sportscience 2007, 11, 16–21. [Google Scholar]
- Bonafiglia, J.T.; Rotundo, M.P.; Whittall, J.P.; Scribbans, T.D.; Graham, R.B.; Gurd, B.J. Inter-Individual Variability in the Adaptive Responses to Endurance and Sprint Interval Training: A Randomized Crossover Study. PLoS ONE 2016, 11, e0167790. [Google Scholar] [CrossRef] [PubMed]
- Brito LM, S.; da Silva Boguszewski, M.C.; de Souza MT, R.; Martins, F.; Mota, J.; Leite, N. Indoor physical activities, eating and sleeping habits among school adolescents during COVID-19 pandemic. Rev. Bras. Ativ. Fís Saúde 2020, 25, 1–6. [Google Scholar] [CrossRef]
- Ruthes, E.M.P.; de Lima, A.L.; Malinowski, A.K.C.; da Veiga, M.S.; Corazza, P.R.P.; Tadiotto, M.C.; Leite, N.; de Matos, O. Análise da qualidade do sono e tempo de tela em adolescentes obesos. Rev. Bras. Qual. Vida 2020, 12, e11052. [Google Scholar] [CrossRef]
- Brand, C.; de Lucena Martins, C.M.; Dias, A.F.; Fochesatto, C.F.; García-Hermoso, A.; Honório, R.; Mota, J.; Gaya, A.C.A.; Gaya, A.R. Multicomponent intervention effect on cardiometabolic risk factors among overweight/obese Brazilian children: A mediation analysis. Sports Sci. Health 2021, 17, 153–162. [Google Scholar] [CrossRef]
- Yip, K.-M.; So, H.-K.; Tung, K.T.S.; Wong, R.S.; Tso, W.W.Y.; Wong, I.C.K.; Yam, J.C.; Kwan, M.Y.W.; Louie, L.H.T.; Lee, A.; et al. Normative values of motor performance and their relationship with BMI status in Hong Kong preschoolers. Sci. Rep. 2024, 14, 6567. [Google Scholar] [CrossRef]
- Barnett, L.M.; Lai, S.K.; Veldman, S.L.C.; Hardy, L.L.; Cliff, D.P.; Morgan, P.J.; Zask, A.; Lubans, D.R.; Shultz, S.P.; Ridgers, N.D.; et al. Correlates of Gross Motor Competence in Children and Adolescents: A Systematic Review and Meta-Analysis. Sports Med. 2016, 46, 1663–1688. [Google Scholar] [CrossRef]
- Gallahue, D.; Ozmun, J.C.; Goodway, J.D. Compreendendo o Desenvolvimento Motor: Bebês, Crianças, Adolescentes e Adultos, 7th ed.; AMGH: Boston, MA, USA, 2013. [Google Scholar]
- Bayramoğlu, E.; Akkoç, G.; Ağbaş, A.; Akgün, Ö.; Yurdakul, K.; Duru, H.N.S.; Elevli, M. The association between vitamin D levels and the clinical severity and inflammation markers in pediatric COVID-19 patients: Single-center experience from a pandemic hospital. Eur. J. Pediatr. 2021, 180, 2699–2705. [Google Scholar] [CrossRef]
- Ferreira, C.E.S.; Maeda, S.S.; Batista, M.C.; Lazaretti-Castro, M.; Vasconcellos, L.S.; Madeira, M.; Soares, L.M.; Borba, V.Z.C.; Moreira, C.A. Consensus-reference ranges of vitamin D [25(OH)D] from the Brazilian medical societies. Brazilian Society of Clinical Pathology/Laboratory Medicine (SBPC/ML) and Brazilian Society of Endocrinology and Metabolism (SBEM). J. Bras. Patol. Med. Lab. 2017, 53, 377–381. [Google Scholar] [CrossRef]
- Pombo, A.; Cordovil, R.; Rodrigues, L.P.; Moreira, A.C.; Borrego, R.; Machado, M.; Costa, V.; Almeida, A.; Tavares, A.S.; de Sá, C.C.; et al. Effect of Motor Competence and Health-Related Fitness in the Prevention of Metabolic Syndrome Risk Factors. Res. Q. Exerc. Sport 2024, 95, 110–117. [Google Scholar] [CrossRef]
- Stodden, D.; Goodway, J.; Langendorfer, S.; Roberton, M.A.; Rudisill, M.E.; Garcia, C.; Garcia, L.E. A Developmental Perspective on the Role of Motor Skill Competence in Physical Activity: An Emergent Relationship. Quest 2008, 60, 290–306. [Google Scholar] [CrossRef]
- Luz, C.; Rodrigues, L.P.; Meester, A.D.; Cordovil, R. The relationship between motor competence and health-related fitness in children and adolescents. PLoS ONE 2017, 12, e0179993. [Google Scholar] [CrossRef]
Variables | Immediate Return | Three Months of Usual Activities | ES | CI | p |
---|---|---|---|---|---|
Anthropometrics and body composition | |||||
Height | 1.67 ± 0.09 | 1.67 ± 0.09 | 0 | T | 0.002 |
BM | 61.3 ± 14.0 | 61.8 ± 13.6 | 0.04 | T | 0.281 |
BMI-z | 0.41 ± 1.4 | 0.38 ± 1.3 | −0.02 | T | 0.31 |
BMI | 21.9 ± 4.8 | 21.9 ± 4.4 | 0 | T | 0.726 |
WC | 73.1 ± 11.3 | 73.2 ± 10.5 | 0.01 | T | 0.982 |
WHtR | 0.43 ± 0.06 | 0.43 ± 0.06 | 0 | T | 0.515 |
FM_DXA | 18.2 ± 8.5 | 17.7 ± 8.4 | −0.06 | T | 0.115 |
%FM_DXA | 28.7 ± 8.6 | 27.8 ± 8.7 | −0.1 | T | 0.008 |
FFM_DXA | 43.1 ± 8.3 | 44.1 ± 8.6 | 0.12 | T | 0.008 |
Physical fitness and motor performance | |||||
FLEX | 19.0 ± 12.5 | 20.1 ± 11.0 | 0.09 | T | 0.213 |
HGR | 29.4 ± 6.9 | 29.1 ± 6.9 | −0.04 | T | 0.904 |
HGL | 27.6 ± 7.3 | 27.3 ± 7.2 | −0.04 | T | 0.718 |
ABD | 24.2 ± 8.4 | 27.9 ± 9.4 | 0.42 | B | <0.001 |
CRFrel | 38.8 ± 8.1 | 38.7 ± 8.0 | −0.01 | T | 0.953 |
CRFabs | 2.31 ± 0.3 | 2.34 ± 0.4 | 0.08 | T | 0.253 |
STSMC | 10.0 ± 2.3 | 9.9 ± 2.3 | −0.04 | T | 0.858 |
STSTIME | 2.45 ± 0.52 | 2.20 ± 0.41 | −0.53 | B | <0.001 |
Variables | Immediate Return | Three Months of Usual Activities | ES | CI | p |
---|---|---|---|---|---|
HRrest | 88.8 ± 15.2 | 80.6 ± 11.3 | −0.61 | B | 0.001 |
Systolic BP (mmHg) | 68.8 ± 9.1 | 70.4 ± 5.7 | 0.21 | PH | 0.341 |
Diastolic BP (mmHg) | 112.8 ± 11.3 | 113.5 ± 11.2 | 0.06 | T | 0.72 |
25(OH)D (ng/mL) | 20.1 ± 5.4 | 24.2 ± 7.8 | 0.61 | B | <0.001 |
TC (mg/dL) | 132.7 ± 25.7 | 137.6 ± 21.7 | 0.21 | PH | 0.148 |
Glucose (mg/dL) | 75.6 ± 3.8 | 74.7 ± 3.3 | −0.25 | PB | 0.364 |
Triglycerides (mg/dL) | 74.1 ± 29.6 | 64.9 ± 23.0 | −0.35 | PB | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moraes, F.B.d., Jr.; Tadiotto, M.C.; Lenardt, B.; Mota, J.; Matos, O.d.; Leite, N. Importance of Return to Usual and School Activities After Social Isolation in Recovering Vitamin D Concentrations, Physical Fitness, and Motor Performance in Adolescents. Int. J. Environ. Res. Public Health 2024, 21, 1494. https://doi.org/10.3390/ijerph21111494
Moraes FBd Jr., Tadiotto MC, Lenardt B, Mota J, Matos Od, Leite N. Importance of Return to Usual and School Activities After Social Isolation in Recovering Vitamin D Concentrations, Physical Fitness, and Motor Performance in Adolescents. International Journal of Environmental Research and Public Health. 2024; 21(11):1494. https://doi.org/10.3390/ijerph21111494
Chicago/Turabian StyleMoraes, Frederico Bento de, Jr., Maiara Cristina Tadiotto, Brenda Lenardt, Jorge Mota, Oslei de Matos, and Neiva Leite. 2024. "Importance of Return to Usual and School Activities After Social Isolation in Recovering Vitamin D Concentrations, Physical Fitness, and Motor Performance in Adolescents" International Journal of Environmental Research and Public Health 21, no. 11: 1494. https://doi.org/10.3390/ijerph21111494
APA StyleMoraes, F. B. d., Jr., Tadiotto, M. C., Lenardt, B., Mota, J., Matos, O. d., & Leite, N. (2024). Importance of Return to Usual and School Activities After Social Isolation in Recovering Vitamin D Concentrations, Physical Fitness, and Motor Performance in Adolescents. International Journal of Environmental Research and Public Health, 21(11), 1494. https://doi.org/10.3390/ijerph21111494