Nutritional Criminology: Why the Emerging Research on Ultra-Processed Food Matters to Health and Justice
Abstract
:1. Introduction
2. Diet and Antisocial Behavior—Perspectives across the 20th Century
3. Sugar Revisited
4. Dietary Intervention Studies
5. Microbiome and Mechanisms
6. Food Additives
7. Food Equality and Prevention
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Srour, B.; Kordahi, M.C.; Bonazzi, E.; Deschasaux-Tanguy, M.; Touvier, M.; Chassaing, B. Ultra-processed foods and human health: From epidemiological evidence to mechanistic insights. Lancet Gastroenterol. Hepatol. 2022, 7, 1128–1140. [Google Scholar] [CrossRef] [PubMed]
- Popkin, B.M.; Barquera, S.; Corvalan, C.; Hofman, K.J.; Monteiro, C.; Ng, S.W.; Swart, E.C.; Taillie, L.S. Towards unified and impactful policies to reduce ultra-processed food consumption and promote healthier eating. Lancet Diabetes Endocrinol. 2021, 9, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.; Hofman, K.; Moubarac, J.C.; Thow, A.M. Public health response to ultra-processed food and drinks. BMJ 2020, 369, m2391. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, A.; Steckelberg, A. Melted, Pounded, Extruded: Why Many Ultra-Processed Foods Are Unhealthy. The Washington Post, 27 June 2023. Available online: https://www.washingtonpost.com/wellness/2023/06/27/ultra-processed-foods-predigested-health-risks/(accessed on 8 August 2023).
- Stallard, E. Could ultra-processed foods be harmful for us? BBC News, 5 June 2023. Available online: https://www.bbc.com/news/health-65754290(accessed on 8 August 2023).
- Sinnenberg, J. You are what you eat: Americans consume toxic additives banned in other countries. CBS News, 21 February. Available online: https://cbsaustin.com/news/nation-world/you-are-what-you-eat-americans-consume-sickly-additives-banned-in-other-countries-sugar-cereal-cocoa-pebbles-maple-syrup-subway-bread-cake-pop-tarts-breakfast-carcinogen-processed-food-potassium-bromate-twinkies-diet-health-wellness-food-agriculture(accessed on 8 August 2023).
- Hague, W. Start treating ultra-processed food like tobacco. The Times, 19 June 2023. Available online: https://www.thetimes.co.uk/article/start-treating-ultra-processed-food-like-tobacco-xmk6r6dmz(accessed on 8 August 2023).
- Hooker, L. Danone’s UK boss calls for higher taxes on unhealthy food. BBC News, 11 June 2023. Available online: https://www.bbc.com/news/business-65872962(accessed on 8 August 2023).
- Jenkins, S. Banning Ultra-Processed Food Is Not a Nanny-State Issue. It’s Common Sense. Available online: https://www.theguardian.com/commentisfree/2023/jun/09/banning-ultra-processed-food-nanny-state-common-sense (accessed on 17 June 2023).
- Suksatan, W.; Moradi, S.; Naeini, F.; Bagheri, R.; Mohammadi, H.; Talebi, S.; Mehrabani, S.; Hojjati Kermani, M.A.; Suzuki, K. Ultra-Processed Food Consumption and Adult Mortality Risk: A Systematic Review and Dose-Response Meta-Analysis of 207,291 Participants. Nutrients 2021, 14, 174. [Google Scholar] [CrossRef] [PubMed]
- Bonaccio, M.; Costanzo, S.; Di Castelnuovo, A.; Persichillo, M.; Magnacca, S.; De Curtis, A.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; Iacoviello, L. Ultra-processed food intake and all-cause and cause-specific mortality in individuals with cardiovascular disease: The Moli-sani Study. Eur. Heart J. 2022, 43, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Taneri, P.E.; Wehrli, F.; Roa-Diaz, Z.M.; Itodo, O.A.; Salvador, D.; Raeisi-Dehkordi, H.; Bally, L.; Minder, B.; Kiefte-de Jong, J.C.; Laine, J.E.; et al. Association Between Ultra-Processed Food Intake and All-Cause Mortality: A Systematic Review and Meta-Analysis. Am. J. Epidemiol. 2022, 191, 1323–1335. [Google Scholar] [CrossRef] [PubMed]
- Orlich, M.J.; Sabate, J.; Mashchak, A.; Fresan, U.; Jaceldo-Siegl, K.; Miles, F.; Fraser, G.E. Ultra-processed food intake and animal-based food intake and mortality in the Adventist Health Study-2. Am. J. Clin. Nutr. 2022, 115, 1589–1601. [Google Scholar] [CrossRef]
- Romero Ferreiro, C.; Martin-Arriscado Arroba, C.; Cancelas Navia, P.; Lora Pablos, D.; Gomez de la Camara, A. Ultra-processed food intake and all-cause mortality: DRECE cohort study. Public Health Nutr. 2021, 25, 1854–1863. [Google Scholar] [CrossRef]
- Dehghan, M.; Mente, A.; Rangarajan, S.; Mohan, V.; Swaminathan, S.; Avezum, A.; Lear, S.A.; Rosengren, A.; Poirier, P.; Lanas, F.; et al. Ultra-processed foods and mortality: Analysis from the Prospective Urban and Rural Epidemiology study. Am. J. Clin. Nutr. 2023, 117, 55–63. [Google Scholar] [CrossRef]
- Li, H.; Li, S.; Yang, H.; Zhang, Y.; Ma, Y.; Hou, Y.; Zhang, X.; Sun, L.; Borne, Y.; Wang, Y. Association of Ultra-Processed Food Intake with Cardiovascular and Respiratory Disease Multimorbidity: A Prospective Cohort Study. Mol. Nutr. Food Res. 2023, 67, e2200628. [Google Scholar] [CrossRef]
- Esposito, S.; Bonaccio, M.; Ruggiero, E.; Costanzo, S.; Di Castelnuovo, A.; Gialluisi, A.; Esposito, V.; Innocenzi, G.; Paolini, S.; Cerletti, C.; et al. Food processing and risk of central nervous system tumours: A preliminary case-control analysis from the MEditerranean DIet in relation to CancEr of brAin (MEDICEA) study. Clin. Nutr. 2023, 42, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Nardocci, M.; Polsky, J.Y.; Moubarac, J.C. Consumption of ultra-processed foods is associated with obesity, diabetes and hypertension in Canadian adults. Can. J. Public Health 2021, 112, 421–429. [Google Scholar] [CrossRef]
- LaFata, E.M.; Gearhardt, A.N. Ultra-Processed Food Addiction: An Epidemic? Psychother. Psychosom. 2022, 91, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Parnarouskis, L.; Gearhardt, A.N. Preliminary evidence that tolerance and withdrawal occur in response to ultra-processed foods. Curr. Addict. Rep. 2022, 9, 282–289. [Google Scholar] [CrossRef]
- Whatnall, M.; Clarke, E.; Collins, C.E.; Pursey, K.; Burrows, T. Ultra-processed food intakes associated with ‘food addiction’ in young adults. Appetite 2022, 178, 106260. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Donoso, C.; Sanchez-Villegas, A.; Martinez-Gonzalez, M.A.; Gea, A.; Mendonca, R.D.; Lahortiga-Ramos, F.; Bes-Rastrollo, M. Ultra-processed food consumption and the incidence of depression in a Mediterranean cohort: The SUN Project. Eur. J. Nutr. 2020, 59, 1093–1103. [Google Scholar] [CrossRef]
- Adjibade, M.; Julia, C.; Alles, B.; Touvier, M.; Lemogne, C.; Srour, B.; Hercberg, S.; Galan, P.; Assmann, K.E.; Kesse-Guyot, E. Prospective association between ultra-processed food consumption and incident depressive symptoms in the French NutriNet-Sante cohort. BMC Med. 2019, 17, 78. [Google Scholar] [CrossRef] [PubMed]
- Lane, M.M.; Lotfaliany, M.; Hodge, A.M.; O’Neil, A.; Travica, N.; Jacka, F.N.; Rocks, T.; Machado, P.; Forbes, M.; Ashtree, D.N.; et al. High ultra-processed food consumption is associated with elevated psychological distress as an indicator of depression in adults from the Melbourne Collaborative Cohort Study. J. Affect. Disord. 2023, 335, 57–66. [Google Scholar] [CrossRef]
- Lee, S.; Choi, M. Ultra-Processed Food Intakes Are Associated with Depression in the General Population: The Korea National Health and Nutrition Examination Survey. Nutrients 2023, 15, 2169. [Google Scholar] [CrossRef]
- Werneck, A.O.; Vancampfort, D.; Oyeyemi, A.L.; Stubbs, B.; Silva, D.R. Joint association of ultra-processed food and sedentary behavior with anxiety-induced sleep disturbance among Brazilian adolescents. J. Affect. Disord. 2020, 266, 135–142. [Google Scholar] [CrossRef]
- Coletro, H.N.; Mendonca, R.D.; Meireles, A.L.; Machado-Coelho, G.L.L.; Menezes, M.C. Ultra-processed and fresh food consumption and symptoms of anxiety and depression during the COVID-19 pandemic: COVID Inconfidentes. Clin. Nutr. ESPEN 2022, 47, 206–214. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Wang, Y.; Shen, Y. Association of Ultra-processed Food Consumption with Incident Depression and Anxiety: A Population-based Cohort Study. Food Funct. 2023, in press. [Google Scholar]
- Zheng, L.; Sun, J.; Yu, X.; Zhang, D. Ultra-Processed Food Is Positively Associated With Depressive Symptoms Among United States Adults. Front. Nutr. 2020, 7, 600449. [Google Scholar] [CrossRef]
- Samuthpongtorn, C.; Nguyen, L.H.; Okereke, O.I.; Wang, D.D.; Song, M.; Chan, A.T.; Mehta, R.S. Consumption of Ultraprocessed Food and Risk of Depression. JAMA Netw. Open 2023, 6, e2334770. [Google Scholar] [CrossRef]
- Zahedi, H.; Kelishadi, R.; Heshmat, R.; Motlagh, M.E.; Ranjbar, S.H.; Ardalan, G.; Payab, M.; Chinian, M.; Asayesh, H.; Larijani, B.; et al. Association between junk food consumption and mental health in a national sample of Iranian children and adolescents: The CASPIAN-IV study. Nutrition 2014, 30, 1391–1397. [Google Scholar] [CrossRef] [PubMed]
- Mohseni, H.; Malek Mohammadi, F.; Karampour, Z.; Amini, S.; Abiri, B.; Sayyah, M. The relationship between history of dietary nutrients intakes and incidence of aggressive behavior in adolescent girls: A case-control study. Clin. Nutr. ESPEN 2021, 43, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Abiri, B.; Amini, S.; Ehsani, H.; Ehsani, M.; Adineh, P.; Mohammadzadeh, H.; Hashemi, S. Evaluation of dietary food intakes and anthropometric measures in middle-aged men with aggressive symptoms. BMC Nutr. 2023, 9, 75. [Google Scholar] [CrossRef]
- Wu, W.C.; Lin, C.I.; Li, Y.F.; Chang, L.Y.; Chiang, T.L. The mediating effect of dietary patterns on the association between mother’s education level and the physical aggression of five-year-old children: A population-based cohort study. BMC Pediatr. 2020, 20, 221. [Google Scholar] [CrossRef]
- Khayyatzadeh, S.S.; Firouzi, S.; Askari, M.; Mohammadi, F.; Nikbakht-Jam, I.; Ghazimoradi, M.; Mohammadzadeh, M.; Ferns, G.A.; Ghayour-Mobarhan, M. Dietary intake of carotenoids and fiber is inversely associated with aggression score in adolescent girls. Nutr. Health 2019, 25, 203–208. [Google Scholar] [CrossRef]
- Mrug, S.; Jones, L.C.; Elliott, M.N.; Tortolero, S.R.; Peskin, M.F.; Schuster, M.A. Soft Drink Consumption and Mental Health in Adolescents: A Longitudinal Examination. J. Adolesc. Health 2021, 68, 155–160. [Google Scholar] [CrossRef]
- Gketsios, I.; Tsiampalis, T.; Kanellopoulou, A.; Vassilakou, T.; Notara, V.; Antonogeorgos, G.; Rojas-Gil, A.P.; Kornilaki, E.N.; Lagiou, A.; Panagiotakos, D.B.; et al. The Synergetic Effect of Soft Drinks and Sweet/Salty Snacks Consumption and the Moderating Role of Obesity on Preadolescents’ Emotions and Behavior: A School-Based Epidemiological Study. Life 2023, 13, 633. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M. Eating ourselves to death: How food is a drug and what food abuse costs. Drug Sci. Policy Law. 2022, 8, 20503245221112577. [Google Scholar] [CrossRef]
- Robinson, M. The Food IS the Crime: A Focus on Food as “Food Crime”. Int. J. Crim. Justice Sci. 2022, 17, 167–187. [Google Scholar]
- Tristan Asensi, M.; Napoletano, A.; Sofi, F.; Dinu, M. Low-Grade Inflammation and Ultra-Processed Foods Consumption: A Review. Nutrients 2023, 15, 1546. [Google Scholar] [CrossRef] [PubMed]
- Lane, M.M.; Lotfaliany, M.; Forbes, M.; Loughman, A.; Rocks, T.; O’Neil, A.; Machado, P.; Jacka, F.N.; Hodge, A.; Marx, W. Higher Ultra-Processed Food Consumption Is Associated with Greater High-Sensitivity C-Reactive Protein Concentration in Adults: Cross-Sectional Results from the Melbourne Collaborative Cohort Study. Nutrients 2022, 14, 3309. [Google Scholar] [CrossRef] [PubMed]
- Corbin, K.D.; Carnero, E.A.; Dirks, B.; Igudesman, D.; Yi, F.; Marcus, A.; Davis, T.L.; Pratley, R.E.; Rittmann, B.E.; Krajmalnik-Brown, R.; et al. Host-diet-gut microbiome interactions influence human energy balance: A randomized clinical trial. Nat. Commun. 2023, 14, 3161. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P. Influence of Foods and Nutrition on the Gut Microbiome and Implications for Intestinal Health. Int. J. Mol. Sci. 2022, 23, 9588. [Google Scholar] [CrossRef]
- Yu, G.; Xu, C.; Zhang, D.; Ju, F.; Ni, Y. MetOrigin: Discriminating the origins of microbial metabolites for integrative analysis of the gut microbiome and metabolome. IMeta 2022, 1, e10. [Google Scholar] [CrossRef]
- Gato, W.E.; Posick, C.; Williams, A.; Mays, C. Examining the Link Between the Human Microbiome and Antisocial Behavior: Why Criminologists Should Care About Biochemistry, Too. Deviant Behav. 2018, 39, 1191–1201. [Google Scholar] [CrossRef]
- Tcherni-Buzzeo, M. Dietary interventions, the gut microbiome, and aggressive behavior: Review of research evidence and potential next steps. Aggress. Behav. 2023, 49, 15–32. [Google Scholar] [CrossRef]
- Casadevall, A.; Fang, F.C. (A)Historical science. Infect. Immun. 2015, 83, 4460–4464. [Google Scholar] [CrossRef]
- Prescott, S.L. History of medicine: Origin of the term microbiome and why it matters. Human. Microbiome J. 2017, 4, 24–25. [Google Scholar] [CrossRef]
- Schoenthaler, S.J.; Logan, A.C. Is prison food really food? Health Justice 2023, 11, 44. [Google Scholar] [CrossRef]
- Eyman, H.C. The neurotic’s diet. JAMA 1899, 33, 515–517. [Google Scholar] [CrossRef]
- Watson, G.; Comrey, A.L. Nutritional replacement for mental illness. J. Psychol. 1954, 38, 251–264. [Google Scholar] [CrossRef]
- Powers, J. New, simple method of treating mental illness. Fort Worth Star-Telegram, 13 October 1954; p. 22. [Google Scholar]
- Anonymous. Nutrition can aid in juvenile delinquency. The News Tribune, 11 March 1958; p. 19. [Google Scholar]
- Reynolds, D.D. Miss Swanson packs a lunch and fashionably comes to call. News and Record, 15 April 1958; p. 6. [Google Scholar]
- Anonymous. Future of America: Nutritional deficiencies affect juvenile delinquencies. Mod. Nutr. 1958, 11, 15–16, 25. [Google Scholar]
- Watson, G. Nutrition and Your Mind; Harper and Row: New York, NY, USA, 1972. [Google Scholar]
- Watson, G. Psychochemical responses and how they affect your life. Cosmopolitan 1972, 172, 146–149. [Google Scholar]
- Rorvik, D.M. How diet can affect your mind. McCall’s 1972, 99, 39–46. [Google Scholar]
- Watson, G. Vitamin deficiencies in mental illness. J. Psychol. 1957, 43, 47–63. [Google Scholar] [CrossRef]
- Watson, G.; Currier, W.D. Intensive vitamin therapy in mental illness. J. Psychol. 1960, 49, 67–81. [Google Scholar] [CrossRef]
- Watson, G. Is mental illness mental? J. Psychol. 1956, 41, 323–334. [Google Scholar] [CrossRef]
- Lattey, R.M. Dr. Sigmund freud, pseudoscientist. Can. Fam. Physician 1969, 15, 59–63. [Google Scholar] [PubMed]
- Logan, A.C.; Schoenthaler, S.J. Nutrition, Behavior, and the Criminal Justice System: What Took so Long? An Interview with Dr. Stephen J. Schoenthaler. Challenges 2023, 14, 37. [Google Scholar] [CrossRef]
- McGovern, G.; Dole, R.; Schweiker, R.; Kennedy, E.; Humphrey, H.; Leahy, P.; Percy, C.; Zorinsky, E. Select Committee on Nutrition and Human Needs; Ninety-Fifth Congress of the United States; United States Printing Office: Washington, DC, USA, 1977.
- Graham, V. Junk Food: What’s it doing to your mind? Times, 15 August 1977; p. 12. [Google Scholar]
- CBS News. Candy Criminals. Available online: https://www.youtube.com/watch?v=IIenmt9MSF0 (accessed on 8 August 2023).
- Bruns, J. Probation officer says poor diet can produce criminal behavior. The Rock Island Argus, 22 September 1977; p. 11. [Google Scholar]
- Burros, M. Diet and Behavior. The Washington Post, 30 June 1977. Available online: https://www.washingtonpost.com/archive/lifestyle/1977/06/30/diet-and-behavior/de731029-e657-42b9-99df-0a5dfa42ce16/(accessed on 8 August 2023).
- Disbie, P. Food can trigger aggressive behavior. The Times Leader, 22 May 1979; p. 2-B. [Google Scholar]
- Schoenthaler, S.J. The effect of sugar on the treatment and control of antisocial behavior: A double-blind study of an incarcerated juvenile population. Int. J. Biosoc. Res. 1982, 3, 1–9. [Google Scholar]
- Benton, D. The impact of diet on anti-social, violent and criminal behaviour. Neurosci. Biobehav. Rev. 2007, 31, 752–774. [Google Scholar] [CrossRef] [PubMed]
- Schoenthaler, S.J. Diet and crime: An empirical examination of the value of nutrition in the control and treatment of incarcerated juvenile offenders. Int. J. Biosoc. Res. 1983, 4, 25–39. [Google Scholar] [CrossRef]
- Schoenthaler, S.J. The Los Angeles Probation Department diet-behavior program: An empirical analysis of six institutional settings. Int. J. Biosoc. Res. 1983, 5, 88–98. [Google Scholar] [CrossRef]
- Schoenthaler, S.J. The Alabama diet-behavior program: An empirical evaluation at the Coosa Valley Regional Detention Center. Int. J. Biosoc. Res. 1983, 5, 79–87. [Google Scholar] [CrossRef]
- Schoenthaler, S.J. Diet Crime and Delinquency-A Review of the 1983 and 1984 Studies. Int. J. Biosoc. Res. 1984, 6, 141–153. [Google Scholar]
- Schoenthaler, S.J.; Bier, I.D. Diet and delinquency: Empirical testing of seven theories. Int. J. Biosoc. Res. 1985, 7, 108–131. [Google Scholar] [CrossRef]
- Bolton, R. Hostility in Fantasy-Further Test of Hypoglycemia-Aggression Hypothesis. Aggress. Behav. 1976, 2, 257–274. [Google Scholar] [CrossRef]
- Virkkunen, M.; Huttunen, M.O. Evidence for Abnormal Glucose-Tolerance Test among Violent Offenders. Neuropsychobiology 1982, 8, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Virkkunen, M. Insulin-Secretion during the Glucose-Tolerance Test among Habitually Violent and Impulsive Offenders. Aggress. Behav. 1986, 12, 303–310. [Google Scholar] [CrossRef]
- Harris, S. Hyperinsulinism and dysinsulinism. J. Am. Med. Assoc. 1924, 83, 729–733. [Google Scholar] [CrossRef]
- Wilder, J. Problems of criminal psychology related to hypoglycemic states. J. Criminol. Psychopathol. 1940, 1, 219–233. [Google Scholar]
- Wilder, J. Psychological problems in hypoglycemia. Am. J. Dig. Dis. 1943, 10, 428–435. [Google Scholar] [CrossRef]
- Wilder, J. Sugar metabolism and its relation to criminology. In Handbook of Correctional Psychology; Lindner, R.M., Seliger, R.V., Eds.; Philosophical Library: New York, NY, USA, 1947; pp. 98–129. [Google Scholar]
- Hill, D.; Sargant, W.; Heppenstall, M. A case of matricide. Lancet 1943, 241, 526–527. [Google Scholar] [CrossRef]
- Gray, G.E.; Gray, L.K. Diet and juvenile delinquency. Nutr. Today 1983, 18, 14–22. [Google Scholar] [CrossRef]
- United States Congress, House of Representatives. Hearings before the Subcommittee on Domestic Marketing, Consumer Relations, and Nutrition; Nutrition Foundation, Inc. United States Government Printing Office: Washington, DC, USA, 1978; p. 552.
- Nelsen, A. Science institute that advised EU and UN ‘actually industry lobby group’. The Guardian, 2 June 2019. Available online: https://www.theguardian.com/us-news/2019/jun/03/science-institute-that-advised-eu-and-un-actually-industry-lobby-group(accessed on 7 July 2023).
- Dyer, O. International Life Sciences Institute is advocate for food and drink industry, say researchers. BMJ 2019, 365, l4037. [Google Scholar] [CrossRef]
- Griffin, S. Coca-Cola’s work with academics was a “low point in history of public health”. BMJ 2020, 370, m3075. [Google Scholar] [CrossRef]
- Steele, S.; Ruskin, G.; Stuckler, D. Pushing partnerships: Corporate influence on research and policy via the International Life Sciences Institute. Public Health Nutr. 2020, 23, 2032–2040. [Google Scholar] [CrossRef] [PubMed]
- Sacks, G.; Riesenberg, D.; Mialon, M.; Dean, S.; Cameron, A.J. The characteristics and extent of food industry involvement in peer-reviewed research articles from 10 leading nutrition-related journals in 2018. PLoS ONE 2020, 15, e0243144. [Google Scholar] [CrossRef] [PubMed]
- Levitsky, D.A. Diet and behavior: A multidisciplinary evaluation. Proceedings of a symposium. Arlington, Virginia, November 27–29, 1984. Nutr. Rev. 1986, 44, 252–254. [Google Scholar] [CrossRef]
- ADA Reports. Position Paper of The American Dietetic Association on diet and criminal behavior. J. Am. Diet. Assoc. 1985, 85, 361–362. [Google Scholar] [CrossRef]
- Brody, J.E. Diet-behavior link: The debate. New York Times, 4 December 1984; p. C1. [Google Scholar]
- Wood, J. A Sweet plea. The San Francisco Examiner, 22 July 1985; pp. B-6–B-7. [Google Scholar]
- Grannell, A.; Fallon, F.; Al-Najim, W.; le Roux, C. Obesity and responsibility: Is it time to rethink agency? Obes. Rev. 2021, 22, e13270. [Google Scholar] [CrossRef]
- Prescott, S.L.; Logan, A.C. Each meal matters in the exposome: Biological and community considerations in fast-food-socioeconomic associations. Econ. Hum. Biol. 2017, 27, 328–335. [Google Scholar] [CrossRef]
- Schoenthaler, S. Nutritional policies and institutional antisocial behavior. Nutr. Today 1985, 20, 16–25. [Google Scholar] [CrossRef]
- Gray, G.E. Diet, Crime and Delinquency—A Critique. Nutr. Rev. 1986, 44, 89–94. [Google Scholar] [CrossRef]
- Atli Gunnarsson, J.; Ruskin, G.; Stuckler, D.; Steele, S. Big food and drink sponsorship of conferences and speakers: A case study of one multinational company’s influence over knowledge dissemination and professional engagement. Public Health Nutr. 2023, 26, 1094–1111. [Google Scholar] [CrossRef]
- Schoenthaler, S.J.; Amos, W.; Doraz, M.A.; Kelly, G.; Muedeking, J.; Wakefield, J. The effect of randomized vitamin-mineral supplementation on violent and non-violent antisocial behavior among incarcerated juveniles. J. Nutr. Environ. Med. 1997, 7, 343–352. [Google Scholar] [CrossRef]
- Schoenthaler, S.; Gast, D.; Giltay, E.J.; Amos, S. The effects of vitamin-mineral supplements on serious rule violations in correctional facilities for young adult male inmates: A ran-domized controlled trial. Crime Delinq. 2023, 69, 822–840. [Google Scholar] [CrossRef]
- Gesch, C.B.; Hammond, S.M.; Hampson, S.E.; Eves, A.; Crowder, M.J. Influence of supplementary vitamins, minerals and essential fatty acids on the antisocial behaviour of young adult prisoners. Randomised, placebo-controlled trial. Br. J. Psychiatry 2002, 181, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Zaalberg, A.; Nijman, H.; Bulten, E.; Stroosma, L.; van der Staak, C. Effects of nutritional supplements on aggression, rule-breaking, and psychopathology among young adult prisoners. Aggress. Behav. 2010, 36, 117–126. [Google Scholar] [CrossRef]
- De Bles, N.J.; Gast, D.A.A.; van der Slot, A.J.C.; Didden, R.; van Hemert, A.M.; Rius-Ottenheim, N.; Giltay, E.J. Lessons learned from two clinical trials on nutritional supplements to reduce aggressive behaviour. J. Eval. Clin. Pract. 2022, 28, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Meyer, B.J.; Byrne, M.K.; Cortie, C.H.; Parletta, N.; Jones, A.; Eckermann, S.; Butler, T.; Greenberg, D.; Batterham, M.; Fernandez, F.; et al. The effect of omega-3 long chain polyunsaturated fatty acids on aggressive behaviour in adult male prisoners: A structured study protocol for a multi-centre, double-blind, randomised placebo-controlled trial and translation into policy and practice. Trials 2021, 22, 318. [Google Scholar] [CrossRef] [PubMed]
- Raine, A.; Leung, C.C.; Singh, M.; Kaur, J. Omega-3 supplementation in young offenders: A randomized, stratified, double-blind, placebo-controlled, parallel-group trial. J. Exp. Criminol. 2020, 16, 389–405. [Google Scholar] [CrossRef]
- Raine, A.; Choy, O.; Leung, C.C.; Singh, M.; Kaur, J. Omega-3 and vitamin D supplementation to reduce recidivism: A pilot study. J. Exp. Criminol. 2023, in press. [Google Scholar] [CrossRef]
- Hibbeln, J.R. From homicide to happiness--a commentary on omega-3 fatty acids in human society. Cleave Award Lecture. Nutr. Health 2007, 19, 9–19. [Google Scholar] [CrossRef]
- Hibbeln, J.R.; Ferguson, T.A.; Blasbalg, T.L. Omega-3 fatty acid deficiencies in neurodevelopment, aggression and autonomic dysregulation: Opportunities for intervention. Int. Rev. Psychiatry 2006, 18, 107–118. [Google Scholar] [CrossRef]
- Gow, R.V.; Vallee-Tourangeau, F.; Crawford, M.A.; Taylor, E.; Ghebremeskel, K.; Bueno, A.A.; Hibbeln, J.R.; Sumich, A.; Rubia, K. Omega-3 fatty acids are inversely related to callous and unemotional traits in adolescent boys with attention deficit hyperactivity disorder. Prostaglandins Leukot Essent Fat. Acids 2013, 88, 411–418. [Google Scholar] [CrossRef]
- Begue, L.; Zaalberg, A.; Shankland, R.; Duke, A.; Jacquet, J.; Kaliman, P.; Pennel, L.; Chanove, M.; Arvers, P.; Bushman, B.J. Omega-3 supplements reduce self-reported physical aggression in healthy adults. Psychiatry Res. 2018, 261, 307–311. [Google Scholar] [CrossRef]
- Fido, D.; Heym, N.; Bloxsom, C.A.; Hunter, K.A.; Gregson, M.; Sumich, A. Don’t slap the fish: The relationship between dietary omega-3 intake and physical aggression is mediated by motor inhibition in response to distressed faces. Pers. Individ. Differ. 2021, 169, 110062. [Google Scholar] [CrossRef]
- Raine, A.; Fung, A.L.C.; Gao, Y.; Lee, T.M.C. Omega-3 supplementation, child antisocial behavior, and psychopathic personality: A randomized, double-blind, placebo-controlled, stratified, parallel group trial. Eur. Child Adolesc. Psychiatry 2021, 30, 303–312. [Google Scholar] [CrossRef]
- Raine, A.; Ang, R.P.; Choy, O.; Hibbeln, J.R.; Ho, R.M.H.; Lim, C.G.; Lim-Ashworth, N.S.J.; Ling, S.; Liu, J.C.J.; Ooi, Y.P.; et al. Omega-3 (omega-3) and social skills interventions for reactive aggression and childhood externalizing behavior problems: A randomized, stratified, double-blind, placebo-controlled, factorial trial. Psychol. Med. 2019, 49, 335–344. [Google Scholar] [CrossRef]
- Hallahan, B.; Hibbeln, J.R.; Davis, J.M.; Garland, M.R. Omega-3 fatty acid supplementation in patients with recurrent self-harm—Single-centre double-blind randomised controlled trial. Br. J. Psychiatry 2007, 190, 118–122. [Google Scholar] [CrossRef]
- Meyer, B.J.; Byrne, M.K.; Collier, C.; Parletta, N.; Crawford, D.; Winberg, P.C.; Webster, D.; Chapman, K.; Thomas, G.; Dally, J.; et al. Baseline Omega-3 Index Correlates with Aggressive and Attention Deficit Disorder Behaviours in Adult Prisoners. PLoS ONE 2015, 10, e0120220. [Google Scholar] [CrossRef]
- Walsh, W.J.; Isaacson, H.R.; Rehman, F.; Hall, A. Elevated blood copper/zinc ratios in assaultive young males. Physiol. Behav. 1997, 62, 327–329. [Google Scholar] [CrossRef]
- Bockerman, P.; Bryson, A.; Viinikainen, J.; Viikari, J.; Lehtimaki, T.; Vuori, E.; Keltikangas-Jarvinen, L.; Raitakari, O.; Pehkonen, J. The serum copper/zinc ratio in childhood and educational attainment: A population-based study. J. Public Health 2016, 38, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Tokdemir, M.; Polat, S.A.; Acik, Y.; Gursu, F.; Cikim, G.; Deniz, O. Blood zinc and copper concentrations in criminal and noncriminal schizophrenic men. Arch. Androl. 2003, 49, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Petrilli, M.A.; Kranz, T.M.; Kleinhaus, K.; Joe, P.; Getz, M.; Johnson, P.; Chao, M.V.; Malaspina, D. The Emerging Role for Zinc in Depression and Psychosis. Front. Pharmacol. 2017, 8, 414. [Google Scholar] [CrossRef] [PubMed]
- Escobedo-Monge, M.F.; Barrado, E.; Parodi-Roman, J.; Escobedo-Monge, M.A.; Torres-Hinojal, M.C.; Marugan-Miguelsanz, J.M. Copper and Copper/Zn Ratio in a Series of Children with Chronic Diseases: A Cross-Sectional Study. Nutrients 2021, 13, 3578. [Google Scholar] [CrossRef] [PubMed]
- Katta, N.M.; Blampied, N.M.; Mulder, R.T.; Rucklidge, J.J. Micronutrients absorbed via the oral mucosa reduce irritability and anger but not stress in university students during COVID-19: A randomized placebo-controlled trial. Int. J. Stress Manag. 2023, 30, 321–332. [Google Scholar] [CrossRef]
- Hambly, J.L.; Francis, K.; Khan, S.; Gibbons, K.S.; Walsh, W.J.; Lambert, B.; Testa, C.; Haywood, A. Micronutrient Therapy for Violent and Aggressive Male Youth: An Open-Label Trial. J. Child. Adolesc. Psychopharmacol. 2017, 27, 823–832. [Google Scholar] [CrossRef] [PubMed]
- Wolraich, M.; Milich, R.; Stumbo, P.; Schultz, F. Effects of sucrose ingestion on the behavior of hyperactive boys. J. Pediatr. 1985, 106, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Milich, R.; Wolraich, M.; Lindgren, S. Sugar and hyperactivity: A critical review of empirical findings. Clin. Psychol. Rev. 1986, 6, 493–513. [Google Scholar] [CrossRef]
- Wolraich, M.L.; Lindgren, S.D.; Stumbo, P.J.; Stegink, L.D.; Appelbaum, M.I.; Kiritsy, M.C. Effects of diets high in sucrose or aspartame on the behavior and cognitive performance of children. N. Engl. J. Med. 1994, 330, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Canadian Broadcasting Company. Sugar Causes Hyperactivity: A Myth Persisting for Decades. 10 November. Available online: https://www.cbc.ca/news/health/sugar-hyperactivity-kids-1.3306486 (accessed on 8 August 2023).
- Beebe, J. That Sugar Rush Is All in Your Head. Mental Floss, 11 December 2018. Available online: https://www.mentalfloss.com/article/562111/sugar-rush-myth(accessed on 8 August 2023).
- Ashok, I.; Sheeladevi, R.; Wankhar, D. Effect of long-term aspartame (artificial sweetener) on anxiety, locomotor activity and emotionality behavior in Wistar Albino rats. Biomed. Prev. Nutr. 2014, 4, 39–43. [Google Scholar] [CrossRef]
- Choudhary, A.K.; Lee, Y.Y. Neurophysiological symptoms and aspartame: What is the connection? Nutr. Neurosci. 2018, 21, 306–316. [Google Scholar] [CrossRef]
- Erbas, O.; Erdogan, M.A.; Khalilnezhad, A.; Solmaz, V.; Gurkan, F.T.; Yigitturk, G.; Eroglu, H.A.; Taskiran, D. Evaluation of long-term effects of artificial sweeteners on rat brain: A biochemical, behavioral, and histological study. J. Biochem. Mol. Toxicol. 2018, 32, e22053. [Google Scholar] [CrossRef]
- Jones, S.K.; McCarthy, D.M.; Vied, C.; Stanwood, G.D.; Schatschneider, C.; Bhide, P.G. Transgenerational transmission of aspartame-induced anxiety and changes in glutamate-GABA signaling and gene expression in the amygdala. Proc. Natl. Acad. Sci. USA 2022, 119, e2213120119. [Google Scholar] [CrossRef]
- Fowler, S.P.; de Porras, D.G.R.; Swartz, M.D.; Granados, P.S.; Heilbrun, L.P.; Palmer, R.F. Daily Early-Life Exposures to Diet Soda and Aspartame Are Associated with Autism in Males: A Case-Control Study. Nutrients 2023, 15, 3772. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.J.; Du, J.C.; Chiou, H.C.; Feng, C.C.; Chung, M.Y.; Yang, W.; Chen, Y.S.; Chien, L.C.; Hwang, B.; Chen, M.L. Sugar-Sweetened Beverage Consumption Is Adversely Associated with Childhood Attention Deficit/Hyperactivity Disorder. Int. J. Environ. Res. Public Health 2016, 13, 678. [Google Scholar] [CrossRef] [PubMed]
- Farsad-Naeimi, A.; Asjodi, F.; Omidian, M.; Askari, M.; Nouri, M.; Pizarro, A.B.; Daneshzad, E. Sugar consumption, sugar sweetened beverages and Attention Deficit Hyperactivity Disorder: A systematic review and meta-analysis. Complement. Ther. Med. 2020, 53, 102512. [Google Scholar] [CrossRef] [PubMed]
- Jansen, E.C.; Miller, A.L.; Lumeng, J.C.; Kaciroti, N.; Brophy Herb, H.E.; Horodynski, M.A.; Contreras, D.; Peterson, K.E. Externalizing behavior is prospectively associated with intake of added sugar and sodium among low socioeconomic status preschoolers in a sex-specific manner. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 135. [Google Scholar] [CrossRef] [PubMed]
- Ginieis, R.; Franz, E.A.; Oey, I.; Peng, M. The “sweet” effect: Comparative assessments of dietary sugars on cognitive performance. Physiol. Behav. 2018, 184, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Solnick, S.J.; Hemenway, D. The ‘Twinkie Defense’: The relationship between carbonated non-diet soft drinks and violence perpetration among Boston high school students. Inj. Prev. 2012, 18, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.C.; Carter, L.M.; van Goozen, S. Confectionery consumption in childhood and adult violence. Br. J. Psychiatry 2009, 195, 366–367. [Google Scholar] [CrossRef] [PubMed]
- Bruckauf, Z.; Walsh, S.D. Adolescents’ multiple and individual risk behaviors: Examining the link with excessive sugar consumption across 26 industrialized countries. Soc. Sci. Med. 2018, 216, 133–141. [Google Scholar] [CrossRef]
- Solnick, S.J.; Hemenway, D. Soft drinks, aggression and suicidal behaviour in US high school students. Int. J. Inj. Control Saf. Promot. 2014, 21, 266–273. [Google Scholar] [CrossRef]
- Jacob, L.; Stubbs, B.; Koyanagi, A. Consumption of carbonated soft drinks and suicide attempts among 105,061 adolescents aged 12–15 years from 6 high-income, 22 middle-income, and 4 low-income countries. Clin. Nutr. 2020, 39, 886–892. [Google Scholar] [CrossRef]
- Holubcikova, J.; Kolarcik, P.; Madarasova Geckova, A.; Reijneveld, S.A.; van Dijk, J.P. The mediating effect of daily nervousness and irritability on the relationship between soft drink consumption and aggressive behaviour among adolescents. Int. J. Public Health 2015, 60, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Lumley, J.; Stevenson, R.J.; Oaten, M.J.; Mahmut, M.; Yeomans, M.R. Individual differences in impulsivity and their relationship to a Western-style diet. Pers. Individ. Differ. 2016, 97, 178–185. [Google Scholar] [CrossRef]
- Gailliot, M.T.; Baumeister, R.F. The physiology of willpower: Linking blood glucose to self-control. Pers. Soc. Psychol. Rev. 2007, 11, 303–327. [Google Scholar] [CrossRef] [PubMed]
- Gailliot, M.T.; Baumeister, R.F.; DeWall, C.N.; Maner, J.K.; Plant, E.A.; Tice, D.M.; Brewer, L.E.; Schmeichel, B.J. Self-control relies on glucose as a limited energy source: Willpower is more than a metaphor. J. Pers. Soc. Psychol. 2007, 92, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Markus, C.R.; Panhuysen, G.; Tuiten, A.; Koppeschaar, H.; Fekkes, D.; Peters, M.L. Does carbohydrate-rich, protein-poor food prevent a deterioration of mood and cognitive performance of stress-prone subjects when subjected to a stressful task? Appetite 1998, 31, 49–65. [Google Scholar] [CrossRef] [PubMed]
- Markus, R.; Panhuysen, G.; Tuiten, A.; Koppeschaar, H. Effects of food on cortisol and mood in vulnerable subjects under controllable and uncontrollable stress. Physiol. Behav. 2000, 70, 333–342. [Google Scholar] [CrossRef]
- Pfundmair, M.; DeWall, C.N.; Fries, V.; Geiger, B.; Kramer, T.; Krug, S.; Frey, D.; Aydin, N. Sugar or spice: Using I3 metatheory to understand how and why glucose reduces rejection-related aggression. Aggress. Behav. 2015, 41, 537–543. [Google Scholar] [CrossRef]
- Cheon, B.K.; Hong, Y.Y. Mere experience of low subjective socioeconomic status stimulates appetite and food intake. Proc. Natl. Acad. Sci. USA 2017, 114, 72–77. [Google Scholar] [CrossRef]
- Bratanova, B.; Loughnan, S.; Klein, O.; Claassen, A.; Wood, R. Poverty, inequality, and increased consumption of high calorie food: Experimental evidence for a causal link. Appetite 2016, 100, 162–171. [Google Scholar] [CrossRef]
- Cardel, M.I.; Johnson, S.L.; Beck, J.; Dhurandhar, E.; Keita, A.D.; Tomczik, A.C.; Pavela, G.; Huo, T.; Janicke, D.M.; Muller, K.; et al. The effects of experimentally manipulated social status on acute eating behavior: A randomized, crossover pilot study. Physiol. Behav. 2016, 162, 93–101. [Google Scholar] [CrossRef]
- Markus, C.R.; Rogers, P.J. Effects of high and low sucrose-containing beverages on blood glucose and hypoglycemic-like symptoms. Physiol. Behav. 2020, 222, 112916. [Google Scholar] [CrossRef]
- Hoptman, M.J. Neuroimaging studies of violence and antisocial behavior. J. Psychiatr. Pract. 2003, 9, 265–278. [Google Scholar] [CrossRef]
- Peterson, L.W. Dissertation: Brain Neurophysiology in Persons with Reactive Hypoglycemia. The Union for Experimenting Colleges and Universities. Available online: https://www.proquest.com/openview/d02b17684fbcf3a6756e4a465035f430/1?pq-origsite=gscholar&cbl=18750&diss=y (accessed on 8 August 2023).
- Peterson, L.W. It’s All in Your Head. Available online: https://hypoglycemia.org/all-in-your-head/ (accessed on 8 August 2023).
- Choi, J.Y.; Park, M.N.; Kim, C.S.; Lee, Y.K.; Choi, E.Y.; Chun, W.Y.; Shin, D.M. Long-term consumption of sugar-sweetened beverage during the growth period promotes social aggression in adult mice with proinflammatory responses in the brain. Sci. Rep. 2017, 7, 45693. [Google Scholar] [CrossRef]
- Morissette, A.; Andre, D.M.; Agrinier, A.L.; Varin, T.V.; Pilon, G.; Flamand, N.; Houde, V.P.; Marette, A. The metabolic benefits of substituting sucrose for maple syrup are associated with a shift in carbohydrate digestion and gut microbiota composition in high-fat high-sucrose diet-fed mice. Am. J. Physiol. Endocrinol. Metab. 2023, 325, E661–E671. [Google Scholar] [CrossRef]
- Jacka, F.N.; O’Neil, A.; Opie, R.; Itsiopoulos, C.; Cotton, S.; Mohebbi, M.; Castle, D.; Dash, S.; Mihalopoulos, C.; Chatterton, M.L.; et al. A randomised controlled trial of dietary improvement for adults with major depression (the ‘SMILES’ trial). BMC Med. 2017, 15, 23. [Google Scholar] [CrossRef]
- Francis, H.M.; Stevenson, R.J.; Chambers, J.R.; Gupta, D.; Newey, B.; Lim, C.K. A brief diet intervention can reduce symptoms of depression in young adults—A randomised controlled trial. PLoS ONE 2019, 14, e0222768. [Google Scholar] [CrossRef]
- Agarwal, U.; Mishra, S.; Xu, J.; Levin, S.; Gonzales, J.; Barnard, N.D. A multicenter randomized controlled trial of a nutrition intervention program in a multiethnic adult population in the corporate setting reduces depression and anxiety and improves quality of life: The GEICO study. Am. J. Health Promot. 2015, 29, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Parletta, N.; Zarnowiecki, D.; Cho, J.; Wilson, A.; Bogomolova, S.; Villani, A.; Itsiopoulos, C.; Niyonsenga, T.; Blunden, S.; Meyer, B.; et al. A Mediterranean-style dietary intervention supplemented with fish oil improves diet quality and mental health in people with depression: A randomized controlled trial (HELFIMED). Nutr. Neurosci. 2019, 22, 474–487. [Google Scholar] [CrossRef]
- Bayes, J.; Schloss, J.; Sibbritt, D. The effect of a Mediterranean diet on the symptoms of depression in young males (the “AMMEND: A Mediterranean Diet in MEN with Depression” study): A randomized controlled trial. Am. J. Clin. Nutr. 2022, 116, 572–580. [Google Scholar] [CrossRef]
- Cabrera-Suarez, B.M.; Lahortiga-Ramos, F.; Sayon-Orea, C.; Hernandez-Fleta, J.L.; Gonzalez-Pinto, A.; Molero, P.; Vega-Perez, R.; Sanchez-Villegas, A.; PREDI-DEP investigators. Effect of a dietary intervention based on the Mediterranean diet on the quality of life of patients recovered from depression: Analysis of the PREDIDEP randomized trial. Exp. Gerontol. 2023, 175, 112149. [Google Scholar] [CrossRef] [PubMed]
- McMillan, L.; Owen, L.; Kras, M.; Scholey, A. Behavioural effects of a 10-day Mediterranean diet. Results from a pilot study evaluating mood and cognitive performance. Appetite 2011, 56, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Lane, M.; Lotfaliany, M.; Machado, P.; Jacka, F.; Mohebbi, M.; O’Neil, A.; Werneck, A.O.; Monteiro, C.; Loughman, A.; Rocks, T.; et al. Change in Ultra-Processed Food Consumption Moderates Clinical Trial Outcomes in Depression: A Secondary Analysis of the SMILES Randomised Controlled Trial. Preprints 2023, 2023081110. [Google Scholar] [CrossRef]
- Chatterton, M.L.; Mihalopoulos, C.; O’Neil, A.; Itsiopoulos, C.; Opie, R.; Castle, D.; Dash, S.; Brazionis, L.; Berk, M.; Jacka, F. Economic evaluation of a dietary intervention for adults with major depression (the “SMILES” trial). BMC Public Health 2018, 18, 599. [Google Scholar] [CrossRef]
- Segal, L.; Twizeyemariya, A.; Zarnowiecki, D.; Niyonsenga, T.; Bogomolova, S.; Wilson, A.; O’Dea, K.; Parletta, N. Cost effectiveness and cost-utility analysis of a group-based diet intervention for treating major depression—The HELFIMED trial. Nutr. Neurosci. 2020, 23, 770–778. [Google Scholar] [CrossRef] [PubMed]
- Winiarska-Mieczan, A.; Kwiecien, M.; Jachimowicz-Rogowska, K.; Donaldson, J.; Tomaszewska, E.; Baranowska-Wojcik, E. Anti-Inflammatory, Antioxidant, and Neuroprotective Effects of Polyphenols-Polyphenols as an Element of Diet Therapy in Depressive Disorders. Int. J. Mol. Sci. 2023, 24, 2258. [Google Scholar] [CrossRef] [PubMed]
- Sakakibara, H.; Shimoi, K. Anti-stress effects of polyphenols: Animal models and human trials. Food Funct. 2020, 11, 5702–5717. [Google Scholar] [CrossRef]
- Gamage, E.; Lane, M.M.; Travica, N.; Jacka, F.; Orr, R.; Marx, W. Polyphenols and depression: Exploring the potential mechanisms of action. Proc. Nutr. Soc. 2023, 82, E118. [Google Scholar] [CrossRef]
- Kontogianni, M.D.; Vijayakumar, A.; Rooney, C.; Noad, R.L.; Appleton, K.M.; McCarthy, D.; Donnelly, M.; Young, I.S.; McKinley, M.C.; McKeown, P.P.; et al. A High Polyphenol Diet Improves Psychological Well-Being: The Polyphenol Intervention Trial (PPhIT). Nutrients 2020, 12, 2445. [Google Scholar] [CrossRef]
- Kean, R.J.; Lamport, D.J.; Dodd, G.F.; Freeman, J.E.; Williams, C.M.; Ellis, J.A.; Butler, L.T.; Spencer, J.P. Chronic consumption of flavanone-rich orange juice is associated with cognitive benefits: An 8-wk, randomized, double-blind, placebo-controlled trial in healthy older adults. Am. J. Clin. Nutr. 2015, 101, 506–514. [Google Scholar] [CrossRef]
- Alharbi, M.H.; Lamport, D.J.; Dodd, G.F.; Saunders, C.; Harkness, L.; Butler, L.T.; Spencer, J.P. Flavonoid-rich orange juice is associated with acute improvements in cognitive function in healthy middle-aged males. Eur. J. Nutr. 2016, 55, 2021–2029. [Google Scholar] [CrossRef]
- Haskell-Ramsay, C.F.; Stuart, R.C.; Okello, E.J.; Watson, A.W. Cognitive and mood improvements following acute supplementation with purple grape juice in healthy young adults. Eur. J. Nutr. 2017, 56, 2621–2631. [Google Scholar] [CrossRef] [PubMed]
- Schoenthaler, S.J. The effects of citrus on the treatment and control of antisocial behavior: A double-blind study of an incarcerated juvenile population. Int. J. Biosoc. Res. 1983, 5, 107–117. [Google Scholar] [CrossRef]
- Gans, D.A. Sucrose and delinquent behavior: Coincidence or consequence? Crit. Rev. Food Sci. Nutr. 1991, 30, 23–48. [Google Scholar] [CrossRef] [PubMed]
- Miles, E.A.; Calder, P.C. Effects of Citrus Fruit Juices and Their Bioactive Components on Inflammation and Immunity: A Narrative Review. Front. Immunol. 2021, 12, 712608. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.L.; Shih, P.H.; Yen, G.C. Neuroprotective effects of citrus flavonoids. J. Agric. Food Chem. 2012, 60, 877–885. [Google Scholar] [CrossRef]
- Choi, J.; Kim, J.H.; Park, M.; Lee, H.J. Effects of Flavonoid-Rich Orange Juice Intervention on Major Depressive Disorder in Young Adults: A Randomized Controlled Trial. Nutrients 2022, 15, 145. [Google Scholar] [CrossRef]
- Park, M.; Choi, J.; Lee, H.J. Flavonoid-Rich Orange Juice Intake and Altered Gut Microbiome in Young Adults with Depressive Symptom: A Randomized Controlled Study. Nutrients 2020, 12, 1815. [Google Scholar] [CrossRef]
- Barzilay, R.; Lobel, T.; Krivoy, A.; Shlosberg, D.; Weizman, A.; Katz, N. Elevated C-reactive protein levels in schizophrenia inpatients is associated with aggressive behavior. Eur. Psychiatry 2016, 31, 8–12. [Google Scholar] [CrossRef]
- Das, S.; Deuri, S.K.; Sarmah, A.; Pathak, K.; Baruah, A.; Sengupta, S.; Mehta, S.; Avinash, P.R.; Kalita, K.N.; Hazarika, J. Aggression as an independent entity even in psychosis- the role of inflammatory cytokines. J. Neuroimmunol. 2016, 292, 45–51. [Google Scholar] [CrossRef]
- Zhang, Q.; Hong, W.; Li, H.; Peng, F.; Wang, F.; Li, N.; Xiang, H.; Zhang, Z.; Su, Y.; Huang, Y.; et al. Increased ratio of high sensitivity C-reactive protein to interleukin-10 as a potential peripheral biomarker of schizophrenia and aggression. Int. J. Psychophysiol. 2017, 114, 9–15. [Google Scholar] [CrossRef]
- Balcioglu, Y.H.; Balcioglu, S.S.K.; Oncu, F.; Turkcan, A.; Yorulmaz, A.C. Impulsive and aggressive traits and increased peripheral inflammatory status as psychobiological substrates of homicide behavior in schizophrenia. Eur. J. Psychiat 2022, 36, 207–214. [Google Scholar] [CrossRef]
- Sırlıer Emir, B.; Yıldız, S.; Kazğan Kılıçaslan, A.; Kurt, O.; Uğur, K.; Tabara, M.F.; Aydın, S. Inflammation Markers in Patients with Bipolar Disorder Who Have Committed Offenses and Their Relationship with Criminal Behavior. Medicina 2023, 59, 1725. [Google Scholar] [CrossRef] [PubMed]
- Kaya, S.; Tasci, G.; Kilic, N.; Karadayi, H.; Ozsoy, F.; Atmaca, M. Examination of the Relationship between Peripheral Inflammation Markers and Impulsivity and Aggression in Schizophrenia Patients Involved and Not Involved in Crime. J. Pers. Med. 2023, 13, 475. [Google Scholar] [CrossRef] [PubMed]
- Kalkman, H.O.; Hersberger, M.; Walitza, S.; Berger, G.E. Disentangling the Molecular Mechanisms of the Antidepressant Activity of Omega-3 Polyunsaturated Fatty Acid: A Comprehensive Review of the Literature. Int. J. Mol. Sci. 2021, 22, 4393. [Google Scholar] [CrossRef]
- Borsini, A. Depression: What neuroinflammation has to do with it and how nutrition can play a beneficial role. Psychoneuroendocrinology 2021, 131, S29. [Google Scholar] [CrossRef]
- Bujtor, M.; Turner, A.I.; Torres, S.J.; Esteban-Gonzalo, L.; Pariante, C.M.; Borsini, A. Associations of Dietary Intake on Biological Markers of Inflammation in Children and Adolescents: A Systematic Review. Nutrients 2021, 13, 356. [Google Scholar] [CrossRef]
- Gutierrez, S.; Svahn, S.L.; Johansson, M.E. Effects of Omega-3 Fatty Acids on Immune Cells. Int. J. Mol. Sci. 2019, 20, 5028. [Google Scholar] [CrossRef]
- Suarez, E.C.; Lewis, J.G.; Kuhn, C. The relation of aggression, hostility, and anger to lipopolysaccharide-stimulated tumor necrosis factor (TNF)-alpha by blood monocytes from normal men. Brain Behav. Immun. 2002, 16, 675–684. [Google Scholar] [CrossRef]
- Takahashi, A.; Flanigan, M.E.; McEwen, B.S.; Russo, S.J. Aggression, Social Stress, and the Immune System in Humans and Animal Models. Front. Behav. Neurosci. 2018, 12, 56. [Google Scholar] [CrossRef]
- Takahashi, A.; Russo, S.J. Link Between the Immune System and Aggression: The Role of Interleukin 1β in Aggression in Animal Models. In Handbook of Anger, Aggression, and Violence; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–24. [Google Scholar]
- Logan, A.C.; Venket Rao, A.; Irani, D. Chronic fatigue syndrome: Lactic acid bacteria may be of therapeutic value. Med. Hypotheses 2003, 60, 915–923. [Google Scholar] [CrossRef]
- Logan, A.C.; Katzman, M. Major depressive disorder: Probiotics may be an adjuvant therapy. Med. Hypotheses 2005, 64, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Hegstrand, L.R.; Hine, R.J. Variations of brain histamine levels in germ-free and nephrectomized rats. Neurochem. Res. 1986, 11, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Gaykema, R.P.; Goehler, L.E.; Lyte, M. Brain response to cecal infection with Campylobacter jejuni: Analysis with Fos immunohistochemistry. Brain Behav. Immun. 2004, 18, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, B.R.; Zhang, X.J.; Xu, Z.; Ding, Y.Q.; Ju, G. Evidences for vagus nerve in maintenance of immune balance and transmission of immune information from gut to brain in STM-infected rats. World J. Gastroenterol. 2002, 8, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Goehler, L.E.; Gaykema, R.P.; Opitz, N.; Reddaway, R.; Badr, N.; Lyte, M. Activation in vagal afferents and central autonomic pathways: Early responses to intestinal infection with Campylobacter jejuni. Brain Behav. Immun. 2005, 19, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Goehler, L.E.; Park, S.M.; Opitz, N.; Lyte, M.; Gaykema, R.P. Campylobacter jejuni infection increases anxiety-like behavior in the holeboard: Possible anatomical substrates for viscerosensory modulation of exploratory behavior. Brain Behav. Immun. 2008, 22, 354–366. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; He, L.; Wang, C.; Zhang, T.; Guo, H.; Zhang, H.; Song, Y.; Chen, B. Altered gut microbiota and its metabolites correlate with plasma cytokines in schizophrenia inpatients with aggression. BMC Psychiatry 2022, 22, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Gulledge, L.; Oyebode, D.; Donaldson, J.R. The influence of the microbiome on aggressive behavior: An insight into age-related aggression. FEMS Microbiol. Lett. 2023, 370, fnac114. [Google Scholar] [CrossRef]
- Bonaz, B.; Bazin, T.; Pellissier, S. The Vagus Nerve at the Interface of the Microbiota-Gut-Brain Axis. Front. Neurosci. 2018, 12, 49. [Google Scholar] [CrossRef]
- Donoso, F.; Cryan, J.F.; Olavarria-Ramirez, L.; Nolan, Y.M.; Clarke, G. Inflammation, Lifestyle Factors, and the Microbiome-Gut-Brain Axis: Relevance to Depression and Antidepressant Action. Clin. Pharmacol. Ther. 2023, 113, 246–259. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, Y.; Gao, H.; Li, D.; Jiang, R.; Ge, L.; Tong, C.; Xu, K. Associations among Dietary Omega-3 Polyunsaturated Fatty Acids, the Gut Microbiota, and Intestinal Immunity. Mediat. Inflamm. 2021, 2021, 8879227. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Guryn, K.; Hubert, N.; Frazier, K.; Urlass, S.; Musch, M.W.; Ojeda, P.; Pierre, J.F.; Miyoshi, J.; Sontag, T.J.; Cham, C.M.; et al. Small Intestine Microbiota Regulate Host Digestive and Absorptive Adaptive Responses to Dietary Lipids. Cell Host Microbe 2018, 23, 458–469.e5. [Google Scholar] [CrossRef]
- Ulaszewska, M.M.; Koutsos, A.; Trost, K.; Stanstrup, J.; Garcia-Aloy, M.; Scholz, M.; Fava, F.; Natella, F.; Scaccini, C.; Vrhovsek, U.; et al. Two apples a day modulate human:microbiome co-metabolic processing of polyphenols, tyrosine and tryptophan. Eur. J. Nutr. 2020, 59, 3691–3714. [Google Scholar] [CrossRef] [PubMed]
- Vanuytsel, T.; van Wanrooy, S.; Vanheel, H.; Vanormelingen, C.; Verschueren, S.; Houben, E.; Salim Rasoel, S.; Tomicronth, J.; Holvoet, L.; Farre, R.; et al. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut 2014, 63, 1293–1299. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Kan, E.M.; Lu, J.; Cao, Y.; Wong, R.K.; Keshavarzian, A.; Wilder-Smith, C.H. Combat-training increases intestinal permeability, immune activation and gastrointestinal symptoms in soldiers. Aliment. Pharm. Ther. 2013, 37, 799–809. [Google Scholar] [CrossRef] [PubMed]
- Brouillet, J.Z.; Boltri, M.; Lengvenyte, A.; Lajnef, M.; Richard, J.R.; Barrau, C.; Tamouza, R. Association of markers of inflammation and intestinal permeability in suicidal patients with major mood disorders. J. Affect. Disord. Rep. 2023, 14, 100624. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, T.; He, L.; Fu, J.Y.; Deng, H.X.; Xue, X.L.; Chen, B.T. Bacterial Translocation Associates With Aggression in Schizophrenia Inpatients. Front. Syst. Neurosci. 2021, 15, 704069. [Google Scholar] [CrossRef]
- Voigt, R.M.; Zalta, A.K.; Raeisi, S.; Zhang, L.; Brown, J.M.; Forsyth, C.B.; Boley, R.A.; Held, P.; Pollack, M.H.; Keshavarzian, A. Abnormal intestinal milieu in posttraumatic stress disorder is not impacted by treatment that improves symptoms. Am. J. Physiol. Gastrointest. Liver Physiol. 2022, 323, G61–G70. [Google Scholar] [CrossRef]
- Sumich, A.; Heym, N.; Lenzoni, S.; Hunter, K. Gut microbiome-brain axis and inflammation in temperament, personality and psychopathology. Curr. Opin. Behav. Sci. 2022, 44, 101101. [Google Scholar] [CrossRef]
- Chen, X.; Xu, J.; Wang, H.; Luo, J.; Wang, Z.; Chen, G.; Jiang, D.; Cao, R.; Huang, H.; Luo, D.; et al. Profiling the differences of gut microbial structure between schizophrenia patients with and without violent behaviors based on 16S rRNA gene sequencing. Int. J. Leg. Med. 2021, 135, 131–141. [Google Scholar] [CrossRef]
- Ke, S.; Guimond, A.J.; Tworoger, S.S.; Huang, T.; Chan, A.T.; Liu, Y.Y.; Kubzansky, L.D. Gut feelings: Associations of emotions and emotion regulation with the gut microbiome in women. Psychol. Med. 2023, 53, 7151–7160. [Google Scholar] [CrossRef] [PubMed]
- Steenbergen, L.; Sellaro, R.; van Hemert, S.; Bosch, J.A.; Colzato, L.S. A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav. Immun. 2015, 48, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Arteaga-Henriquez, G.; Rosales-Ortiz, S.K.; Arias-Vasquez, A.; Bitter, I.; Ginsberg, Y.; Ibanez-Jimenez, P.; Kilencz, T.; Lavebratt, C.; Matura, S.; Reif, A.; et al. Treating impulsivity with probiotics in adults (PROBIA): Study protocol of a multicenter, double-blind, randomized, placebo-controlled trial. Trials 2020, 21, 161. [Google Scholar] [CrossRef] [PubMed]
- Horn, J.; Mayer, D.E.; Chen, S.; Mayer, E.A. Role of diet and its effects on the gut microbiome in the pathophysiology of mental disorders. Transl. Psychiatry 2022, 12, 164. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, A.E.; Rosa, P.W.L.; Melo, M.E.; Martins, R.C.R.; Santin, F.G.O.; Moura, A.; Coelho, G.; Sabino, E.C.; Cercato, C.; Mancini, M.C. Differences in the gut microbiota of women according to ultra-processed food consumption. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Song, R.; Liu, Y.; Wu, Z.; Zhang, X. Effects of ultra-processed foods on the microbiota-gut-brain axis: The bread-and-butter issue. Food Res. Int. 2023, 167, 112730. [Google Scholar] [CrossRef] [PubMed]
- Martinez Leo, E.E.; Segura Campos, M.R. Effect of ultra-processed diet on gut microbiota and thus its role in neurodegenerative diseases. Nutrition 2020, 71, 110609. [Google Scholar] [CrossRef] [PubMed]
- Atzeni, A.; Martinez, M.A.; Babio, N.; Konstanti, P.; Tinahones, F.J.; Vioque, J.; Corella, D.; Fito, M.; Vidal, J.; Moreno-Indias, I.; et al. Association between ultra-processed food consumption and gut microbiota in senior subjects with overweight/obesity and metabolic syndrome. Front. Nutr. 2022, 9, 976547. [Google Scholar] [CrossRef]
- Berding, K.; Bastiaanssen, T.F.S.; Moloney, G.M.; Boscaini, S.; Strain, C.R.; Anesi, A.; Long-Smith, C.; Mattivi, F.; Stanton, C.; Clarke, G.; et al. Feed your microbes to deal with stress: A psychobiotic diet impacts microbial stability and perceived stress in a healthy adult population. Mol. Psychiatry 2023, 28, 601–610. [Google Scholar] [CrossRef]
- Magzal, F.; Turroni, S.; Fabbrini, M.; Barone, M.; Vitman Schorr, A.; Ofran, A.; Tamir, S. A personalized diet intervention improves depression symptoms and changes microbiota and metabolite profiles among community-dwelling older adults. Front. Nutr. 2023, 10, 1234549. [Google Scholar] [CrossRef]
- Bruce-Keller, A.J.; Salbaum, J.M.; Luo, M.; Blanchard, E.t.; Taylor, C.M.; Welsh, D.A.; Berthoud, H.R. Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biol. Psychiatry 2015, 77, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhong, Z.; Wang, B.; Xia, X.; Yao, W.; Huang, L.; Wang, Y.; Ding, W. Early-life high-fat diet-induced obesity programs hippocampal development and cognitive functions via regulation of gut commensal Akkermansia muciniphila. Neuropsychopharmacology 2019, 44, 2054–2064. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.; Huang, L.; Zhang, C.; Zhang, L.; Xia, X.; Zhong, Z.; Wang, B.; Wang, Y.; Man Hoi, M.P.; Ding, W.; et al. Gut commensal-derived butyrate reverses obesity-induced social deficits and anxiety-like behaviors via regulation of microglial homeostasis. Eur. J. Pharmacol. 2021, 908, 174338. [Google Scholar] [CrossRef] [PubMed]
- Uzan-Yulzari, A.; Turjeman, S.; Getselter, D.; Rautava, S.; Isolauri, E.; Khatib, S.; Elliott, E.; Koren, O. Aggression: A gut reaction? The effects of gut microbiome on aggression. bioRxiv 2023. [Google Scholar] [CrossRef]
- Li, N.; Wang, Q.; Wang, Y.; Sun, A.; Lin, Y.; Jin, Y.; Li, X. Fecal microbiota transplantation from chronic unpredictable mild stress mice donors affects anxiety-like and depression-like behavior in recipient mice via the gut microbiota-inflammation-brain axis. Stress 2019, 22, 592–602. [Google Scholar] [CrossRef]
- Bielemann, R.M.; Motta, J.V.; Minten, G.C.; Horta, B.L.; Gigante, D.P. Consumption of ultra-processed foods and their impact on the diet of young adults. Rev. Saude Publica 2015, 49, 28. [Google Scholar] [CrossRef]
- Coletro, H.N.; Bressan, J.; Diniz, A.P.; Hermsdorff, H.H.M.; Pimenta, A.M.; Meireles, A.L.; Mendonca, R.D.; Carraro, J.C.C. Habitual polyphenol intake of foods according to NOVA classification: Implications of ultra-processed foods intake (CUME study). Int. J. Food Sci. Nutr. 2023, 74, 338–349. [Google Scholar] [CrossRef]
- Sellem, L.; Srour, B.; Javaux, G.; Chazelas, E.; Chassaing, B.; Viennois, E.; Debras, C.; Salame, C.; Druesne-Pecollo, N.; Esseddik, Y.; et al. Food additive emulsifiers and risk of cardiovascular disease in the NutriNet-Sante cohort: Prospective cohort study. BMJ 2023, 382, e076058. [Google Scholar] [CrossRef]
- Naimi, S.; Viennois, E.; Gewirtz, A.T.; Chassaing, B. Direct impact of commonly used dietary emulsifiers on human gut microbiota. Microbiome 2021, 9, 66. [Google Scholar] [CrossRef]
- Feng, Z.M.; Li, T.J.; Wu, L.; Xiao, D.F.; Blachier, F.; Yin, Y.L. Monosodium L-Glutamate and Dietary Fat Differently Modify the Composition of the Intestinal Microbiota in Growing Pigs. Obes. Facts 2015, 8, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Nahok, K.; Phetcharaburanin, J.; Li, J.V.; Silsirivanit, A.; Thanan, R.; Boonnate, P.; Joonhuathon, J.; Sharma, A.; Anutrakulchai, S.; Selmi, C.; et al. Monosodium Glutamate Induces Changes in Hepatic and Renal Metabolic Profiles and Gut Microbiome of Wistar Rats. Nutrients 2021, 13, 1865. [Google Scholar] [CrossRef]
- Kyaw, T.S.; Sukmak, M.; Nahok, K.; Sharma, A.; Silsirivanit, A.; Lert-Itthiporn, W.; Sansurin, N.; Senthong, V.; Anutrakulchai, S.; Sangkhamanon, S.; et al. Monosodium glutamate consumption reduces the renal excretion of trimethylamine N-oxide and the abundance of Akkermansia muciniphila in the gut. Biochem. Biophys. Res. Commun. 2022, 630, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Palmnas, M.S.; Cowan, T.E.; Bomhof, M.R.; Su, J.; Reimer, R.A.; Vogel, H.J.; Hittel, D.S.; Shearer, J. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat. PLoS ONE 2014, 9, e109841. [Google Scholar] [CrossRef] [PubMed]
- Nettleton, J.E.; Cho, N.A.; Klancic, T.; Nicolucci, A.C.; Shearer, J.; Borgland, S.L.; Johnston, L.A.; Ramay, H.R.; Noye Tuplin, E.; Chleilat, F.; et al. Maternal low-dose aspartame and stevia consumption with an obesogenic diet alters metabolism, gut microbiota and mesolimbic reward system in rat dams and their offspring. Gut 2020, 69, 1807–1817. [Google Scholar] [CrossRef] [PubMed]
- Arnold, A. Consumption of Dietary Emulsifiers Increases Sensitivity to Social Stress in Mice: A Potential Role for the COX Molecular Pathway. Ph.D. Thesis, Georgia State University, Atlanta, GA, USA, 2022. [Google Scholar] [CrossRef]
- Arnold, A.R.; Chassaing, B.; Pearce, B.D.; Huhman, K.L. Dietary emulsifier consumption alters gene expression in the amygdala and paraventricular nucleus of the hypothalamus in mice. Sci. Rep. 2022, 12, 9146. [Google Scholar] [CrossRef]
- Mila-Guasch, M.; Ramirez, S.; Llana, S.R.; Fos-Domenech, J.; Dropmann, L.M.; Pozo, M.; Eyre, E.; Gomez-Valades, A.G.; Obri, A.; Haddad-Tovolli, R.; et al. Maternal emulsifier consumption programs offspring metabolic and neuropsychological health in mice. PLoS Biol. 2023, 21, e3002171. [Google Scholar] [CrossRef]
- Olney, J.W. Excitotoxic amino acids and neuropsychiatric disorders. Annu. Rev. Pharmacol. Toxicol. 1990, 30, 47–71. [Google Scholar] [CrossRef]
- Chakraborty, S.P. Patho-physiological and toxicological aspects of monosodium glutamate. Toxicol. Mech. Methods 2019, 29, 389–396. [Google Scholar] [CrossRef]
- Kraal, A.Z.; Arvanitis, N.R.; Jaeger, A.P.; Ellingrod, V.L. Could Dietary Glutamate Play a Role in Psychiatric Distress? Neuropsychobiology 2020, 79, 13–19. [Google Scholar] [CrossRef]
- Brant, B.J.A.; Yu, Y.; Omar, A.A.; Jaramillo Polanco, J.O.; Lopez Lopez, C.D.; Jimenez Vargas, N.N.; Tsang, Q.; McDonell, A.; Takami, K.; Reed, D.E.; et al. Dietary monosodium glutamate increases visceral hypersensitivity in a mouse model of visceral pain. Neurogastroenterol. Motil. 2023, 35, e14596. [Google Scholar] [CrossRef]
- Murray, S.L.; Holton, K.F. Effects of a diet low in excitotoxins on PTSD symptoms and related biomarkers. Nutr. Neurosci. 2022, 27, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Brandley, E.T.; Kirkland, A.E.; Baron, M.; Baraniuk, J.N.; Holton, K.F. The Effect of the Low Glutamate Diet on the Reduction of Psychiatric Symptoms in Veterans With Gulf War Illness: A Pilot Randomized-Controlled Trial. Front. Psychiatry 2022, 13, 926688. [Google Scholar] [CrossRef] [PubMed]
- Holton, K.F.; Taren, D.L.; Thomson, C.A.; Bennett, R.M.; Jones, K.D. The effect of dietary glutamate on fibromyalgia and irritable bowel symptoms. Clin. Exp. Rheumatol. 2012, 30, 10–17. [Google Scholar] [PubMed]
- Kirkland, A.E.; Baron, M.; VanMeter, J.W.; Baraniuk, J.N.; Holton, K.F. The low glutamate diet improves cognitive functioning in veterans with Gulf War Illness and resting-state EEG potentially predicts response. Nutr. Neurosci. 2022, 25, 2247–2258. [Google Scholar] [CrossRef] [PubMed]
- Langan, M.T.; Kirkland, A.E.; Rice, L.C.; Mucciarone, V.C.; Baraniuk, J.; VanMeter, A.; Holton, K.F. Low glutamate diet improves working memory and contributes to altering BOLD response and functional connectivity within working memory networks in Gulf War Illness. Sci. Rep. 2022, 12, 18004. [Google Scholar] [CrossRef] [PubMed]
- Holton, K.F.; Kirkland, A.E.; Baron, M.; Ramachandra, S.S.; Langan, M.T.; Brandley, E.T.; Baraniuk, J.N. The Low Glutamate Diet Effectively Improves Pain and Other Symptoms of Gulf War Illness. Nutrients 2020, 12, 2593. [Google Scholar] [CrossRef] [PubMed]
- Braniste, V.; Al-Asmakh, M.; Kowal, C.; Anuar, F.; Abbaspour, A.; Toth, M.; Korecka, A.; Bakocevic, N.; Ng, L.G.; Kundu, P.; et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl. Med. 2014, 6, 263ra158. [Google Scholar] [CrossRef]
- Noble, E.E.; Hsu, T.M.; Kanoski, S.E. Gut to Brain Dysbiosis: Mechanisms Linking Western Diet Consumption, the Microbiome, and Cognitive Impairment. Front. Behav. Neurosci. 2017, 11, 9. [Google Scholar] [CrossRef]
- Dion-Albert, L.; Bandeira Binder, L.; Daigle, B.; Hong-Minh, A.; Lebel, M.; Menard, C. Sex differences in the blood-brain barrier: Implications for mental health. Front. Neuroendocrinol. 2022, 65, 100989. [Google Scholar] [CrossRef]
- McCann, D.; Barrett, A.; Cooper, A.; Crumpler, D.; Dalen, L.; Grimshaw, K.; Kitchin, E.; Lok, K.; Porteous, L.; Prince, E.; et al. Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: A randomised, double-blinded, placebo-controlled trial. Lancet 2007, 370, 1560–1567. [Google Scholar] [CrossRef]
- Kirkland, A.E.; Langan, M.T.; Holton, K.F. Artificial food coloring affects EEG power and ADHD symptoms in college students with ADHD: A pilot study. Nutr. Neurosci. 2022, 25, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Soble, L.; Stroud, K.; Weinstein, M. Eating Behind Bars: Ending the Hidden Punishment of Food in Prison. Impact Justice. 2020. Available online: https://impactjustice.org/impact/food-in-prison/#report (accessed on 23 November 2023).
- Shostak, S. Food and Inequality. Annu. Rev. Sociol. 2023, 49, 359–378. [Google Scholar] [CrossRef]
- Jia, P. Obesogenic environment and childhood obesity. Obes. Rev. 2021, 22 (Suppl. S1), e13158. [Google Scholar] [CrossRef] [PubMed]
- Renz, H.; Holt, P.G.; Inouye, M.; Logan, A.C.; Prescott, S.L.; Sly, P.D. An exposome perspective: Early-life events and immune development in a changing world. J. Allergy Clin. Immunol. 2017, 140, 24–40. [Google Scholar] [CrossRef] [PubMed]
- Zuniga-Chaves, I.; Eggers, S.; Kates, A.E.; Safdar, N.; Suen, G.; Malecki, K.M.C. Neighborhood socioeconomic status is associated with low diversity gut microbiomes and multi-drug resistant microorganism colonization. NPJ Biofilms Microbiomes 2023, 9, 61. [Google Scholar] [CrossRef] [PubMed]
- Leung, C.W.; Fulay, A.P.; Parnarouskis, L.; Martinez-Steele, E.; Gearhardt, A.N.; Wolfson, J.A. Food insecurity and ultra-processed food consumption: The modifying role of participation in the Supplemental Nutrition Assistance Program (SNAP). Am. J. Clin. Nutr. 2022, 116, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Dunn, C.G.; Gao, K.J.; Soto, M.J.; Bleich, S.N. Disparities in Adult Fast-Food Consumption in the U.S. by Race and Ethnicity, National Health and Nutrition Examination Survey 2017–2018. Am. J. Prev. Med. 2021, 61, e197–e201. [Google Scholar] [CrossRef]
- Nordgren, T.M.; Lyden, E.; Anderson-Berry, A.; Hanson, C. Omega-3 Fatty Acid Intake of Pregnant Women and Women of Childbearing Age in the United States: Potential for Deficiency? Nutrients 2017, 9, 197. [Google Scholar] [CrossRef]
- Nicklett, E.J.; Szanton, S.; Sun, K.; Ferrucci, L.; Fried, L.P.; Guralnik, J.M.; Semba, R.D. Neighborhood socioeconomic status is associated with serum carotenoid concentrations in older, community-dwelling women. J. Nutr. 2011, 141, 284–289. [Google Scholar] [CrossRef]
- Stimpson, J.P.; Nash, A.C.; Ju, H.; Eschbach, K. Neighborhood Deprivation is associated with lower levels of serum carotenoids among adults participating in the Third National Health and Nutrition Examination Survey. J. Am. Diet. Assoc. 2007, 107, 1895–1902. [Google Scholar] [CrossRef]
- Logan, A.C. Dysbiotic drift: Mental health, environmental grey space, and microbiota. J. Physiol. Anthropol. 2015, 34, 23. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Adult Obesity Prevalence Maps. National Center for Chronic Disease Prevention and Health Promotion, Division of Nutrition, Physical Activity, and Obesity. 27 September. Available online: https://www.cdc.gov/obesity/data/prevalence-maps.html (accessed on 8 August 2023).
- Carson, E.A. Prisoners in 2021—Statistical Tables. United States Department of Justice, Bureau of Justice Statistics. 2022. Available online: https://bjs.ojp.gov/sites/g/files/xyckuh236/files/media/document/p21st.pdf (accessed on 8 August 2023).
- Kannan, V.D.; Veazie, P.J. Political orientation, political environment, and health behaviors in the United States. Prev. Med. 2018, 114, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Block, J.P.; Scribner, R.A.; DeSalvo, K.B. Fast food, race/ethnicity, and income: A geographic analysis. Am. J. Prev. Med. 2004, 27, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Kwate, N.O. Fried chicken and fresh apples: Racial segregation as a fundamental cause of fast food density in black neighborhoods. Health Place 2008, 14, 32–44. [Google Scholar] [CrossRef] [PubMed]
- Powell, L.M.; Chaloupka, F.J.; Bao, Y. The availability of fast-food and full-service restaurants in the United States: Associations with neighborhood characteristics. Am. J. Prev. Med. 2007, 33 (Suppl. S4), S240–S245. [Google Scholar] [CrossRef] [PubMed]
- Galvez, M.P.; Morland, K.; Raines, C.; Kobil, J.; Siskind, J.; Godbold, J.; Brenner, B. Race and food store availability in an inner-city neighbourhood. Public Health Nutr. 2008, 11, 624–631. [Google Scholar] [CrossRef]
- Harris, J.; Frazier, W.; Fleming-Milici, F.; Hubert, P.; Rodriguez-Arauz, G.; Grier, S.; Appiah, O. A qualitative assessment of US Black and Latino adolescents’ attitudes about targeted marketing of unhealthy food and beverages. J. Child. Media 2019, 13, 295–316. [Google Scholar] [CrossRef]
- Backholer, K.; Gupta, A.; Zorbas, C.; Bennett, R.; Huse, O.; Chung, A.; Isaacs, A.; Golds, G.; Kelly, B.; Peeters, A. Differential exposure to, and potential impact of, unhealthy advertising to children by socio-economic and ethnic groups: A systematic review of the evidence. Obes. Rev. 2021, 22, e13144. [Google Scholar] [CrossRef]
- Tatlow-Golden, M.; Garde, A. Digital food marketing to children: Exploitation, surveillance and rights violations. Glob. Food Secur. 2020, 27, 100423. [Google Scholar] [CrossRef]
- Freudenberg, N.; Lee, K.; Buse, K.; Collin, J.; Crosbie, E.; Friel, S.; Klein, D.E.; Lima, J.M.; Marten, R.; Mialon, M.; et al. Defining Priorities for Action and Research on the Commercial Determinants of Health: A Conceptual Review. Am. J. Public Health 2021, 111, 2202–2211. [Google Scholar] [CrossRef]
- Lacy-Nichols, J.; Williams, O. “Part of the Solution”: Food Corporation Strategies for Regulatory Capture and Legitimacy. Int. J. Health Policy Manag. 2021, 10, 845–856. [Google Scholar] [CrossRef] [PubMed]
- Freudenberg, N. Responding to Food Industry Initiatives to Be “Part of the Solution” Comment on “‘Part of the Solution’: Food Corporation Strategies for Regulatory Capture and Legitimacy”. Int. J. Health Policy Manag. 2022, 11, 2740–2743. [Google Scholar] [CrossRef] [PubMed]
- Crosbie, E.; Carriedo, A. Applying a Commercial Determinants of Health Lens to Understand, Expose and Counter Industry Co-option, Appeasement and Partnership Comment on “‘Part of the Solution’: Food Corporation Strategies for Regulatory Capture and Legitimacy”. Int. J. Health Policy Manag. 2022, 11, 2744–2747. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, A.; Gilbert, C.; Chavkin, S. The food industry pays ‘influencer’ dietitians to shape your eating habits. The Washington Post, 13 September 2023. Available online: https://www.washingtonpost.com/wellness/2023/09/13/dietitian-instagram-tiktok-paid-food-industry/(accessed on 22 September 2023).
- Lacy-Nichols, J.; Marten, R.; Crosbie, E.; Moodie, R. The public health playbook: Ideas for challenging the corporate playbook. Lancet Glob. Health 2022, 10, E1067–E1072. [Google Scholar] [CrossRef] [PubMed]
- Walsh, S.; Merrick, R.; Brayne, C. The relevance of social and commercial determinants for neurological health. Lancet Neurol. 2022, 21, 1151–1160. [Google Scholar] [CrossRef] [PubMed]
- de Lacy-Vawdon, C.; Vandenberg, B.; Livingstone, C. Power and Other Commercial Determinants of Health: An Empirical Study of the Australian Food, Alcohol, and Gambling Industries. Int. J. Health Policy Manag. 2023, 12, 7723. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Moubarac, J.C.; Levy, R.B.; Louzada, M.L.C.; Jaime, P.C. The UN Decade of Nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutr. 2018, 21, 5–17. [Google Scholar] [CrossRef]
- Vignola, E.F.; Nazmi, A.; Freudenberg, N.l. What makes ultra-processed food appealing? A critical scan and conceptual model. World Nutr. 2021, 12, 136–175. [Google Scholar] [CrossRef]
- Mialon, M.; Serodio, P.; Crosbie, E.; Teicholz, N.; Naik, A.; Carriedo, A. Conflicts of interest for members of the U.S. 2020 Dietary Guidelines Advisory Committee. Public Health Nutr. 2022, 1–28. [Google Scholar] [CrossRef]
- Kearns, C.E.; Glantz, S.A.; Apollonio, D.E. In defense of sugar: A critical analysis of rhetorical strategies used in The Sugar Association’s award-winning 1976 public relations campaign. BMC Public Health 2019, 19, 1150. [Google Scholar] [CrossRef]
- Moodie, A.R. What Public Health Practitioners Need to Know About Unhealthy Industry Tactics. Am. J. Public Health 2017, 107, 1047–1049. [Google Scholar] [CrossRef] [PubMed]
- Carriedo, A.; Pinsky, I.; Crosbie, E.; Ruskin, G.; Mialon, M. The corporate capture of the nutrition profession in the USA: The case of the Academy of Nutrition and Dietetics. Public Health Nutr. 2022, 25, 3568–3582. [Google Scholar] [CrossRef] [PubMed]
- Perkins, T. Revealed: Group Shaping US Nutrition Receives Millions from Big Food Industry. 9 December. Available online: https://www.theguardian.com/science/2022/dec/09/academy-nutrition-financial-ties-processed-food-companies-contributions (accessed on 8 August 2023).
- DeAngelis, T. Continuing Education: Nutrition’s role in mental health. Monit. Psychol. 2023, 54, 36–41. [Google Scholar]
- Mesas, A.E.; Girotto, E.; Rodrigues, R.; Martínez-Vizcaíno, V.; Jiménez-López, E.; López-Gil, J.F. Ultra-Processed Food Consumption is Associated with Alcoholic Beverage Drinking, Tobacco Smoking, and Illicit Drug Use in Adolescents: A Nationwide Population-Based Study. Int. J. Ment. Health Addict. 2023, 1–24. [Google Scholar]
- Lopes Cortes, M.; Andrade Louzado, J.; Galvao Oliveira, M.; Moraes Bezerra, V.; Mistro, S.; Souto Medeiros, D.; Arruda Soares, D.; Oliveira Silva, K.; Nicolaevna Kochergin, C.; Honorato Dos Santos de Carvalho, V.C.; et al. Unhealthy Food and Psychological Stress: The Association between Ultra-Processed Food Consumption and Perceived Stress in Working-Class Young Adults. Int. J. Environ. Res. Public Health 2021, 18, 3863. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prescott, S.L.; Logan, A.C.; D’Adamo, C.R.; Holton, K.F.; Lowry, C.A.; Marks, J.; Moodie, R.; Poland, B. Nutritional Criminology: Why the Emerging Research on Ultra-Processed Food Matters to Health and Justice. Int. J. Environ. Res. Public Health 2024, 21, 120. https://doi.org/10.3390/ijerph21020120
Prescott SL, Logan AC, D’Adamo CR, Holton KF, Lowry CA, Marks J, Moodie R, Poland B. Nutritional Criminology: Why the Emerging Research on Ultra-Processed Food Matters to Health and Justice. International Journal of Environmental Research and Public Health. 2024; 21(2):120. https://doi.org/10.3390/ijerph21020120
Chicago/Turabian StylePrescott, Susan L., Alan C. Logan, Christopher R. D’Adamo, Kathleen F. Holton, Christopher A. Lowry, John Marks, Rob Moodie, and Blake Poland. 2024. "Nutritional Criminology: Why the Emerging Research on Ultra-Processed Food Matters to Health and Justice" International Journal of Environmental Research and Public Health 21, no. 2: 120. https://doi.org/10.3390/ijerph21020120
APA StylePrescott, S. L., Logan, A. C., D’Adamo, C. R., Holton, K. F., Lowry, C. A., Marks, J., Moodie, R., & Poland, B. (2024). Nutritional Criminology: Why the Emerging Research on Ultra-Processed Food Matters to Health and Justice. International Journal of Environmental Research and Public Health, 21(2), 120. https://doi.org/10.3390/ijerph21020120