Genetics, Epigenetics, and the Environment: Are Precision Medicine, Provider Compassion, and Social Justice Effective Public Health Measures to Mitigate Disease Risk and Severity?
Abstract
:1. Introduction
2. Toxic Exposure, Disease, and Their Possible Solutions
2.1. Genetic Susceptibility
2.2. Available Data Concerning Toxic Exposures
2.3. Citizen Science
2.4. Understanding Disparity and Environmental Justice
2.5. Further Examples of Environmental Health Concerns
3. Epigenetics of Exposure to Toxic Substances
4. Adverse Childhood Experiences Contribute to Environmental Causes of Adult Diseases That May Be Even More Intractable than Exposure to Toxic Substances
4.1. Childhood Abuse, Household Dysfunction, and Adult Diseases
4.2. Screening for Adverse Childhood Experiences and Their Possible Treatment or Prevention
5. Greater Compassion Could Help to Mitigate Environmental Causes of Disease Risk and Severity
5.1. Response of the US Healthcare System to the COVID-19 Pandemic as a Model of Societal Compassion Shortcomings
5.2. Provider Compassion, Precision Medicine, and Public Health
6. Conclusions: What Else Can Be Undertaken?
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Iannaccone, P.M. The “new” genetics and mammalian cloning in environmental health research. Environ. Health Perspect. 2000, 108, A438–A439. [Google Scholar] [CrossRef] [PubMed]
- Iannaccone, P.M. Toxicogenomics: “The call of the wild chip”. Environ. Health Perspect. 2001, 109, A8–A11. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Yang, R.; Guo, Y.; Yin, W. Examining the effects of neighborhood walking environments and green spaces on the likelihood of residents being obese: A residential self-selection perspective. Cities 2024, 155, 105422. [Google Scholar] [CrossRef]
- Speer, R.M.; Zhou, X.; Volk, L.B.; Liu, K.J.; Hudson, L.G. Arsenic and cancer: Evidence and mechanisms. Adv. Pharmacol. 2023, 96, 151–202. [Google Scholar] [PubMed]
- Geng, A.; Lian, W.; Wang, X.; Chen, G. Regulatory Mechanisms Underlying Arsenic Uptake, Transport, and Detoxification in Rice. Int. J. Mol. Sci. 2023, 24, 11031. [Google Scholar] [CrossRef]
- Jacobs, M.N.; Marczylo, E.L.; Guerrero-Bosagna, C.; Rüegg, J. Marked for life: Epigenetic effects of endocrine disrupting chemicals. Annu. Rev. Environ. Resour. 2017, 42, 105–160. [Google Scholar] [CrossRef]
- Koman, P.D.; Singla, V.; Lam, J.; Woodruff, T.J. Population susceptibility: A vital consideration in chemical risk evaluation under the Lautenberg Toxic Substances Control Act. PLoS Biol. 2019, 17, e3000372. [Google Scholar] [CrossRef]
- McBirney, M.; King, S.E.; Pappalardo, M.; Houser, E.; Unkefer, M.; Nilsson, E.; Sadler-Riggleman, I.; Beck, D.; Winchester, P.; Skinner, M.K. Atrazine induced epigenetic transgenerational inheritance of disease, lean phenotype and sperm epimutation pathology biomarkers. PLoS ONE 2017, 12, e0184306. [Google Scholar] [CrossRef]
- Poland, A.; Teitelbaum, P.; Glover, E. [125I] 2-iodo-3, 7, 8-trichlorodibenzo-p-dioxin-binding species in mouse liver induced by agonists for the Ah receptor: Characterization and identification. Mol. Pharmacol. 1989, 36, 113–120. [Google Scholar]
- Almberg, K.S.; Turyk, M.E.; Jones, R.M.; Rankin, K.; Freels, S.; Stayner, L.T. Atrazine contamination of drinking water and adverse birth outcomes in community water systems with elevated atrazine in Ohio, 2006–2008. Int. J. Environ. Res. Public Health 2018, 15, 1889. [Google Scholar] [CrossRef]
- Rattan, S.; Flaws, J.A. The epigenetic impacts of endocrine disruptors on female reproduction across generations. Biol. Reprod. 2019, 101, 635–644. [Google Scholar] [CrossRef]
- Blackstock, U. Legacy: A Black Physician Reckons with Racism in Medicine; Penguin Random House LLC: New York, NY, USA, 2024. [Google Scholar]
- Wray, N.R.; Lin, T.; Austin, J.; McGrath, J.J.; Hickie, I.B.; Murray, G.K.; Visscher, P.M. From basic science to clinical application of polygenic risk scores: A primer. JAMA Psychiatry 2021, 78, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Fitz-James, M.H.; Cavalli, G. Molecular mechanisms of transgenerational epigenetic inheritance. Nat. Rev. Genet. 2022, 23, 325–341. [Google Scholar] [CrossRef] [PubMed]
- Bellis, M.A.; Hughes, K.; Ford, K.; Rodriguez, G.R.; Sethi, D.; Passmore, J. Life course health consequences and associated annual costs of adverse childhood experiences across Europe and North America: A systematic review and meta-analysis. Lancet Public Health 2019, 4, e517–e528. [Google Scholar] [CrossRef]
- Nembhard, I.M.; David, G.; Ezzeddine, I.; Betts, D.; Radin, J. A systematic review of research on empathy in health care. Health Serv. Res. 2023, 58, 250–263. [Google Scholar] [CrossRef]
- Watts, E.; Patel, H.; Kostov, A.; Kim, J.; Elkbuli, A. The role of compassionate care in Medicine: Toward improving patients’ quality of care and satisfaction. J. Surg. Res. 2023, 289, 1–7. [Google Scholar] [CrossRef]
- Hojat, M.; Gonnella, J.S. What matters more about the Interpersonal Reactivity Index and the Jefferson Scale of Empathy? Their underlying constructs or their relationships with pertinent measures of clinical competence and patient outcomes? Acad. Med. 2017, 92, 743–745. [Google Scholar] [CrossRef]
- Moss, J.; Roberts, M.B.; Shea, L.; Jones, C.W.; Kilgannon, H.; Edmondson, D.E.; Trzeciak, S.; Roberts, B.W. Healthcare provider compassion is associated with lower PTSD symptoms among patients with life-threatening medical emergencies: A prospective cohort study. Intensive Care Med. 2019, 45, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, B.D.; Horst, A.; Fisher, J.A.; Michels, N.; Van Winkle, L.J. Fostering empathy, implicit bias mitigation, and compassionate behavior in a medical humanities course. Int. J. Environ. Res. Public Health 2020, 17, 2169. [Google Scholar] [CrossRef]
- Horst, A.; Schwartz, B.D.; Fisher, J.A.; Michels, N.; Van Winkle, L.J. Selecting and performing service-learning in a team-based learning format fosters dissonance, reflective capacity, self-examination, bias mitigation, and compassionate behavior in prospective medical students. Int. J. Environ. Res. Public Health 2019, 16, 3926. [Google Scholar] [CrossRef]
- Van Winkle, L.J.; Schwartz, B.D.; Horst, A.; Fisher, J.A.; Michels, N.; Thornock, B.O. Impact of a pandemic and remote learning on team development and elements of compassion in prospective medical students taking a medical humanities course. Int. J. Environ. Res. Public Health 2021, 18, 4856. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, B.D.; Rogers, S.L.; Michels, N.; Van Winkle, L.J. Substantial Increases in Healthcare Students’ State Empathy Scores Owing to Participation in a Single Improvisation Session. Int. J. Environ. Res. Public Health 2024, 21, 531. [Google Scholar] [CrossRef] [PubMed]
- Ellaway, R.H.; Wyatt, T.R. What role should resistance play in training health professionals? Acad. Med. 2021, 96, 1524–1528. [Google Scholar] [CrossRef] [PubMed]
- Board on Global Health and Committee on the US Commitment to Global Health. The US Commitment to Global Health: Recommendations for the Public and Private Sectors. 2009. Available online: https://www.ncbi.nlm.nih.gov/books/NBK23788/#:~:text=Health%20achievements%20in%20the%20last,in%20the%20preceding%205%2C000%20years (accessed on 1 November 2024).
- König, I.R.; Fuchs, O.; Hansen, G.; von Mutius, E.; Kopp, M.V. What is precision medicine? Eur. Respir. J. 2017, 50, 1700391. [Google Scholar] [CrossRef]
- Beck, D.; Nilsson, E.E.; Ben Maamar, M.; Skinner, M.K. Environmental induced transgenerational inheritance impacts systems epigenetics in disease etiology. Sci. Rep. 2022, 12, 5452. [Google Scholar] [CrossRef]
- Boucher, D.M.; Iannaccone, P.M. Overexpression of Human Glutathione S-Transferase π Protects NIH 3T3 Cells against (±) Anti BPDE Cytotoxicity but Not Tumor Formation. Pathobiology 1995, 63, 197–203. [Google Scholar] [CrossRef]
- Gómez-Martín, A.; Hernández, A.F.; Martínez-González, L.J.; González-Alzaga, B.; Rodríguez-Barranco, M.; López-Flores, I.; Aguilar-Garduno, C.; Lacasana, M. Polymorphisms of pesticide-metabolizing genes in children living in intensive farming communities. Chemosphere 2015, 139, 534–540. [Google Scholar] [CrossRef]
- Torkamani, A.; Wineinger, N.E.; Topol, E.J. The personal and clinical utility of polygenic risk scores. Nat. Rev. Genet. 2018, 19, 581–590. [Google Scholar] [CrossRef]
- Murray, M.F.; Giovanni, M.A.; Doyle, D.L.; Harrison, S.M.; Lyon, E.; Manickam, K.; Monaghan, K.G.; Rasmussen, S.A.; Scheuner, M.T.; Palomaki, G.E.; et al. DNA-based screening and population health: A points to consider statement for programs and sponsoring organizations from the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2021, 23, 989–995. [Google Scholar] [CrossRef]
- Taylor, R.; Long, J.; Yoon, J.W.; Childs, R.; Sylvestersen, K.B.; Nielsen, M.L.; Leong, K.F.; Iannaccone, S.; Walterhouse, D.O.; Robbins, D.J.; et al. Regulation of GLI1 by cis DNA elements and epigenetic marks. DNA Repair 2019, 79, 10–21. [Google Scholar] [CrossRef]
- Galat, Y.; Gu, H.; Perepitchka, M.; Taylor, R.; Yoon, J.W.; Glukhova, X.A.; Li, X.N.; Beletsky, I.P.; Walterhouse, D.O.; Galat, V.; et al. CRISPR editing of the GLI1 first intron abrogates GLI1 expression and differentially alters lineage commitment. Stem Cells 2021, 39, 564–580. [Google Scholar] [CrossRef] [PubMed]
- Hernández, A.F.; Lacasaña, M.; Gil, F.; Rodríguez-Barranco, M.; Pla, A.; López-Guarnido, O. Evaluation of pesticide-induced oxidative stress from a gene–environment interaction perspective. Toxicology 2013, 307, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Kurdyukov, I.; Rodionov, G.; Radilov, A.; Babakov, V. Genotyping single-nucleotide polymorphisms of human genes involved in organophosphate detoxification by high-resolution melting. Anal. Bioanal. Chem. 2014, 406, 5087–5092. [Google Scholar] [CrossRef] [PubMed]
- Banaee, H.; Ahmed, M.U.; Loutfi, A. Data mining for wearable sensors in health monitoring systems: A review of recent trends and challenges. Sensors 2013, 13, 17472–17500. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.T.; Goldsmith, M.R.; Fraile Rodriguez, A.; Grulke, C.M.; Egeghy, P.P.; Mitchell-Blackwood, J. Data-mining and informatics approaches for environmental contaminants. Access Sci. 2014. [Google Scholar]
- Bellinger, C.; Mohomed Jabbar, M.S.; Zaïane, O.; Osornio-Vargas, A. A systematic review of data mining and machine learning for air pollution epidemiology. BMC Public Health 2017, 17, 907. [Google Scholar] [CrossRef]
- Suleyman, M. The Coming Wave: Technology, Power, and the Twenty-First Century’s Greatest Dilemma; Crown: New York, NY, USA, 2023. [Google Scholar]
- Dominici, F.; McDermott, A.; Zeger, S.L.; Samet, J.M. National maps of the effects of particulate matter on mortality: Exploring geographical variation. Environ. Health Perspect. 2003, 111, 39–44. [Google Scholar] [CrossRef]
- Jbaily, A.; Zhou, X.; Liu, J.; Lee, T.H.; Kamareddine, L.; Verguet, S.; Dominici, F. Air pollution exposure disparities across US population and income groups. Nature 2022, 601, 228–233. [Google Scholar] [CrossRef]
- Deshmukh, P.; Kimbrough, S.; Krabbe, S.; Logan, R.; Isakov, V.; Baldauf, R. Identifying air pollution source impacts in urban communities using mobile monitoring. Sci. Total Environ. 2020, 715, 136979. [Google Scholar] [CrossRef]
- Spira-Cohen, A.; Chen, L.C.; Kendall, M.; Sheesley, R.; Thurston, G.D. Personal exposures to traffic-related particle pollution among children with asthma in the South Bronx, NY. J. Expo. Sci. Environ. Epidemiol. 2010, 20, 446–456. [Google Scholar] [CrossRef]
- Al-Hemoud, A.; Gasana, J.; Al-Dabbous, A.; Alajeel, A.; Al-Shatti, A.; Behbehani, W.; Malak, M. Exposure levels of air pollution (PM2. 5) and associated health risk in Kuwait. Environ. Res. 2019, 179, 108730. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.E.; Tamura-Wicks, H.; Parks, R.M.; Burnett, R.T.; Pope III, C.A.; Bechle, M.J.; Marshall, J.D.; Danaei, G.; Ezzati, M. Particulate matter air pollution and national and county life expectancy loss in the USA: A spatiotemporal analysis. PLoS Med. 2019, 16, e1002856. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Yi, W.; Ding, Z.; Xu, Z.; Ho, H.C.; Cheng, J.; Hossain, M.Z.; Song, J.; Fan, Y.; Ni, J.; et al. Evaluation of life expectancy loss associated with submicron and fine particulate matter (PM 1 and PM 2.5) air pollution in Nanjing, China. Environ. Sci. Pollut. Res. 2021, 28, 68134–68143. [Google Scholar] [CrossRef]
- Jönsson, M.; Kasperowski, D.; Coulson, S.J.; Nilsson, J.; Bína, P.; Kullenberg, C.; Hagen, N.; van der Wal, R.; Peterson, J. Inequality persists in a large citizen science programme despite increased participation through ICT innovations. Ambio 2024, 53, 126–137. [Google Scholar] [CrossRef]
- Robinson, D.; Delany, J.; Sugden, H. Beyond Science: Exploring the Value of Co-created Citizen Science for Diverse Community Groups. Citiz. Sci. Theory Pract. 2024, 9, 1–13. [Google Scholar] [CrossRef]
- Gupta, A.; Talluri, S.G.; Ghosh, S. Inclusive Science Communication Approaches Through an Equity, Diversity, Inclusion, and Social Justice (EDISJ) Lens. Issues Sci. Technol. Librariansh. 2024, 105. [Google Scholar] [CrossRef]
- De Silva, D.G.; Schiller, A.R.; Slechten, A.; Wolk, L. Tiebout sorting and toxic releases. Environ. Resour. Econ. 2024, 87, 2487–2520. [Google Scholar] [CrossRef]
- Guarnotta, V.; Amodei, R.; Frasca, F.; Aversa, A.; Giordano, C. Impact of Chemical Endocrine Disruptors and Hormone Modulators on the Endocrine System. Int. J. Mol. Sci. 2022, 23, 5710. [Google Scholar] [CrossRef] [PubMed]
- Hayes, T.B.; Anderson, L.L.; Beasley, V.R.; de Solla, S.R.; Iguchi, T.; Ingraham, H.; Kestemont, P.; Kniewald, J.; Kniewald, Z.; Langlois, V.S.; et al. Demasculinization and feminization of male gonads by atrazine: Consistent effects across vertebrate classes. J. Steroid. Biochem. Mol. Biol. 2011, 127, 64–73. [Google Scholar] [CrossRef]
- Wirbisky, S.E.; Weber, G.J.; Sepúlveda, M.S.; Lin, T.L.; Jannasch, A.S.; Freeman, J.L. An embryonic atrazine exposure results in reproductive dysfunction in adult zebrafish and morphological alterations in their offspring. Sci. Rep. 2016, 6, 21337. [Google Scholar] [CrossRef]
- Radcliffe, J.C. Pesticide Use in Australia: A Review Undertaken by the Australian Academy of Technological Sciences and Engineering; Australian Academy of Technological Sciences and Engineering: Melbourne, Australia, 2002; pp. 1–319. [Google Scholar]
- Dusek, C.O.; Hadden, M.K. Targeting the GLI family of transcription factors for the development of anti-cancer drugs. Expert Opin. Drug Discov. 2020, 16, 289–302. [Google Scholar] [CrossRef]
- Walterhouse, D.O.; Lamm, M.L.; Villavicencio, E.; Iannaccone, P.M. Emerging roles for hedgehog-patched-Gli signal transduction in reproduction. Biol. Reprod. 2003, 69, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Chernoff, M.; Tong, L.; Demanelis, K.; Vander Griend, D.; Ahsan, H.; Pierce, B.L. Genetic determinants of reduced arsenic metabolism efficiency in the 10q24. 32 region are associated with reduced AS3MT expression in multiple human tissue types. Toxicol. Sci. 2020, 176, 382–395. [Google Scholar] [CrossRef] [PubMed]
- Delgado, D.A.; Chernoff, M.; Huang, L.; Tong, L.; Chen, L.; Jasmine, F.; Shinkle, J.; Cole, S.A.; Haack, K.; Kent, J.; et al. Rare, protein-altering variants in AS3MT and arsenic metabolism efficiency: A multi-population association study. Environ. Health Perspect. 2021, 129, 047007. [Google Scholar] [CrossRef] [PubMed]
- Eskenazi, B.; Warner, M.; Brambilla, P.; Signorini, S.; Ames, J.; Mocarelli, P. The Seveso accident: A look at 40 years of health research and beyond. Environ. Int. 2018, 121 Pt 1, 71–84. [Google Scholar] [CrossRef]
- INSERM Collective Expertise Centre. Dioxins in the Environment: What Are the Health Risks? Institut National de la Santé et de la Recherche Médicale: Paris, France, 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK7128/ (accessed on 1 November 2024).
- Aitio, A.; Parkki, M.G. Organ specific induction of drug metabolizing enzymes by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin in the rat. Toxicol. Appl. Pharmacol. 1978, 44, 107–114. [Google Scholar] [CrossRef]
- De Miranda, B.R.; Greenamyre, J.T. Trichloroethylene, a ubiquitous environmental contaminant in the risk for Parkinson’s disease. Environ. Sci. Process. Impacts 2020, 22, 543–554. [Google Scholar] [CrossRef]
- Bove, F.J.; Ruckart, P.Z.; Maslia, M.; Larson, T.C. Mortality study of civilian employees exposed to contaminated drinking water at USMC Base Camp Lejeune: A retrospective cohort study. Environ. Health 2014, 13, 68. [Google Scholar] [CrossRef]
- Lash, L.H. Trichloroethylene: An Update on an Environmental Contaminant with Multiple Health Effects. Annu. Rev. Pharmacol. Toxicol. 2024, 65. [Google Scholar] [CrossRef]
- Bukowska, B.; Mokra, K.; Michałowicz, J. Benzo[a]pyrene-Environmental Occurrence, Human Exposure, and Mechanisms of Toxicity. Int. J. Mol. Sci. 2022, 23, 6348. [Google Scholar] [CrossRef]
- Bhowmik, S. Ecological and economic importance of wetlands and their vulnerability: A review. In Research Anthology on Ecosystem Conservation and Preserving Biodiversity; IGI Global: Hershey, PA, USA, 2022; pp. 11–27. [Google Scholar]
- Lacagnina, S. The Developmental Origins of Health and Disease (DOHaD). Am. J. Lifestyle Med. 2019, 14, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Baccarelli, A.; Bollati, V. Epigenetics and environmental chemicals. Curr. Opin. Pediatr. 2009, 21, 243–251. [Google Scholar] [CrossRef]
- Green, S.; Prainsack, B.; Sabatello, M. Precision medicine and the problem of structural injustice. Med. Health Care Philos. 2023, 26, 433–450. [Google Scholar] [CrossRef] [PubMed]
- Mazzio, E.A.; Soliman, K.F. Basic concepts of epigenetics: Impact of environmental signals on gene expression. Epigenetics 2012, 7, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, M.; Li, Y.; Tollefsbol, T.O. Prenatal epigenetics diets play protective roles against environmental pollution. Clin. Epigenetics 2019, 11, 82. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, T.; Pan, C.; Khan, I.A.; Chen, Z.; Yue, Y.; Yang, M. Intergenerational toxic effects of parental exposure to bisphenol AF on offspring and epigenetic modulations in zebrafish. Sci. Total Environ. 2022, 823, 153714. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.N.; Chan, Y.L.; Chen, H.; Oliver, B.G. Editorial: Effects of environmental toxins on brain health and development. Front. Mol. Neurosci. 2023, 16, 1149776. [Google Scholar] [CrossRef]
- Gavito-Covarrubias, D.; Ramírez-Díaz, I.; Guzmán-Linares, J.; Limón, I.D.; Manuel-Sánchez, D.M.; Molina-Herrera, A.; Coral-García, M.Á.; Anastasio, E.; Anaya-Hernández, A.; López-Salazar, P.; et al. Epigenetic mechanisms of particulate matter exposure: Air pollution and hazards on human health. Front. Genet. 2024, 14, 1306600. [Google Scholar] [CrossRef]
- Huang, S.K.; Tripathi, P.; Koneva, L.A.; Cavalcante, R.G.; Craig, N.; Scruggs, A.M.; Sartor, M.A.; Deng, F.; Chen, Y. Effect of concentration and duration of particulate matter exposure on the transcriptome and DNA methylome of bronchial epithelial cells. Environ. Epigenet. 2021, 7, dvaa022. [Google Scholar] [CrossRef]
- Derghal, A.; Djelloul, M.; Trouslard, J.; Mounien, L. An Emerging Role of micro-RNA in the Effect of the Endocrine Disruptors. Front. Neurosci. 2016, 10, 318. [Google Scholar] [CrossRef]
- Montjean, D.; Neyroud, A.S.; Yefimova, M.G.; Benkhalifa, M.; Cabry, R.; Ravel, C. Impact of Endocrine Disruptors upon Non-Genetic Inheritance. Int. J. Mol. Sci. 2022, 23, 3350. [Google Scholar] [CrossRef] [PubMed]
- Alavian-Ghavanini, A.; Rüegg, J. Understanding Epigenetic Effects of Endocrine Disrupting Chemicals: From Mechanisms to Novel Test Methods. Basic Clin. Pharmacol. Toxicol. 2018, 122, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Bollati, V.; Baccarelli, A.; Hou, L.; Bonzini, M.; Fustinoni, S.; Cavallo, D.; Byun, H.M.; Jiang, J.; Marinelli, B.; Pesatori, A.C.; et al. Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res. 2007, 67, 876–880. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Garza, O.; Ghosh, M.; Barrow, T.M.; Godderis, L. Toxicomethylomics revisited: A state-of-the-science review about DNA methylation modifications in blood cells from workers exposed to toxic agents. Front. Public Health 2023, 11, 1073658. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Bian, Q.; Shi, Y.; Liu, Q.; Ding, L.; Zhang, H.; Zhu, B. Analysis of plasma microRNA expression profiles in a Chinese population occupationally exposed to benzene and in a population with chronic benzene poisoning. J. Thorac. Dis. 2016, 8, 403–414. [Google Scholar] [CrossRef]
- Wu, C. Focal adhesion: A focal point in current cell biology and molecular medicine. Cell Adh. Migr. 2007, 1, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; McHale, C.M.; Rothman, N.; Li, G.; Ji, Z.; Vermeulen, R.; Hubbard, A.E.; Ren, X.; Shen, M.; Rappaport, S.M.; et al. Systems biology of human benzene exposure. Chem.-Biol. Interact. 2010, 184, 86–93. [Google Scholar] [CrossRef]
- Stepanyan, A.; Petrackova, A.; Hakobyan, S.; Savara, J.; Davitavyan, S.; Kriegova, E.; Arakelyan, A. Long-term environmental metal exposure is associated with hypomethylation of CpG sites in NFKB1 and other genes related to oncogenesis. Clin. Epigenet. 2023, 15, 126, Erratum in Clin. Epigenet. 2023, 15, 143. [Google Scholar] [CrossRef] [PubMed]
- Manić, L.; Wallace, D.; Onganer, P.U.; Taalab, Y.M.; Farooqi, A.A.; Antonijević, B.; Djordjevic, A.B. Epigenetic mechanisms in metal carcinogenesis. Toxicol. Rep. 2022, 9, 778–787. [Google Scholar] [CrossRef]
- Lawless, L.; Xie, L.; Zhang, K. The inter- and multi- generational epigenetic alterations induced by maternal cadmium exposure. Front. Cell Dev. Biol. 2023, 11, 1148906. [Google Scholar] [CrossRef]
- Smeester, L.; Rager, J.E.; Bailey, K.A.; Guan, X.; Smith, N.; García-Vargas, G.; Del Razo, L.M.; Drobná, Z.; Kelkar, H.; Stýblo, M.; et al. Epigenetic changes in individuals with arsenicosis. Chem. Res. Toxicol. 2011, 24, 165–167. [Google Scholar] [CrossRef] [PubMed]
- Neves, I.; Dinis-Oliveira, R.J.; Magalhães, T. Epigenomic mediation after adverse childhood experiences: A systematic review and meta-analysis. Forensic Sci. Res. 2021, 6, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Collender, P.; Bozack, A.K.; Veazie, S.; Nwanaji-Enwerem, J.C.; Van Der Laan, L.; Kogut, K.; Riddell, C.; Eskenazi, B.; Holland, N.; Deardorff, J.; et al. Maternal adverse childhood experiences (ACEs) and DNA methylation of newborns in cord blood. Clin. Epigenet. 2023, 15, 162. [Google Scholar] [CrossRef] [PubMed]
- Vidal, A.C.; Sosnowski, D.W.; Marchesoni, J.; Grenier, C.; Thorp, J.; Murphy, S.K.; Johnson, S.B.; Schlief, W.; Hoyo, C. Maternal adverse childhood experiences (ACEs) and offspring imprinted gene DMR methylation at birth. Epigenetics 2024, 19, 2293412. [Google Scholar] [CrossRef]
- Merrick, M.T.; Ford, D.C.; Ports, K.A.; Guinn, A.S. Prevalence of adverse childhood experiences from the 2011-2014 behavioral risk factor surveillance system in 23 states. JAMA Pediatr. 2018, 172, 1038–1044. [Google Scholar] [CrossRef]
- Swedo, E.A.; Aslam, M.V.; Dahlberg, L.L.; Niolon, P.H.; Guinn, A.S.; Simon, T.R.; Mercy, J.A. Prevalence of Adverse Childhood Experiences Among US Adults—Behavioral Risk Factor Surveillance System, 2011–2020. Morb. Mortal. Wkly. Rep. 2023, 72, 707. [Google Scholar] [CrossRef]
- Madigan, S.; Deneault, A.A.; Racine, N.; Park, J.; Thiemann, R.; Zhu, J.; Dimitropoulos, G.; Williamson, T.; Fearon, P.; Cénat, J.M.; et al. Adverse childhood experiences: A meta-analysis of prevalence and moderators among half a million adults in 206 studies. World Psychiatry 2023, 22, 463–471. [Google Scholar] [CrossRef]
- Amene, E.W.; Annor, F.B.; Gilbert, L.K.; McOwen, J.; Augusto, A.; Manuel, P.; Nobah, M.T.V.N.G.; Massetti, G.M. Prevalence of adverse childhood experiences in sub-saharan Africa: A multicountry analysis of the Violence against Children and Youth Surveys (VACS). Child Abus. Negl. 2024, 150, 106353. [Google Scholar] [CrossRef]
- Peterson, C.; Aslam, M.V.; Niolon, P.H.; Bacon, S.; Bellis, M.A.; Mercy, J.A.; Florence, C. Economic burden of health conditions associated with adverse childhood experiences among US adults. JAMA Netw. Open 2023, 6, e2346323. [Google Scholar] [CrossRef]
- Bellis, M.A.; Lowey, H.; Leckenby, N.; Hughes, K.; Harrison, D. Adverse childhood experiences: Retrospective study to determine their impact on adult health behaviours and health outcomes in a UK population. J. Public Health 2014, 36, 81–91. [Google Scholar] [CrossRef]
- Baldwin, J.R.; Caspi, A.; Meehan, A.J.; Ambler, A.; Arseneault, L.; Fisher, H.L.; Harrington, H.; Matthews, T.; Odgers, C.L.; Poulton, R.; et al. Population vs individual prediction of poor health from results of adverse childhood experiences screening. JAMA Pediatr. 2021, 175, 385–393. [Google Scholar] [CrossRef] [PubMed]
- DeBelius, D. Adverse Childhood Experiences Questionnaire. Oregon Health Authority. 2018. Available online: https://www.oregon.gov/oha/PH/HEALTHYPEOPLEFAMILIES/WIC/Documents/modules/aces-childhood-questionnaire.pdf (accessed on 12 September 2024).
- Sanders, M.R.; Turner, K.M.; Baker, S.; Ma, T.; Chainey, C.; Horstead, S.K.; Wimalaweera, S.; Gardner, S.; Eastwood, J. Supporting families affected by adversity: An open feasibility trial of Family Life Skills Triple P. Behav. Ther. 2024, 55, 621–635. [Google Scholar] [CrossRef]
- Flynn, A.B.; Fothergill, K.E.; Wilcox, H.C.; Coleclough, E.; Horwitz, R.; Ruble, A.; Burkey, M.D.; Wissow, L.S. Primary care interventions to prevent or treat traumatic stress in childhood: A systematic review. Acad. Pediatr. 2015, 15, 480–492. [Google Scholar] [CrossRef]
- Hanson, R.F.; Zhu, V.; Are, F.; Espeleta, H.; Wallis, E.; Heider, P.; Kautz, M.; Lenert, L. Initial development of tools to identify child abuse and neglect in pediatric primary care. BMC Med. Inform. Decis. Mak. 2023, 23, 266. [Google Scholar] [CrossRef]
- Lupariello, F.; Sussetto, L.; Di Trani, S.; Di Vella, G. Artificial intelligence and child abuse and neglect: A systematic review. Children 2023, 10, 1659. [Google Scholar] [CrossRef] [PubMed]
- Ofri, D. What Patients Say, What Doctors Hear; Beacon Press: Boston, MA, USA, 2018. [Google Scholar]
- Nuila, R. The People’s Hospital: Hope and Peril in American Medicine; Scribner: New York, NY, USA, 2023. [Google Scholar]
- Rakel, D. The Compassionate Connection: The Healing Power of Empathy and Mindful Listening; W. W. Norton & Company: New York, NY, USA, 2018. [Google Scholar]
- Gilbert, P. Compassion: Concepts, Research and Applications; Definitions and Controversies; Taylor & Francis: Abingdon, UK, 2017; pp. 3–15. [Google Scholar]
- Gilbert, P. Creating a compassionate world: Addressing the conflicts between sharing and caring versus controlling and holding evolved strategies. Front. Psychol. 2021, 11, 582090. [Google Scholar] [CrossRef] [PubMed]
- Julian, J. Being real in the modern world: Healing with deep ecology, mindfulness, and compassionate action. Humanist. Psychol. 2021, 49, 202. [Google Scholar] [CrossRef]
- De Silva, D.G.; Hubbard, T.P.; Schiller, A.R. Entry and exit patterns of “Toxic” firms. Am. J. Agric. Econ. 2016, 98, 881–909. [Google Scholar] [CrossRef]
- De Silva, D.G.; McComb, R.P.; Schiller, A.R.; Slechten, A. Firm behavior and pollution in small geographies. Eur. Econ. Rev. 2021, 136, 103742. [Google Scholar] [CrossRef]
- Mascaro, J.S.; Florian, M.P.; Ash, M.J.; Palmer, P.K.; Frazier, T.; Condon, P.; Raison, C. Ways of knowing compassion: How do we come to know, understand, and measure compassion when we see it? Front. Psychol. 2020, 11, 547241. [Google Scholar] [CrossRef]
- Fiorito, G.; Caini, S.; Palli, D.; Bendinelli, B.; Saieva, C.; Ermini, I.; Valentini, V.; Assedi, M.; Rizzolo, P.; Ambrogetti, D.; et al. DNA methylation-based biomarkers of aging were slowed down in a two-year diet and physical activity intervention trial: The DAMA study. Aging Cell 2021, 20, e13439. [Google Scholar] [CrossRef] [PubMed]
- McKeachie, W.J.; Svinicki, M. McKeachie’s Teaching Tips; Cengage Learning: Boston, MA, USA, 2013. [Google Scholar]
- Acosta, D.A.; Poll-Hunter, N.I.; Eliason, J. Trends in racial and ethnic minority applicants and matriculants to US medical schools, 1980–2016. AAMC Anal. Brief 2017, 17, 1–14. [Google Scholar]
- Sánchez, J.P.; Poll-Hunter, N.I.; Acosta, D. Advancing the Latino physician workforce—Population trends, persistent challenges, and new directions. Acad. Med. 2015, 90, 849–853. [Google Scholar] [CrossRef] [PubMed]
- Ek, C.; Hébert, J.R.; Friedman, D.B.; Porter, D.E. Climate Change, Racism, and Food Insecurity: Cyclical Impacts of Stressors Exacerbate Health Disparities. J. Racial Ethn. Health Disparit. 2024. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iannaccone, P.M.; Ryznar, R.J.; Van Winkle, L.J. Genetics, Epigenetics, and the Environment: Are Precision Medicine, Provider Compassion, and Social Justice Effective Public Health Measures to Mitigate Disease Risk and Severity? Int. J. Environ. Res. Public Health 2024, 21, 1522. https://doi.org/10.3390/ijerph21111522
Iannaccone PM, Ryznar RJ, Van Winkle LJ. Genetics, Epigenetics, and the Environment: Are Precision Medicine, Provider Compassion, and Social Justice Effective Public Health Measures to Mitigate Disease Risk and Severity? International Journal of Environmental Research and Public Health. 2024; 21(11):1522. https://doi.org/10.3390/ijerph21111522
Chicago/Turabian StyleIannaccone, Philip M., Rebecca J. Ryznar, and Lon J. Van Winkle. 2024. "Genetics, Epigenetics, and the Environment: Are Precision Medicine, Provider Compassion, and Social Justice Effective Public Health Measures to Mitigate Disease Risk and Severity?" International Journal of Environmental Research and Public Health 21, no. 11: 1522. https://doi.org/10.3390/ijerph21111522
APA StyleIannaccone, P. M., Ryznar, R. J., & Van Winkle, L. J. (2024). Genetics, Epigenetics, and the Environment: Are Precision Medicine, Provider Compassion, and Social Justice Effective Public Health Measures to Mitigate Disease Risk and Severity? International Journal of Environmental Research and Public Health, 21(11), 1522. https://doi.org/10.3390/ijerph21111522