Natural Radioactivity in Raw Building Materials for Underground Parking Lots and Assessment of Radiological Health Risk for the Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Samples
2.2. HPGe γ-Spectrometry Analysis
- -
- Precision: the repeatability of the method was checked over time through the double-test method. A certified standard specimen (also containing 40K, 226Ra, and 232Th) was analyzed twice, defining as x1 (the first measurement) and x2 (the second measurement) the specific activity of the radionuclide of interest. The probability level p = 0.95 was considered. The following formula was applied:
- -
- Accuracy: it was assessed by comparing the certified specimen and measured values of the radionuclide of interest, taking uncertainties into account through the u-test:
2.3. Evaluation of the Radiological Health Risk
2.3.1. Absorbed γ-dose Rate (D)
2.3.2. Annual Effective Dose Equivalent Outdoor (AEDEout) and Indoor (AEDEin)
2.3.3. Activity Concentration Index (I)
2.3.4. Alpha Index (Iα)
2.4. Statistical Processing
3. Results and Discussion
3.1. The Specific Activity of the Radioisotopes
3.2. Dose Assessment and Hazard Indices
3.3. Statistical Features
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation: Report to the General Assembly, with Scientific Annexes; United Nations Publishing: New York, NY, USA, 2000; Volume I, ISBN 92-1-142238-8. [Google Scholar]
- Faghihi, R.; Mehdizadeh, S.; Sina, S. Natural and artificial radioactivity distribution in soil of Fars Province, Iran. Radiat. Prot. Dosim. 2011, 145, 66–74. [Google Scholar] [CrossRef]
- Stoulos, S.; Manolopoulou, M.; Papastefanou, C. Assessment of natural radiation exposure and radon exhalation from building materials in Greece. J. Environ. Radioact. 2003, 69, 225–240. [Google Scholar] [CrossRef]
- Caridi, F.; Marguccio, S.; Durante, G.; Trozzo, R.; Fullone, F.; Belvedere, A.; D’Agostino, M.; Belmusto, G. Natural radioactivity measurements and dosimetric evaluations in soil samples with a high content of NORM. Eur. Phys. J. Plus 2017, 132, 56. [Google Scholar] [CrossRef]
- Faanu, A.; Adukpo, O.K.; Tettey-Larbi, L.; Lawluvi, H.; Kpeglo, D.O.; Darko, E.O.; Emi-Reynolds, G.; Awudu, R.A.; Kansaana, C.; Amoah, P.A.; et al. Natural radioactivity levels in soils, rocks and water at a mining concession of Perseus gold mine and surrounding towns in Central Region of Ghana. Springerplus 2016, 5, 98. [Google Scholar] [CrossRef] [PubMed]
- Aghdam, M.M.; Crowley, Q.; Rocha, C.; Dentoni, V.; Da Pelo, S.; Long, S.; Savatier, M. A study of natural radioactivity levels and radon/thoron release potential of bedrock and soil in southeastern ireland. Int. J. Environ. Res. Public Health 2021, 18, 2709. [Google Scholar] [CrossRef] [PubMed]
- Mancini, S.; Caliendo, E.; Guida, M.; Bisceglia, B. Preliminary assessment, by means of Radon exhalation rate measurements, of the bio-sustainability of microwave treatment to eliminate biodeteriogens infesting stone walls of monumental historical buildings. IOP Conf. Ser. Mater. Sci. Eng. 2017, 251, 012026. [Google Scholar] [CrossRef]
- Mancini, S.; Vilnitis, M.; Todorović, N.; Nikolov, J.; Guida, M. Experimental Studies to Test a Predictive Indoor Radon Model. Int. J. Environ. Res. Public Health 2022, 19, 6056. [Google Scholar] [CrossRef]
- Lebedyte, M.; Butkus, D.; Morkūnas, G. Variations of the ambient dose equivalent rate in the ground level air. J. Environ. Radioact. 2003, 64, 45–57. [Google Scholar] [CrossRef]
- Al-Jundi, J.; Salah, W.; Bawaaneh, M.; Afaneh, F. Exposure to radiation from the natural radioactivity in Jordanian building materials. Radiat. Prot. Dosimetry 2006, 118, 93–96. [Google Scholar] [CrossRef]
- Italian Legislation D.Lgs. 101/20. Available online: www.normattiva.it (accessed on 18 December 2023).
- Zheng, L.-G.; Liu, G.-J.; Kang, Y.; Yang, R.-K. Some potential hazardous trace elements contamination and their ecological risk in sediments of western Chaohu Lake, China. Environ. Monit. Assess. 2010, 166, 379–386. [Google Scholar] [CrossRef]
- Alzubaidi, G.; Hamid, F.B.S.; Abdul Rahman, I. Assessment of Natural Radioactivity Levels and Radiation Hazards in Agricultural and Virgin Soil in the State of Kedah, North of Malaysia. Sci. World J. 2016, 2016, 6178103. [Google Scholar] [CrossRef] [PubMed]
- Leuangtakoun, S.; Phan, G.T.T.; Duong, T.D.; Le, N.-T.; Khong, N.K.; Singsoupho, S.; Tran, H.-N.; Bui, V.L. Natural radioactivity measurement and radiological hazard evaluation in surface soils in a gold mining area and surrounding regions in Bolikhamxay province, Laos. J. Radioanal. Nucl. Chem. 2020, 326, 997–1007. [Google Scholar] [CrossRef]
- Khandaker, M.U.; Asaduzzaman, K.; Sulaiman, A.F.B.; Bradley, D.A.; Isinkaye, M.O. Elevated concentrations of naturally occurring radionuclides in heavy mineral-rich beach sands of Langkawi Island, Malaysia. Mar. Pollut. Bull. 2018, 127, 654–663. [Google Scholar] [CrossRef] [PubMed]
- Reino, W.; Pucha, G.; Recalde, C.; Tene, T.; Cadena, P. Occurrence of radioactive materials in pyroclastic flows of Tungurahua volcano using gamma spectrometry. AIP Conf. Proc. 2018, 2003, 020014. [Google Scholar] [CrossRef]
- Ravisankar, R.; Chandrasekaran, A.; Vijayagopal, P.; Venkatraman, B.; Senthilkumar, G.; Eswaran, P.; Rajalakshmi, A. Natural radioactivity in soil samples of Yelagiri Hills, Tamil Nadu, India and the associated radiation hazards. Radiat. Phys. Chem. 2012, 81, 1789–1795. [Google Scholar] [CrossRef]
- Raja, S.L.; Marpaung, H.; Simanjuntak, S.; Simanjuntak, C.; Pudjadi, E. Distribution and risk assessment of natural radioactive elements in volcanic ashes, cold lava, river waters due to volcanic eruption of Mount Sinabung. AIP Conf. Proc. 2021, 2342, 020008. [Google Scholar] [CrossRef]
- Avwiri, G.O.; Egieya, J.M. Radiometric assay of hazard indices and excess lifetime cancer risk due to natural radioactivity in soil profile in Ogba/Egbema/Ndoni local government area of Rivers state, Nigeria. Acad. Res. Int. 2013, 4, 54–65. [Google Scholar]
- Caridi, F.; D’Agostino, M.; Messina, M.; Marcianò, G.; Grioli, L.; Belvedere, A.; Marguccio, S.; Belmusto, G. Lichens as environmental risk detectors. Eur. Phys. J. Plus 2017, 132, 189. [Google Scholar] [CrossRef]
- Kerur, B.; Tanakanti, R.; Basappa, D.; Kumar, A.; Narayani, K.; Rekha, A.; Hanumaiah, B. Radioactivity levels in rocks of North Karnataka, India. Indian J. Pure Appl. Phys. 2010, 48, 809–812. [Google Scholar]
- Caridi, F.; Messina, M.; D’Agostino, M. An investigation about natural radioactivity, hydrochemistry, and metal pollution in groundwater from Calabrian selected areas, southern Italy. Environ. Earth Sci. 2017, 76, 668. [Google Scholar] [CrossRef]
- Malczewski, D.; Dziurowicz, M.; Kalab, Z.; Rösnerová, M. Natural radioactivity of rocks from the historic Jeroným Mine in the Czech Republic. Environ. Earth Sci. 2021, 80, 650. [Google Scholar] [CrossRef]
- Nuccetelli, C.; Risica, S.; D’Alessandro, M.; Trevisi, R. Natural radioactivity in building material in the European Union: Robustness of the activity concentration index I and comparison with a room model. J. Radiol. Prot. 2012, 32, 349. [Google Scholar] [CrossRef]
- Kayo, S.A.; Moyo, M.N.; Shouop, C.J.G.; Mekontso, É.J.N.; Motapon, O. Multivariate statistical assessment of natural radioactivity and radiological hazards data of cement building materials mainly used in Cameroon. Arab. J. Geosci. 2021, 14, 1–12. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, Q.; Xun, X. Radiation and energy balance characteristics of asphalt pavement in permafrost regions. Environ. Earth Sci. 2016, 75, 1–19. [Google Scholar] [CrossRef]
- Moharram, B.M.; Suliman, M.N.; Zahran, N.F.; Shennawy, S.E.; El Sayed, A.R. External exposure doses due to gamma emitting natural radionuclides in some Egyptian building materials. Appl. Radiat. Isot. 2012, 70, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Trevisi, R.; Risica, S.; D’Alessandro, M.; Paradiso, D.; Nuccetelli, C. Natural radioactivity in building materials in the European Union: A database and an estimate of radiological significance. J. Environ. Radioact. 2012, 105, 11–20. [Google Scholar] [CrossRef]
- Bro, R.; Smilde, A.K. Principal component analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef]
- Bridges, C.C. Hierarchical Cluster Analysis. Psychol. Rep. 1966, 18, 851–854. [Google Scholar] [CrossRef]
- Praticò, F.G.; Perri, G.; De Rose, M.; Vaiana, R. Comparing bio-binders, rubberised asphalts, and traditional pavement technologies. Constr. Build. Mater. 2023, 400, 132813. [Google Scholar] [CrossRef]
- Caridi, F.; Paladini, G.; Marguccio, S.; Belvedere, A.; D’Agostino, M.; Messina, M.; Crupi, V.; Venuti, V.; Majolino, D. Evaluation of Radioactivity and Heavy Metals Content in a Basalt Aggregate for Concrete from Sicily, Southern Italy: A Case Study. Appl. Sci. 2023, 13, 4804. [Google Scholar] [CrossRef]
- Caridi, F.; Messina, M.; Belvedere, A.; D’Agostino, M.; Marguccio, S.; Settineri, L.; Belmusto, G. Food salt characterization in terms of radioactivity and metals contamination. Appl. Sci. 2019, 9, 2882. [Google Scholar] [CrossRef]
- Ortec. GammaVision Software Version 8, 8. 2023. Available online: https://www.ortec-online.com/customerror?item=%2fproducts%2fapplication-software%2fgammavision&user=extranet%5cAnonymous&site=ametekortec (accessed on 19 December 2023).
- Harb, S.; Din, K.S.; Abbady, A.; Mostafa, M. Activity Concentration for Surface Soil Samples Collected From Armant, Qena, Egypt. In Proceedings of the EPC’10: 4. Environmental Physics Conference, Hurghada, Egypt, 10–14 March 2010; pp. 49–57. [Google Scholar]
- Fabri, P.J. Measurement and Uncertainty. In Measurement and Analysis in Transforming Healthcare Delivery; Springer: Cham, Switzerland, 2016; pp. 63–77. [Google Scholar] [CrossRef]
- ACCREDIA. Available online: https://www.accredia.it/ (accessed on 18 December 2023).
- Stark, K.; Goméz-Ros, J.M.; Vives, I.; Batlle, J.; Lindbo Hansen, E.; Beaugelin-Seiller, K.; Kapustka, L.A.; Wood, M.D.; Bradshaw, C.; Real, A.; et al. Dose assessment in environmental radiological protection: State of the art and perspectives. J. Environ. Radioact. 2017, 175–176, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Steinhauser, G.; Brandl, A.; Johnson, T.E. Comparison of the Chernobyl and Fukushima nuclear accidents: A review of the environmental impacts. Sci. Total Environ. 2014, 470–471, 800–817. [Google Scholar] [CrossRef]
- Ravisankar, R.; Vanasundari, K.; Chandrasekaran, A.; Rajalakshmi, A.; Suganya, M.; Vijayagopal, P.; Meenakshisundaram, V. Measurement of natural radioactivity in building materials of Namakkal, Tamil Nadu, India using gamma-ray spectrometry. Appl. Radiat. Isot. 2012, 70, 699–704. [Google Scholar] [CrossRef]
- Ravisankar, R.; Chandramohan, J.; Chandrasekaran, A.; Prince Prakash Jebakumar, J.; Vijayalakshmi, I.; Vijayagopal, P.; Venkatraman, B. Assessments of radioactivity concentration of natural radionuclides and radiological hazard indices in sediment samples from the East coast of Tamilnadu, India with statistical approach. Mar. Pollut. Bull. 2015, 97, 419–430. [Google Scholar] [CrossRef]
- Beretka, J.; Matthew, P.J. Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys. 1985, 48, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Mancini, S.; Guida, M.; Cuomo, A.; Guida, D. A geogenic approach for the Radon monitoring and the exposure assessment at a regional scale: The results of the Rad_Campania project. Adv. Geosci. 2020, 52, 87–96. [Google Scholar] [CrossRef]
- Mancini, S.; Guida, M.; Cuomo, A.; Guida, D.; Ismail, A.H. Modelling of indoor radon activity concentration dynamics and its validation through in-situ measurements on regional scale. In AIP Conference Proceedings; AIP Publishing: College Park, ML, USA, 2018; Volume 1982. [Google Scholar]
- Mottese, A.F.; Fede, M.R.; Caridi, F.; Sabatino, G.; Marcianò, G.; Calabrese, G.; Albergamo, A.; Dugo, G. Chemometrics and innovative multidimensional data analysis (MDA) based on multi-element screening to protect the Italian porcino (Boletus sect. Boletus) from fraud. Food Control 2020, 110, 107004. [Google Scholar] [CrossRef]
- Albergamo, A.; Mottese, A.F.; Bua, G.; Caridi, F.; Sabatino, G.; Barrega, L.; Costa, R.; Dugo, G. Discrimination of the Sicilian Prickly Pear (Opuntia Ficus-Indica L., CV. Muscaredda) According to the Provenance by Testing Unsupervised and Supervised Chemometrics. J. Food Sci. 2018, 83, 2933–2942. [Google Scholar] [CrossRef]
- Greenacre, M.; Groenen, P.J.F.; Hastie, T.; D’Enza, A.I.; Markos, A.; Tuzhilina, E. Principal component analysis. Nat. Rev. Methods Prim. 2022, 2, 100. [Google Scholar] [CrossRef]
- Köhn, H.-F.; Hubert, L.J. Hierarchical Cluster Analysis. In Wiley StatsRef: Statistics Reference Online; Wiley Online Library: Hoboken, NJ, USA, 2015; pp. 1–13. ISBN 9781118445112. [Google Scholar]
- Kozak, M.; Scaman, C.H. Unsupervised classification methods in food sciences: Discussion and outlook. J. Sci. Food Agric. 2008, 88, 1115–1127. [Google Scholar] [CrossRef]
- Di Bella, G.; Naccari, C.; Bua, G.D.; Rastrelli, L.; Lo Turco, V.; Potortì, A.G.; Dugo, G. Mineral composition of some varieties of beans from Mediterranean and Tropical areas. Int. J. Food Sci. Nutr. 2016, 67, 239–248. [Google Scholar] [CrossRef]
- Caridi, F.; Spoto, S.E.; Mottese, A.F.; Paladini, G.; Crupi, V.; Belvedere, A.; Marguccio, S.; D’Agostino, M.; Faggio, G.; Grillo, R.; et al. Multivariate Statistics, Mineralogy, and Radiological Hazards Assessment Due to the Natural Radioactivity Content in Pyroclastic Products from Mt. Etna, Sicily, Southern Italy. Int. J. Environ. Res. Public Health 2022, 19, 11040. [Google Scholar] [CrossRef]
- Caridi, F.; Spoto, S.E.; Paladini, G.; Venuti, V.; Crupi, V.; Ricca, M.; Majolino, D. Natural Radioactivity Content and Mineralogical Composition of Beach Sands From the Gulf of Squillace, Southern Italy: A Case Study. AAPP Atti della Accad. Peloritana dei Pericolanti Cl. di Sci. Fis. Mat. e Nat. 2022, 100, 11. [Google Scholar] [CrossRef]
- Morelli, D.; Immé, G.; Cammisa, S.; Catalano, R.; Mangano, G.; La Delfa, S.; Patanè, G. Radioactivity measurements in volcano-tectonic area for geodynamic process study. EPJ Web Conf. 2012, 24, 5009. [Google Scholar] [CrossRef]
- Mohd Razali, N.; Yap, B. Power Comparisons of some selected normality tests. Proc. Reg. Conf. Stat. Sci. 2010, 2, 126–138. [Google Scholar]
- Seier, E. Normality Tests: Power Comparison BT. In International Encyclopedia of Statistical Science; Lovric, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1000–1003. ISBN 978-3-642-04898-2. [Google Scholar]
- Sudagar, A.J.; Andrejkovičová, S.; Rocha, F.; Patinha, C.; Soares, M.R.; Velosa, A.L.; Silva, E.F. Combined Influence of Low-Grade Metakaolins and Natural Zeolite on Compressive Strength and Heavy Metal Adsorption of Geopolymers. Minerals 2021, 11, 486. [Google Scholar] [CrossRef]
- Janotka, I.; Martauz, P.; Bačuvčík, M. Design of Concrete Made with Recycled Brick Waste and Its Environmental Performance. Minerals 2021, 11, 463. [Google Scholar] [CrossRef]
- Bahhou, A.; Taha, Y.; Khessaimi, Y.E.; Hakkou, R.; Tagnit-Hamou, A.; Benzaazoua, M. Using Calcined Marls as Non-Common Supplementary Cementitious Materials—A Critical Review. Minerals 2021, 11, 517. [Google Scholar] [CrossRef]
- Aleroeva, L.S.; Magomadov, I.Z.; Mamasurov, S.K.; Mamatsuev, R.A.; Aptaev, K.K.; Aisungurov, N.D.; Istamulov, A.M.; Bekishev, A.L. Materials used in the construction of roads. IOP Conf. Ser. Mater. Sci. Eng. 2020, 905, 012002. [Google Scholar] [CrossRef]
- Wheeldon, J.; Bland, A.; Georgiu, D.; Smith, V. Market Assessment and Technical Feasibility Study of PFBC Ash Use; Western Research Institute: Laramie, WY, USA, 1995. [Google Scholar]
Group ID | Raw Material | Number of Samples |
---|---|---|
G1 | Basalt | 5 |
G2 | Milled asphalt | 5 |
G3 | Fine red granite | 5 |
G4 | Coarse red granite | 5 |
G5 | Blast-furnace slag | 5 |
G6 | Crushed stone | 5 |
G7 | Gravel | 5 |
G8 | Yellow sand | 5 |
G9 | Grey sand | 5 |
HPGe Detector | |
---|---|
FWHM | 1.94 keV |
Peak-to-Compton ratio | 65:1 |
Relative efficiency | 37.5% (at the 1.33 MeV 60Co γ-line) |
Bias voltage | −4800 V |
Energy range | 5 keV–2 MeV |
Group ID | CRa-226 (Bq kg−1 d.w.) | CTh-232 (Bq kg−1 d.w.) | CK-40 (Bq kg−1 d.w.) |
---|---|---|---|
G1 | 41.2 ± 4.8 | 53.1 ± 6.9 | 157 ± 19 |
G2 | 27.2 ± 2.9 | 29.5 ± 3.8 | 113 ± 14 |
G3 | 17.3 ± 1.9 | 39.9 ± 5.1 | 1047 ± 116 |
G4 | 20.1 ± 2.6 | 42.8 ± 5.9 | 1071 ± 127 |
G5 | 21.1 ± 1.9 | 4.4 ± 1.1 | 9.9 ± 1.3 |
G6 | 29.2 ± 4.8 | 1.3 ± 0.5 | 12.7 ± 5.6 |
G7 | 16.5 ± 0.6 | 1.1 ± 0.4 | 6.8 ± 2.7 |
G8 | 23.8 ± 2.6 | 28.7 ± 3.7 | 683 ± 76 |
G9 | 21.2 ± 3.1 | 35.7 ± 5.5 | 905 ± 127 |
Average | 24.2 ± 2.8 | 26.3 ± 3.6 | 445 ± 54 |
Group ID | D (nGy h−1) | AEDEout (µSv y−1) | AEDEin (µSv y−1) | I | Iα |
---|---|---|---|---|---|
G1 | 57.7 | 70.7 | 282 | 0.46 | 0.21 |
G2 | 35.1 | 43.0 | 172 | 0.28 | 0.14 |
G3 | 75.8 | 92.9 | 371 | 0.61 | 0.09 |
G4 | 79.8 | 97.9 | 391 | 0.64 | 0.10 |
G5 | 12.8 | 15.7 | 62 | 0.10 | 0.11 |
G6 | 14.8 | 18.2 | 72 | 0.11 | 0.15 |
G7 | 8.6 | 10.5 | 42 | 0.06 | 0.08 |
G8 | 56.8 | 69.7 | 278 | 0.45 | 0.12 |
G9 | 69.1 | 84.7 | 339 | 0.55 | 0.11 |
Average | 45.6 | 55.9 | 224 | 0.4 | 0.10 |
Variables | CRa-226 | CTh-232 | CK-40 | D | AEDEout | AEDEin | I | Iα |
---|---|---|---|---|---|---|---|---|
CRa-226 | 1 | |||||||
CTh-232 | −0.195 | 1 | ||||||
CK-40 | −0.393 | 0.902 | 1 | |||||
D | −0.274 | 0.963 | 0.982 | 1 | ||||
AEDEout | −0.273 | 0.963 | 0.982 | 1.000 | 1 | |||
AEDEin | −0.274 | 0.963 | 0.982 | 1.000 | 1.000 | 1 | ||
I | −0.275 | 0.964 | 0.982 | 1.000 | 1.000 | 1.000 | 1 | |
Iα | 0.995 | −0.171 | −0.370 | −0.250 | −0.249 | −0.250 | 0.251 | 1 |
PC1 | PC2 | PC3 |
---|---|---|
6.107 | 1.806 | 0.082 |
76.336 | 22.580 | 1.025 |
76.336 | 98.916 | 99.941 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caridi, F.; Paladini, G.; Mottese, A.F.; Praticò, F.G.; Faggio, G.; Messina, G.; Belvedere, A.; Marguccio, S.; D’Agostino, M.; Majolino, D.; et al. Natural Radioactivity in Raw Building Materials for Underground Parking Lots and Assessment of Radiological Health Risk for the Population. Int. J. Environ. Res. Public Health 2024, 21, 315. https://doi.org/10.3390/ijerph21030315
Caridi F, Paladini G, Mottese AF, Praticò FG, Faggio G, Messina G, Belvedere A, Marguccio S, D’Agostino M, Majolino D, et al. Natural Radioactivity in Raw Building Materials for Underground Parking Lots and Assessment of Radiological Health Risk for the Population. International Journal of Environmental Research and Public Health. 2024; 21(3):315. https://doi.org/10.3390/ijerph21030315
Chicago/Turabian StyleCaridi, Francesco, Giuseppe Paladini, Antonio Francesco Mottese, Filippo Giammaria Praticò, Giuliana Faggio, Giacomo Messina, Alberto Belvedere, Santina Marguccio, Maurizio D’Agostino, Domenico Majolino, and et al. 2024. "Natural Radioactivity in Raw Building Materials for Underground Parking Lots and Assessment of Radiological Health Risk for the Population" International Journal of Environmental Research and Public Health 21, no. 3: 315. https://doi.org/10.3390/ijerph21030315
APA StyleCaridi, F., Paladini, G., Mottese, A. F., Praticò, F. G., Faggio, G., Messina, G., Belvedere, A., Marguccio, S., D’Agostino, M., Majolino, D., & Venuti, V. (2024). Natural Radioactivity in Raw Building Materials for Underground Parking Lots and Assessment of Radiological Health Risk for the Population. International Journal of Environmental Research and Public Health, 21(3), 315. https://doi.org/10.3390/ijerph21030315