Trace Element Composition of Surface Water in Almaty City and Human Health Risk Assessment
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Sampling and Sample Preparation
3.2. Methods of Analysis
3.2.1. ICP-MS and ICP-AES
3.2.2. Water Quality Assessment
- Ci—concentration of i-th element in water sample,
- Si—maximum permissible concentration of the i-th element in drinking water.
3.2.3. Calculation of Carcinogenic and Non-Carcinogenic Risks
- Daily exposure dose:
- CDIidermal—daily exposure dose of the i-th element upon contact with skin (μg/(kg × day));
- CDIiingestion/oral—daily exposure dose of the i-th element when swallowed or drunk ((µg/(kg × day));
- Ci—concentration of the i-th element in water (μg/L);
- SA—exposed body surface (sm2);
- Kp—skin permeability coefficient (sm/h);
- ET—contact time (h/day);
- CF—unit conversion factor (L/sm3).
- BW—body weight (kg);
- AT—exposure period (day);
- IR—volume of water intake (L/day);
- EF—frequency of exposure (day/year);
- ED—duration of exposure (year).
- Non-carcinogenic risk:
- HQi—hazard quotient of the i-th element for intake by different paths;
- RfDi—reference dose values (µg/(kg × day));
- HI—total hazard index;
- HI < 1 corresponds to minor health impact;
- CRi—carcinogenic risk index of the i-th element for intake by different paths;
- SFi—slope factor (µg/(kg × day)−1;
- CR is classified as follows:
- CR < 1 × 10−6—there is no risk;
- 1 × 10−6 < CR < 1 × 10−4—acceptable level of risk;
- CR > 1 × 10−4—risk is unacceptable [27].
- AU—total activity of isotopes U (U-238 + U-234) (pCi/L);
- r—risk coefficient;
- I—the amount of water consumed during a human life (L), calculated as IR × EF × ED (Table 4), which was 67.50 L when swallowed and 56.210 L when drunk.
4. Results and Discussion
4.1. Elemental Composition Analysis
4.2. Water Quality Index Calculation
4.3. Assessment of Carcinogenic and Non-Carcinogenic Risks
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmed, M.K.; Baki, M.A.; Islam, M.S.; Kundu, G.K.; Habibullah-Al-Mamun, M.; Sarkar, S.K.; Hossain, M.M. Human Health-Risk Assessment of Heavy Metals in Tropical Fish and Shellfish Collected from the River Buriganga, Bangladesh. Environ. Sci. Pollut. Res. Int. 2015, 22, 15880–15890. [Google Scholar] [CrossRef] [PubMed]
- Vu, C.T.; Lin, C.; Yeh, G.; Villanueva, M.C. Bioaccumulation and Potential Sources of Heavy Metal Contamination in Fish Species in Taiwan: Assessment and Possible Human Health Implications. Environ. Sci. Pollut. Res. 2017, 24, 19422–19434. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wu, J.; Lu, J.; Xu, J. Speciation, Risks and Isotope-Based Source Apportionment of Trace Elements in Soils of the Northeastern Qinghai-Tibet Plateau. Geochem. Explor. Environ. Anal. 2020, 20, 315–322. [Google Scholar] [CrossRef]
- Jumbe, A.S.; Nandini, N. Heavy Metals Analysis and Sediment Quality Values in Urban Lakes. Am. J. Environ. Sci. 2009, 5, 678–687. [Google Scholar] [CrossRef]
- Mehri, A. Trace Elements in Human Nutrition (II)—An Update. Int. J. Prev. Med. 2020, 11, 2. [Google Scholar] [CrossRef]
- ISO 5667-6:2014; Water Quality—Sampling. Part 6: Guidance on Sampling of Rivers and Streams. 3rd ed. International Organization for Standardization: Geneva, Switzerland, 2014.
- ST RK ISO 17294-1:2011; Water Quality. Application of Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Part 1: General Guidance. Standardization and Testing Republic of Kazakhstan: Almaty, Kazakhstan, 2011.
- ST RK ISO 17294-2:2006; Water Quality. Application of Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Part 2. Standardization and Testing Republic of Kazakhstan: Almaty, Kazakhstan, 2006.
- State Standard 31870-2012; Potable Water. Determination of Elements Content by Atomic Spectrometry Methods. Republic of Kazakhstan. 2012. Available online: https://protect.gost.ru/document1.aspx?control=31&baseC=6&page=0&month=1&year=2020&search=&id=235511 (accessed on 2 September 2024).
- State Standard 18164-72; Drinking Water. Method for Determining the Content of Dry Residue. Drinking Water. Method for Determination of Total Solids Content. Republic of Kazakhstan. 1972. Available online: https://files.stroyinf.ru/Data1/5/5980/ (accessed on 2 September 2024).
- State Standard 1015-2000; Water. Gravimetric Method for Determining the Content of Sulfates in Natural and Waste Waters. Republic of Kazakhstan. 2000. Available online: https://standartgost.ru/g/%D0%A1%D0%A2_%D0%A0%D0%9A_1015-2000 (accessed on 2 September 2024).
- State Standard 23268.17-78; Drinking Medicinal, Medicinal-Table and Natural Table Mineral Water. Methods of Determination of Chloride Ions. Republic of Kazakhstan. 1978. Available online: https://internet-law.ru/gosts/gost/24597/ (accessed on 2 September 2024).
- Committee for Water Resources of the Ministry of Agriculture of the Republic of Kazakhstan. On Approval of the Unified System of Water Quality Classification in Water Bodies; Order No. 151; Committee for Water Resources of the Ministry of Agriculture of the Republic of Kazakhstan: Astana City, Kazakhstan, 2016; Available online: https://www.adilet.zan.kz/rus/docs/V1600014513 (accessed on 2 September 2024).
- Brown, R.M.; McClelland, N.I.; Deininger, R.A.; O’Connor, M.F. A Water Quality Index—Crashing the Psychological Barrier. In Indicators of Environmental Quality, Proceedings of a Symposium Held During the AAAS Meeting, Philadelphia, PA, USA, 26–31 December 1971; Springer: Berlin/Heidelberg, Germany, 1972; pp. 173–182. [Google Scholar] [CrossRef]
- Horton, R.K. An Index Number System for Rating Water Quality. J. Wat. Pollut. Contr. Fed. 1965, 37, 292–315. [Google Scholar]
- Tyagi, S.; Sharma, B.; Singh, P.; Dobhal, R. Water Quality Assessment in Terms of Water Quality Index. Am. J. Water Resour. 2013, 1, 34–38. [Google Scholar] [CrossRef]
- Chauhan, A.; Singh, S. Evaluation of Ganga Water for Drinking Purpose by Water Quality Index at Rishikesh, Uttarakhand, India. Rep. Opin. 2010, 2, 53–61. [Google Scholar]
- Chowdhury, R.; Mowla, S.; Sardar, Y.; Muntasir, M.; Hossain, M.M. Water Quality Index of Water Bodies along Faridpur-Barisal Roadin Bangladesh. Glob. Eng. Technol. Rev. 2012, 2, 1–8. [Google Scholar]
- Rao, C.S.; Rao, B.S.; Hariharan, A.V.L.N.S.H.; Bharathi, N.M. Determination of Water Quality Index of Some Areas in Guntur District, Andhra Pradesh. Int. J. Appl. Biol. Pharm. Technol. 2010, 1, 79–86. [Google Scholar]
- Balan, I.M.; Shivakumar, M.; Madan Kumar, P. An Assessment of Groundwater Quality Using Water Quality Index in Chennai, Tamil Nadu, India. Chron. Young Sci. 2012, 3, 146. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Risk Assessment Guidance for Superfund. Human Health Evaluation Manual (Part A); Office of Emergency and Remedial Response: Washington, DC, USA, 1989; Volume 1. [Google Scholar]
- U.S. Environmental Protection Agency. Risk Assessment Guidance for Superfund. Human Health Evaluation Manual (Part C: Risk Evaluation of Remedial Alternatives); Office of Emergency and Remedial Response: Washington, DC, USA, 1991; Volume 1. [Google Scholar]
- U.S. Environmental Protection Agency. Risk Assessment Guidance for Superfund. Human Health Evaluation Manual (Part B: Development of Risk-Based Preliminary Remediation Goals); Office of Emergency and Remedial Response: Washington, DC, USA, 1991; Volume 1. [Google Scholar]
- U.S. Environmental Protection Agency. Risk Assessment Guidance for Superfund. Human Health Evaluation Manual (Part D: Standardized Planning, Reporting, and Review of Superfund Risk Assessments); Office of Emergency and Remedial Response: Washington, DC, USA, 2001; Volume 1. [Google Scholar]
- Didier, J.B.; Ewodo, G.M.; Fantong, W.Y.; Ombolo, A.; Chounna, G.Y.; Jokam, L.L.; Messi, G. Potentially Toxic Elements Contamination in Groundwater and Human Health Risk Assessment in the Mayo Bocki Watershed, North Cameroon. Arabian J. Geosci. 2023, 16, 479. [Google Scholar] [CrossRef]
- Triassi, M.; Cerino, P.; Montuori, P.; Pizzolante, A.; Trama, U.; Nicodemo, F.; D’Auria, J.L.; Vita, S.D.; Rosa, E.D.; Limone, A. Heavy Metals in Groundwater of Southern Italy: Occurrence and Potential Adverse Effects on the Environment and Human Health. Int. J. Environ. Res. Public Health 2023, 20, 1693. [Google Scholar] [CrossRef] [PubMed]
- Rakhmanin, Y.A.; Novikov, S.M.; Shashina, T.A.; Ivanov, S.I.; Avaliani, S.L. Guidelines for Health Risk Assessment of Population Exposure to Chemical Substances Polluting the Environment; Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing: Moscow, Russia, 2024. [Google Scholar]
- Ma, L.; Li, Y.; Abuduwaili, J.; Uulu, S.; Liu, W. Hydrochemical Composition and Potentially Toxic Elements in the Kyrgyzstan Portion of the Transboundary Chu-Talas River Basin, Central Asia. Sci. Rep. 2020, 10, 14972. [Google Scholar] [CrossRef]
- Mohammadi, A.; Zarei, A.; Majidi, S.; Ghaderpoury, A.; Hashempour, Y.; Saghi, M.; Alinejad, A.; Yousefi, M.; Hosseingholizadeh, N.; Ghaderpoori, M. Carcinogenic and Non-Carcinogenic Health Risk Assessment of Heavy Metals in Drinking Water of Khorramabad, Iran. Methods X 2019, 6, 1642–1651. [Google Scholar] [CrossRef]
- Integrated Risk Information System (IRIS). IRIS Assessments. Available online: https://iris.epa.gov/AtoZ/?list_type=alpha (accessed on 2 September 2024).
- Eggers, M.J.; Doyle, J.T.; Lefthand, M.J.; Young, S.L.; Moore-Nall, A.L.; Kindness, L.; Other Medicine, R.; Ford, T.E.; Dietrich, E.; Parker, A.E.; et al. Community Engaged Cumulative Risk Assessment of Exposure to Inorganic Well Water Contaminants, Crow Reservation, Montana. Int. J. Environ. Res. Public Health 2018, 15, 76. [Google Scholar] [CrossRef]
- Giri, S.; Jha, V. Risk Assessment (Chemical and Radiological) Due to Intake of Uranium through the Ingestion of Drinking Water around Two Proposed Uranium Mining Areas, Jharkhand, India. Radioprotection 2012, 47, 543–551. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Radionuclide Table: Radionuclide Carcinogenicity—Slope Factors (Federal Guidance Report No. 13 Morbidity Risk Coefficients); U.S. Environmental Protection Agency: Washington, DC, USA, 2015. Available online: https://www.epa.gov/radiation/radionuclide-table-radionuclide-carcinogenicity-slope-factors (accessed on 2 September 2024).
- Keith, S.; Faroon, O.; Roney, N.; Scinicariello, F.; Wilbur, S.; Ingerman, L.; Llados, F.; Plewak, D.; Wohlers, D.; Diamond, G. Health Effects. In Toxicological Profile for Uranium; Agency for Toxic Substances and Disease Registry (US): Atlanta, GA, USA, 2013. [Google Scholar]
- Sharma, N.; Singh, J. Radiological and Chemical Risk Assessment Due to High Uranium Contents Observed in the Ground Waters of Mansa District (Malwa Region) of Punjab State, India: An Area of High Cancer Incidence. Expo Health 2016, 8, 513–525. [Google Scholar] [CrossRef]
- Virk, H.; Jakhu, R.; Bango-tra, P. Natural Uranium Content in Ground Waters of Mohali and Fatehgarh Districts of North Punjab (India) for the Assessment of Excess Cancer Risk. Glob. J. Hum.-Soc. Sci. B 2016, 16, 12–17. [Google Scholar]
- Amakom, C.; Jibi-ri, N. Chemical and Radiological Risk Assessment of Uranium in Borehole and Well Waters in the Odeda Area, Ogun State, Nigeria. Int. J. Phys. Sci. 2010, 5, 1009–1014. [Google Scholar]
- Naik, P.; Rajashekara, V.; Mudbidre, R. Estimation of Natural Uranium and Its Risk Assessment in Groundwater of Bangalore Urban District of Karnataka, India. Geomat. Environ. Eng. 2024, 18, 21–49. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. 40 CFR Parts 9, 141, and 142. National Primary Drinking Water Regulations; Radionuclides, Final Rule; U.S. Environmental Protection Agency: Washington, DC, USA, 2000. Available online: https://www.federalregister.gov/documents/2000/12/07/00-30421/national-primary-drinking-water-regulations-radionuclides-final-rule (accessed on 2 September 2024).
- WISE Uranium Project. Uranium Radiation Properties. Available online: https://www.wise-uranium.org/rup.html (accessed on 2 September 2024).
- Ministry of Health of the Republic of Kazakhstan. Hygienic Norms of Safety Indicators of Household and Cultural and Domestic Water Use; Order No. KRDSM-138; Ministry of Health of the Republic of Kazakhstan: Astana City, Kazakhstan, 2022; Available online: https://adilet.zan.kz/rus/docs/V2200028086 (accessed on 2 September 2024).
- Smedley, P.L.; Kinniburgh, D.G. Uranium in Natural Waters and the Environment: Distribution, Speciation and Impact. Appl. Geochem. 2023, 148, 105534. [Google Scholar] [CrossRef]
- Frengstad, B.; Skrede, A.K.M.; Banks, D.; Krog, J.R.; Siewers, U. The Chemistry of Norwegian Groundwaters: III. The Distribution of Trace Elements in 476 Crystalline Bedrock Groundwaters, as Analysed by ICP-MS Techniques. Sci. Total Environ. 2000, 246, 21–40. [Google Scholar] [CrossRef] [PubMed]
- Hakonson-Hayes, A.C.; Fresquez, P.R.; Whicker, F.W. Assessing Potential Risks from Exposure to Natural Uranium in Well Water. J. Environ. Radioact. 2002, 59, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Hostetler, S.; Jacobson, G. Western Water Study (Wiluraratja Kapi): Groundwater Quality in the Papunya-Kintore Region, Northern Territory; Australian Geological Survey Organisation: Canberra, Australia, 1998. [Google Scholar]
- Zhadi, A.; Ismukhanova, L.; Madibekov, A.; Musakulkyzy, A.; Amirgaliyev, N. Spatial Distribution of Heavy Metals in Snow Cover for Almaty Agglomeration. SGEM 2019, 5, S20.084. [Google Scholar] [CrossRef]
- Madibekov, A.S.; Karimov, A.M.; Ismukhanova, L.T.; Zhadi, A.O.; Yegorov, A.B. Copper Pollution of the Snow Cover in Almaty. News Natl. Acad. Sci. Repub. Kazakhstan 2023, 1, 141–153. [Google Scholar] [CrossRef]
Water Quality Class | Characterization of Water Use Categories |
---|---|
Class 1 (very good quality) | Surface waters in which there are no changes (or they are very small) in physico-chemical and biological quality values. Concentrations of pollutants do not affect the functioning of aquatic ecosystems and are not harmful to human health. Surface waters of this class are intended for all types (categories) of water use. |
Class 2 (good quality) | Surface waters that are insignificantly affected by human activity and are suitable for all types (categories) of water use. Simple water treatment methods are required for domestic and drinking water use. |
Class 3 (moderately contaminated) | Surface waters whose physico-chemical and biological values moderately deviate from the natural background of water quality due to human activities. Moderate signs of disturbance of ecosystem functioning are registered. Waters of this class are undesirable for salmonid fish farming, and more effective treatment methods are required for their use for domestic and drinking purposes. For all other categories of water use (recreation, irrigation, industry), the species of this class are suitable without limitation. |
Indicator | Quality Class of Water Bodies | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
Al | 40 | 40 | 500 | 500 | 500 | >500 |
Be | 0.1 | 0.2 | 0.2 | 2 | 4 | >4 |
Fe | 100 | 100 | 300 | 500 | 500 | >500 |
Ca | 180,000 | 180,000 | 170,000 | 150,000 | 150,000 | 180,000 |
Mg | ≤20,000 | 20,000 | 60,000 | ≤100,000 | 100,000 | >100,000 |
Na | 120,000 | 200,000 | 200,000 | 200,000 | 200,000 | >200,000 |
TDS | ≤1,000,000 | 1,000,000 | 1,300,000 | 1,500,000 | ≤2,000,000 | >2,000,000 |
K | 50,000 | 50,000 | 50,000 | <100,000 | 100,000 | >100,000 |
Mn | 10 | 10 | 100 | 200 | 300 | >300 |
Cd | 5 | 5 | 25 | 125 | 125 | >125 |
Pb | 120 | 600 | 600 | 1000 | 1000 | >1000 |
Hg | 0.1 | 0.5 | 1.0 | 1.0 | 1.0 | >1.0 |
Ni | 10 | 25 | 50 | 100 | 100 | >100 |
Cu | 2 | 2 | 2000 | 2000 | 2400 | >2400 |
Co | 10 | 10 | 100 | 100 | 100 | >100 |
Cr | 100 | 100 | 55,000 | 55,000 | 55,000 | >55,000 |
As | 50 | 50 | 80 | 100 | 100 | >100 |
WQI Value | Water Quality Rating |
---|---|
0–25 | Excellent water quality |
25–50 | Good water quality |
51–75 | Poor water quality |
76–100 | Very poor water quality |
More than 100 | Unsuitable for drinking purposes |
Parameters | Values | References |
---|---|---|
IR (L/day) | 0.05 (ingestion); 2.2 (oral) | [28] |
EF (day/year) | 45 (ingestion, dermal); 365 (oral) | [28] |
ED (year) | 30 | [28] |
BW (kg) | 70 | [26,28,29] |
AT (day) | 10,950 (ingestion, dermal); 25,550 (oral) | [28] |
SA (sm2) | 18,000 | [26,29] |
Kp (cm/h) | Co, Ni (0.004); Pb (0.0001); Cr (0.003); As, Cd, Cu, Fe, Mo, U, Mn (0.001) | [26] |
ET (h/day) | 1 | [28] |
CF (L/cm3) | 1/1000 | [26,29] |
RfDoral/ingestion (µg/(kg × day) | As (0.3); Co(0.3); Cd (1); Cu (40); Mo (5.0); Ni (20); Pb (3.5); U (3); Cr (3); Fe (700); Mn (140); Zn (300) | [26,30,31,32] |
RfDderm (µg/(kg × day) | As (0.285); Co (0.0003); Cd (0.025); Cu (12); Mo (1.9); Ni (5.4); Pb (0.42); Cr (0.015); Fe (300); Mn (0.8); Zn (60) | [26,30,31,32] |
Sforal (µg/kg/day)−1 | As (1500); Cd (15,000); Ni (840); Pb (8.5); Cr (500) | [26,31,32,33,34] |
Sfderm (µg/kg/day)−1 | As (3660); Cd (20,000); Cr (20,000) | [26,31] |
SFU (Risk/pCi) | U (6.4 × 10−11) | [34] |
Indicator | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD, µg/L | ||||||||||
As | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 |
Be | <0.03 | <0.03 | <0.03 | <0.03 | <0.03 | <0.03 | <0.03 | <0.03 | <0.03 | <0.03 |
Co | 0.100 ± 0.050 | 0.070 ± 0.006 | 0.070 ± 0.003 | 0.110 ± 0.090 | 0.130 ± 0.060 | 0.090 ± 0.030 | 0.080 ± 0.010 | 0.070 ± 0.010 | 0.100 ± 0.040 | 0.100 ± 0.050 |
Cd | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
Cu | 2.4 ± 2.9 | 2.5 ± 3.6 | 2.6 ± 3.9 | 1.6 ± 1.9 | 3.2 ± 3.9 | 3.2 ± 4.7 | 1.4 ± 0.9 | 4.0 ± 6.6 | 4.3 ± 5.3 | 3.3 ± 5.0 |
Li | 3.7 ± 3.1 | 1.2 ± 0.3 | 1.5 ± 0.9 | 1.7 ± 1.3 | 1.3 ± 0.3 | 1.2 ± 0.2 | 1.2 ± 0.2 | 1.1 ± 0.2 | 1.1 ± 0.2 | 1.3 ± 0.4 |
Mo | 8.5 ± 1.8 | 5.5 ± 1.8 | 7.5 ± 1.0 | 6.0 ± 2.4 | 6.4 ± 2.0 | 7.7 ± 0.8 | 7.1 ± 0.7 | 5.8 ± 2.1 | 6.8 ± 1.6 | 6.5 ± 1.0 |
Ni | 2.0 ± 0.8 | 1.3 ± 0.3 | 1.3 ± 0.2 | 1.4 ± 0.9 | 2.0 ± 1.0 | 1.6 ± 0.6 | 1.6 ± 0.6 | 1.3 ± 0.6 | 1.9 ± 1.0 | 1.8 ± 1.1 |
Pb | 0.26 ± 0.14 | 0.23 ± 0.25 | 0.12 ± 0.07 | 0.24 ± 0.22 | 3.99 ± 7.67 | 0.74 ± 0.80 | 3.78 ± 7.06 | 0.24 ± 0.22 | 0.32 ± 0.15 | 0.71 ± 1.14 |
Se | <3 | <3 | <3 | <3 | <3 | <3 | <3 | <3 | <3 | <3 |
U | 14.6 ± 8.2 | 3.5 ± 1.0 | 6.5 ± 2.2 | 4.8 ± 3.1 | 7.3 ± 2.0 | 6.5 ± 1.5 | 5.6 ± 1.8 | 4.1 ± 1.9 | 7.0 ± 0.7 | 7.1 ± 1.2 |
Hg | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
Al | 82 ± 90 | 51 ± 38 | 48 ± 35 | 86 ± 61 | 81 ± 91 | 52 ± 53 | 62 ± 35 | 62 ± 45 | 122 ± 24 | 87 ± 51 |
Ba | 28.6 ± 5.5 | 11.5 ± 3.9 | 15.6 ± 8.4 | 31.9 ± 40.9 | 32.9 ± 10.7 | 15.3 ± 4.7 | 20.5 ± 11.2 | 24.8 ± 21.9 | 111.0 ± 140 | 41.1 ± 17.9 |
Cr | <0.7 | <0.7 | <0.7 | <0.7 | <0.7 | <0.7 | <0.7 | <0.7 | <0.7 | <0.7 |
Fe | 52.0 ± 48.2 | 39.1 ± 34.8 | 39.2 ± 18.4 | 53.9 ± 35.9 | 79.1 ± 56.9 | 49.4 ± 42.7 | 118 ± 125 | 32.7 ± 23.8 | 99.1 ± 44.3 | 43.3 ± 21.8 |
Mn | 6.3 ± 6.5 | 5.5 ± 3.9 | 7.2 ± 6.5 | 12.9 ± 15.1 | 41.7 ± 51.2 | 4.8 ± 4.9 | 10.9 ± 7.8 | 17.1 ± 8.1 | 19.1 ± 10.0 | 21.3 ± 6.5 |
Sr | 190 ± 82 | 86 ± 12 | 107 ± 17 | 132 ± 93 | 146 ± 44 | 128 ± 23 | 124 ± 23 | 91 ± 24 | 119 ± 11 | 154 ± 83 |
V | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 |
Zn | 7.0 ± 5.2 | 5.3 ± 5.2 | 4.7 ± 2.7 | 6.4 ± 5.6 | 6.3 ± 4.0 | 14.1 ± 15.9 | 5.7 ± 3.5 | 4.7 ± 1.8 | 7.0 ± 4.8 | 5.1 ± 3.4 |
Ca | 34,600 ± 13,400 | 19,600 ± 1900 | 24,200 ± 3800 | 26,600 ± 13,100 | 29,400 ± 10,600 | 28,300 ± 4600 | 27,400 ± 4900 | 20,900 ± 2600 | 24,100 ± 2100 | 29,000 ± 12,500 |
K | 1900 ± 900 | 1350 ± 370 | 1100 ± 500 | 1700 ± 1020 | 1400 ± 520 | 1000 ± 100 | 1300 ± 500 | 1400 ± 300 | 1300 ± 300 | 1400 ± 400 |
Mg | 5300 ± 3400 | 2240 ± 340 | 3000 ± 500 | 3500 ± 2600 | 3500 ± 1500 | 3500 ± 700 | 3600 ± 600 | 2700 ± 1100 | 3100 ± 800 | 4600 ± 3700 |
Na | 10,200 ± 9500 | 6000 ± 7800 | 3900 ± 1000 | 38,100 ± 73,000 | 5400 ± 4200 | 6100 ± 3600 | 5200 ± 1200 | 3600 ± 2900 | 4600 ± 3000 | 7600 ± 8800 |
SO42− | <20,000 | <20,000 | <20,000 | <20,000 | <20,000 | <20,000 | <20,000 | <20,000 | <20,000 | <20,000 |
Cl− | 5750 ± 1500 | 6250 ± 2500 | 6000 ± 2000 | 58,750 ± 107,500 | 7750 ± 5500 | 7000 ± 2309 | 5750 ± 1500 | <5000 | 6000 ± 2000 | 10,000 ± 10,000 |
TDS | 144,800 ± 60,200 | 88,500 ± 15,000 | 99,000 ± 13,600 | 199,500 ± 251,105 | 117,500 ± 45,420 | 88,500 ± 46,500 | 103,700 ± 10,300 | 87,800 ± 19,400 | 88,000 ± 26,000 | 126,300 ± 81,000 |
Water quality class with polluted elements | 3 Cu. Al | 3 Cu. Al | 3 Cu. Al | 3 Al. Mn | 3 Cu. Al. Mn | 3 Cu. Al | 3 Al. Mn | 3 Cu. Al. Mn | 3 Cu. Al. Mn | 3 Cu. Al. Mn |
WQI | 16.8 | 5.36 | 8.15 | 8.81 | 15.3 | 8.32 | 11.1 | 7.33 | 16.2 | 11.7 |
Indicator | 11 | 12 | 13 | 14 | 15 | 16 | MPC (Drink Water) | Hazard Class | LOD | LOQ |
Mean ± SD, µg/L | ||||||||||
As | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 50 | 2 | 0.5 | 1.3 |
Be | <0.03 | <0.03 | <0.03 | <0.03 | <0.03 | <0.03 | 0.2 | 1 | 0.03 | 0.08 |
Co | 0.080 ± 0.020 | 0.110 ± 0.060 | 0.130 ± 0.090 | 0.150 ± 0.140 | 0.120 ± 0.060 | 0.240 ± 0.070 | 100 | 2 | 0.07 | 0.2 |
Cd | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | 1 | 2 | 0.05 | 0.1 |
Cu | 3.4 ± 5.3 | 4.0 ± 4.4 | 2.7 ± 3.6 | 2.7 ± 2.1 | 2.1 ± 2.0 | 2.5 ± 1.3 | 1000 | 3 | 0.5 | 1.3 |
Li | 1.3 ± 0.3 | 1.6 ± 0.8 | 3.1 ± 1.5 | 4.3 ± 5.1 | 2.8 ± 2.4 | 8.8 ± 4.7 | 30 | 2 | 0.2 | 0.5 |
Mo | 7.3 ± 0.7 | 9.0 ± 4.1 | 11.7 ± 8.3 | 7.6 ± 2.3 | 8.9 ± 3.7 | 10.7 ± 4.8 | 250 | 2 | 0.3 | 0.8 |
Ni | 1.6 ± 0.6 | 2.0 ± 0.8 | 2.5 ± 1.0 | 2.3 ± 1.1 | 1.8 ± 0.6 | 3.1 ± 1.3 | 100 | 3 | 0.5 | 1.3 |
Pb | 0.21 ± 0.19 | 0.28 ± 0.19 | 0.21 ± 0.16 | 0.29 ± 0.23 | 0.15 ± 0.09 | 0.13 ± 0.07 | 30 | 2 | 0.05 | 0.13 |
Se | <3 | <3 | <3 | <3 | <3 | <3 | 10 | 2 | 3 | 7.5 |
U | 6.1 ± 1.2 | 5.7 ± 1.1 | 6.2 ± 3.5 | 10.0 ± 5.3 | 9.1 ± 3.0 | 14.3 ± 4.7 | 30 | 1 | 0.03 | 0.1 |
Hg | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 0.5 | 1 | 0.1 | 0.3 |
Al | 64 ± 35 | 70 ± 67 | 97 ± 53 | 121 ± 60 | 67 ± 38 | 30 ± 23 | 500 | 2 | 3 | 8 |
Ba | 28.3 ± 22.6 | 37.4 ± 21.9 | 42.8 ± 41.0 | 57.9 ± 28.8 | 40.9 ± 36.1 | 52.1 ± 8.5 | 100 | 2 | 0.5 | 1.3 |
Cr | <0.7 | <0.7 | <0.7 | <0.7 | 2.0 ± 0.6 | <0.7 | 50 | 3 | 0.7 | 1.8 |
Fe | 44.4 ± 11.3 | 45.7 ± 37.2 | 54.9 ± 22.0 | 80.0 ± 34.0 | 48.9 ± 15.3 | 21.7 ± 5.9 | 300 | 3 | 0.4 | 1.0 |
Mn | 16.5 ± 12.0 | 26.5 ± 9.9 | 23.6 ± 19.5 | 27.7 ± 13.6 | 16.0 ± 11.3 | 16.1 ± 8.9 | 100 | 3 | 0.5 | 1.3 |
Sr | 138 ± 43 | 184 ± 117 | 422 ± 301 | 239 ± 124 | 350 ± 369 | 583 ± 330 | 7000 | 2 | 0.5 | 1.3 |
V | <1 | <1 | <1 | <1 | <1 | <1 | 100 | 3 | 1 | 2.5 |
Zn | 5.4 ± 3.9 | 13.5 ± 14.4 | 4.5 ± 2.6 | 8.2 ± 4.8 | 4.0 ± 2.6 | 12.8 ± 15.7 | 5000 | 3 | 0.7 | 1.8 |
Ca | 28,700 ± 5800 | 34,000 ± 12,000 | 48,550 ± 22,100 | 36,300 ± 18,700 | 40,600 ± 16,400 | 54,400 ± 21,700 | 30,000 | 10 | 30 | |
K | 1200 ± 470 | 1500 ± 700 | 1800 ± 600 | 1650 ± 790 | 2030 ± 1600 | 2620 ± 1110 | n.r. * | 15 | 40 | |
Mg | 4400 ± 1500 | 5200 ± 3500 | 7600 ± 4600 | 6250 ± 5600 | 13,200 ± 16,700 | 21,600 ± 12,800 | 20,000 | 30 | 80 | |
Na | 8000 ± 6800 | 7000 ± 4200 | 16,000 ± 15,000 | 13,000 ± 13,000 | 23,000 ± 32,000 | 32,800 ± 20,500 | 200,000 | 2 | 10 | 30 |
SO42− | <20,000 | <20,000 | <20,000 | <20,000 | <20,000 | 103,000 ± 26,000 | 500,000 | 4 | 20,000 | 50,000 |
Cl− | 12,500 ± 12,500 | 15,500 ± 18,400 | 43,300 ± 34,100 | 19,250 ± 14,900 | 25,000 ± 30,900 | 30,000 ± 13,000 | 350,000 | 4 | 5000 | 13,000 |
TDS | 128,500 ± 42,000 | 144,000 ± 81,400 | 260,800 ± 139,600 | 193,500 ± 92,200 | 255,800 ± 238,000 | 366,800 ± 181,500 | 1,000,000 | |||
Water quality class with polluted elements | 3 Cu. Al. Mn | 3 Cu. Al. Mn | 3 Cu. Al. Mn | 3 Cu. Al. Mn | 3 Cu. Al. Mn | 3 Cu. Mn | ||||
WQI | 9.30 | 10.7 | 12.5 | 17.6 | 13.5 | 22.3 |
Chemical Element | CDIdermal | CDIingestion | CDIoral | ||||||
---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | |
As | 1.59×10−5 | 1.59 × 10−5 | 1.59 × 10−5 | 4.40 × 10−5 | 4.40 × 10−5 | 4.40 × 10−5 | 1.57 × 10−2 | 1.57 × 10−2 | 1.57 × 10−2 |
Co | 8.34 × 10−6 | 3.43 × 10−5 | 1.39 × 10−5 | 5.79 × 10−6 | 2.38 × 10−5 | 9.67 × 10−6 | 2.07 × 10−3 | 8.51 × 10−3 | 3.45 × 10−3 |
Cd | 1.59 × 10−6 | 1.59 × 10−6 | 1.59 × 10−6 | 4.40 × 10−6 | 4.40 × 10−6 | 4.40 × 10−6 | 1.57 × 10−3 | 1.57 × 10−3 | 1.57 × 10−3 |
Cu | 1.59 × 10−5 | 6.89 × 10−5 | 4.06 × 10−5 | 4.40 × 10−5 | 1.91 × 10−4 | 1.13 × 10−4 | 1.57 × 10−2 | 6.83 × 10−2 | 4.03 × 10−2 |
Mo | 1.50 × 10−4 | 2.69 × 10−4 | 2.19 × 10−4 | 4.17 × 10−4 | 7.48 × 10−4 | 6.07 × 10−4 | 1.49 × 10−1 | 2.67 × 10−1 | 2.17 × 10−1 |
Ni | 1.60 × 10−4 | 4.74 × 10−4 | 2.72 × 10−4 | 1.11 × 10−4 | 3.29 × 10−4 | 1.89 × 10−4 | 3.97 × 10−2 | 1.18 × 10−1 | 6.73 × 10−2 |
Pb | 1.59 × 10−7 | 1.17 × 10−6 | 2.82 × 10−7 | 4.40 × 10−6 | 3.24 × 10−5 | 7.82 × 10−6 | 1.57 × 10−3 | 1.16 × 10−2 | 2.79 × 10−3 |
U | 1.17 × 10−4 | 5.78 × 10−4 | 2.53 × 10−4 | 3.24 × 10−4 | 1.60 × 10−3 | 7.02 × 10−4 | 1.16 × 10−1 | 5.73 × 10−1 | 2.51 × 10−1 |
Cr | 6.66 × 10−5 | 1.52 × 10−4 | 7.19 × 10−5 | 6.16 × 10−5 | 1.41 × 10−4 | 6.66 × 10−5 | 2.20 × 10−2 | 5.03 × 10−2 | 2.38 × 10−2 |
Fe | 2.98 × 10−4 | 9.51 × 10−3 | 1.55 × 10−3 | 8.27 × 10−4 | 2.64 × 10−2 | 4.30 × 10−3 | 2.95 × 10−1 | 9.43 | 1.54 |
Mn | 3.46 × 10−9 | 4.79 × 10−8 | 2.22 × 10−8 | 1.73 × 10−4 | 2.40 × 10−3 | 1.11 × 10−3 | 6.17 × 10−2 | 8.55 × 10−1 | 3.96 × 10−1 |
Zn | 2.73 × 10−9 | 3.91 × 10−8 | 8.30 × 10−9 | 2.28 × 10−4 | 3.26 × 10−3 | 6.92 × 10−4 | 8.12 × 10−2 | 1.16 | 2.47 × 10−1 |
Sampling Point | HIdermal | HIingestion | HIoral | HI | CRdermal | CRingestion | CRoral | CR |
---|---|---|---|---|---|---|---|---|
1 | 0.05 | 8.11 × 10−4 | 0.29 | 0.34 | 7.74 × 10−9 | 3.07 × 10−6 | 1.70 × 10−3 | 1.70 × 10−3 |
2 | 0.04 | 4.21 × 10−4 | 0.15 | 0.19 | 7.74 × 10−9 | 2.64 × 10−6 | 1.09 × 10−3 | 1.09 × 10−3 |
3 | 0.04 | 5.42 × 10−4 | 0.19 | 0.23 | 7.74 × 10−9 | 1.55 × 10−6 | 8.23 × 10−4 | 8.25 × 10−4 |
4 | 0.05 | 4.85 × 10−4 | 0.17 | 0.23 | 7.74 × 10−9 | 2.75 × 10−6 | 1.18 × 10−3 | 1.18 × 10−3 |
5 | 0.06 | 6.89 × 10−4 | 0.25 | 0.31 | 7.74 × 10−9 | 4.17 × 10−5 | 1.52 × 10−2 | 1.52 × 10−2 |
6 | 0.04 | 5.71 × 10−4 | 0.20 | 0.25 | 7.74 × 10−9 | 8.01 × 10−6 | 3.13 × 10−3 | 3.14 × 10−3 |
7 | 0.04 | 6.12 × 10−4 | 0.22 | 0.26 | 7.74 × 10−9 | 3.95 × 10−5 | 1.43 × 10−2 | 1.44 × 10−2 |
8 | 0.04 | 4.51 × 10−4 | 0.16 | 0.20 | 7.74 × 10−9 | 2.82 × 10−6 | 1.17 × 10−3 | 1.18 × 10−3 |
9 | 0.05 | 5.79 × 10−4 | 0.21 | 0.26 | 7.74 × 10−9 | 3.64 × 10−6 | 1.59 × 10−3 | 1.59 × 10−3 |
10 | 0.05 | 5.80 × 10−4 | 0.21 | 0.26 | 7.74 × 10−9 | 7.71 × 10−6 | 3.05 × 10−3 | 3.06 × 10−3 |
11 | 0.04 | 5.40 × 10−4 | 0.19 | 0.23 | 7.74 × 10−9 | 2.47 × 10−6 | 1.13 × 10−3 | 1.14 × 10−3 |
12 | 0.05 | 5.82 × 10−4 | 0.21 | 0.26 | 7.74 × 10−9 | 3.26 × 10−6 | 1.40 × 10−3 | 1.40 × 10−3 |
13 | 0.06 | 6.44 × 10−4 | 0.23 | 0.29 | 7.74 × 10−9 | 2.59 × 10−6 | 1.18 × 10−3 | 1.18 × 10−3 |
14 | 0.07 | 6.97 × 10−4 | 0.25 | 0.32 | 7.74 × 10−9 | 3.46 × 10−6 | 1.65 × 10−3 | 1.65 × 10−3 |
15 | 0.06 | 6.65 × 10−4 | 0.24 | 0.29 | 7.74 × 10−9 | 1.88 × 10−6 | 1.05 × 10−3 | 1.05 × 10−3 |
16 | 0.11 | 9.16 × 10−4 | 0.33 | 0.44 | 1.20 × 10−8 | 1.98 × 10−6 | 1.30 × 10−3 | 1.30 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krasnopyorova, M.; Gorlachev, I.; Kharkin, P.; Zheltov, D.; Severinenko, M.; Serikov, A. Trace Element Composition of Surface Water in Almaty City and Human Health Risk Assessment. Int. J. Environ. Res. Public Health 2024, 21, 1511. https://doi.org/10.3390/ijerph21111511
Krasnopyorova M, Gorlachev I, Kharkin P, Zheltov D, Severinenko M, Serikov A. Trace Element Composition of Surface Water in Almaty City and Human Health Risk Assessment. International Journal of Environmental Research and Public Health. 2024; 21(11):1511. https://doi.org/10.3390/ijerph21111511
Chicago/Turabian StyleKrasnopyorova, Marina, Igor Gorlachev, Pavel Kharkin, Dmitriy Zheltov, Mariya Severinenko, and Adilzhan Serikov. 2024. "Trace Element Composition of Surface Water in Almaty City and Human Health Risk Assessment" International Journal of Environmental Research and Public Health 21, no. 11: 1511. https://doi.org/10.3390/ijerph21111511
APA StyleKrasnopyorova, M., Gorlachev, I., Kharkin, P., Zheltov, D., Severinenko, M., & Serikov, A. (2024). Trace Element Composition of Surface Water in Almaty City and Human Health Risk Assessment. International Journal of Environmental Research and Public Health, 21(11), 1511. https://doi.org/10.3390/ijerph21111511