From Acute Infection to Prolonged Health Consequences: Understanding Health Disparities and Economic Implications in Long COVID Worldwide
Abstract
:1. Introduction
2. Methods
3. Clinical Manifestations of Long COVID: Immunological and Pathophysiological Mechanisms
- Fatigue
- Respiratory symptoms
- Difficulty sleeping
- Musculoskeletal pain/weakness
- Cognitive dysfunction
- Immune System Dysregulation: Long COVID is linked to immune system dysregulation. Reduced CD4+ and CD8+ T cells, along with increased interferon expression, may lead to various symptoms [17]
- Organ Tissue Injury: Severe illness from the virus can lead to organ tissue injury, contributing to multiple symptoms. Cognitive dysfunction may arise from brain tissue damage [16]
3.1. Musculoskeletal System Involvement
- Fatigue is the most common symptom reported by patients experiencing Long COVID, whether hospitalized or not for the COVID-19 disease [21].
- Subramanian et al. (2022) evaluated 486,149 non-hospitalized patients with SARS-CoV-2 infection and identified three major clusters of Long COVID phenotypes [22]:
- Broad Spectrum of symptoms: This is the most common cluster and includes a wide range of symptoms, such as pain, fatigue, and rash (80%).
- Respiratory Symptoms: This is the least common and mainly involves persistent respiratory symptoms (cough, shortness of breath and phlegm (5.8%))
- Mental health and cognitive symptoms, including anxiety, depression, insomnia and brain fog (14.2%).
- Joint pain and myalgias are thought to be manifestations of the proinflammatory effects of the viral infection and modified expression of neuromuscular endogenous markers [23]. In normal physiology, myokines are released during physical activity and induce an anti-inflammatory state in the body by reducing the number of macrophages subtype 1 (M1—pro-inflammatory) and increasing the number of macrophages subtype 2 (M2—anti-inflammatory) [24]. However, in the presence of SARS-CoV-2, there is an induction of the opposite physiologic state, increasing the rate of M1, which stimulates an increase in IL-1, TNF-α and Toll-like receptors (TLRs) resulting in a prolonged muscular inflammatory environment [23,24,25].
- Furthermore, corticosteroids utilized in treating acute COVID-19 can lead to musculoskeletal complications like myopathy, avascular necrosis, and osteoporosis fractures [26].
3.2. Respiratory System
- Respiratory Symptoms in Long COVID:
- Long-term pulmonary complications are common and may involve:
- Ventilator Dependence: Some patients may require ongoing ventilator support or supplemental oxygen.
- Tracheostomy: In more severe cases, a tracheostomy might be necessary.
- Abnormal pulmonary function (PFTs): Pulmonary function tests (PFTs), which measure lung function, often reveal abnormalities. These abnormalities may affect Forced Expiratory Volume 1 (FEV1), which measures how much air you can exhale in one second, Forced Vital Capacity (FVC), the total amount of air exhaled, and Total Lung Capacity (TLC), the maximum amount of air the lungs can hold [31].
- Fibrotic Lung Disease: In some cases, patients may develop fibrotic lung disease, characterized by scarring of lung tissue [30].
- In a large multi-center study [32], around one-third of patients who underwent PFT six months following discharge had an abnormal FEV1, FVC, or TLC [31]. At the same time, another study reported Diffusing Capacity of Lungs for Carbon monoxide (DLCO) as the most common lung function abnormality. Ground glass opacity was the most common high-resolution computed tomography (CT) pattern observed six months after hospital discharge [13,33]. Over 40% of patients with chest CT scans during acute COVID-19 infection showed abnormal findings at the 3-month follow-up. Factors such as higher severity scores on initial CT scans, more comorbid conditions, longer hospital stays, and increased ICU admission rates were associated with this risk [34].
- As seen in pulmonary function testing and imaging, COVID-19 infection can lead to lung fibrosis, restrictive abnormalities, airway obstruction, and reduced diffusion capacity [35]. Histopathologic examination of post-mortem cases has also revealed fibroproliferative changes [16], which are believed to result from systemic inflammatory responses. Prolonged exposure to supplemental oxygen can induce oxidative stress, triggering inflammation and eventually leading to lung fibrosis [36].
3.3. Cardiovascular System
- Post-acute cardiovascular (CV) abnormalities associated with Long COVID include:
- Myocardial infarction (the most prominent long-term effect [39]
- Right ventricular dysfunction
- Viral myocarditis
- Autoimmune dysfunction
- Arrhythmias
- An observational study of 100 patients a few months after the onset of COVID-19 revealed that more than three-quarters of patients showed abnormal cardiovascular magnetic resonance (CMR) imaging at 2–3 months (median duration 71 days) after their positive COVID-19 test [33]. The most common abnormalities observed were myocardial inflammation, regional scar, and pericardial enhancement.
- In a prospective study of patients hospitalized with severe COVID-19 pneumonia and myocardial injury [39], repeat echocardiograms at three months showed persistent adverse ventricular remodeling, particularly right ventricular dilatation, and dysfunction in nearly one-third of the patients.
- Long COVID’s cardiovascular effects have been linked to various mechanisms:
- Viral cardiomyocyte invasion: The virus invades cardiomyocytes through angiotensin-converting enzyme 2 receptors, leading to direct cytotoxic and inflammatory effects [16]. Autopsy studies have revealed evidence of myocarditis, lymphocytic infiltration, and myocyte necrosis, with viral particles found in most cases [39].
- Autoimmune and thrombotic complications: Autoimmune responses targeting cardiac antigens, possibly through molecular mimicry, have been implicated in vascular and thrombotic complications in Long COVID [33,35]. Increased risk of thromboembolic events has been reported in several studies, mostly in patients who required critical care admission [40].
3.4. Nervous System
3.5. Renal System Involvement
- Endothelial and Podocyte Damage: COVID-19 can lead to damage of the endothelial cells and podocytes within the kidney. This endothelial injury can disrupt the filtration function of the kidneys and, over the long term, result in impaired kidney function. Additionally, podocyte damage can lead to proteinuria (excess protein in the urine), which is a known risk factor for chronic kidney disease [53].
- Cytokine Release and Complement Activation: The immune system’s response to COVID-19 involves the release of various cytokines and the activation of the complement system. Prolonged or excessive activation of these processes can have harmful effects on kidney tissues. Understanding how these immune responses relate to kidney injury is crucial for predicting and managing long-term kidney function [53].
- Microthrombi in Renal Circulation: The presence of microclots (microthrombi) within the blood vessels of the kidney can impair blood flow and contribute to kidney damage. Over time, this can lead to chronic kidney disease, emphasizing the importance of monitoring and managing kidney health in COVID-19 survivors [54,55].
- COVID-19-Associated Nephropathy (COVAN): COVAN is a severe form of kidney injury directly related to COVID-19. It disproportionately affects patients with specific genetic traits, such as the Apolipoprotein L1(APOL1) gene polymorphism, particularly those of African descent. Understanding the genetic and racial factors associated with COVAN can help identify at-risk populations and develop tailored treatment and prevention strategies [55,56].
3.6. Gastrointestinal System Involvement
3.7. Endocrine System Involvement
3.8. Psychological Symptoms/Sequelae
3.9. Cutaneous Symptoms/Sequelae
- Morbilliform: This term refers to a rash that resembles measles, characterized by small, red, and slightly raised spots on the skin.
- Pernio-like: Pernio is a medical term for chilblains, which are inflammatory skin lesions that can occur in response to cold temperatures. Pernio-like means skin findings resembling chilblains.
- Urticarial: Urticaria is the clinical term for hives, which are raised, itchy welts on the skin often caused by an allergic reaction.
- Macular erythema: This describes redness of the skin without any raised bumps or blisters. Macular means flat, and erythema refers to redness.
- Vesicular: Vesicles are small fluid-filled blisters on the skin.
- Papulosquamous: This term combines ‘papules’ (small, raised bumps) and ‘squamous’ (scaly or flaky) and is used to describe skin conditions with these characteristics.
- Retiform purpura: Purpura refers to purple or red discoloration of the skin caused by bleeding under the skin. ‘Retiform’ might not be a common term, but it can be explained as a network-like pattern of purpura, often seen in certain skin conditions.
4. Risk Factors and Demographics Leading to Increased Susceptibility for Long COVID
- 1.
- Demographic Characteristics:
- 2.
- Comorbidities:
- Conditions like anxiety, depression, chronic obstructive pulmonary disease, and fibromyalgia contribute to an increased risk of Long COVID [22].
- 3.
- Age:
- 4.
- COVID-19 Severity and Vaccination Status:
- Hypothetically, we may postulate that a heightened risk of developing Long COVID, which includes symptoms like brain fog, is associated with the severity of COVID-19 for several reasons. Firstly, severe COVID-19 often triggers a robust immune response and cytokine storm, leading to more extensive organ damage, potentially affecting the brain. Secondly, the treatment for severe COVID-19 is often more aggressive and may carry a higher risk of iatrogenic harm, such as complications from intubation or nosocomial infections, which can result in enduring consequences. Furthermore, patients who initially presented with respiratory symptoms during the early stages of their illness or required admission to the ICU were found to be at an increased likelihood of developing Long COVID [74,75,76,77].
5. Racial and Ethnic Disparities in Long COVID
6. Diagnosis of Long COVID
7. Management and Treatment Approaches for Long COVID
7.1. Clinical Evaluation of Patients with Long COVID
7.2. The Recovery Period for Patients with Long COVID
7.3. Diagnistic Work-Up of Patients with Long COVID
7.4. Treatment of Long COVID
7.5. Self-Management for Long COVID
7.6. Rehabilitation Programs
7.7. Prevention of Long COVID
8. The Economic Ramifications of Long COVID Worldwide
- Workplace Accommodations: Employers can offer flexible work hours, remote working options, or role adjustments to accommodate employees suffering from Long COVID symptoms. Such accommodations can reduce absenteeism and prevent the potential loss of experienced staff.
- Specialized Rehabilitation Programs: Governments and healthcare institutions can establish rehabilitation centers focusing on post-COVID care. Such centers can aid in faster recovery and quicker reintegration into the workforce.
- Economic Incentives: Governments can provide tax breaks or subsidies to businesses that offer accommodations for Long COVID-affected employees. This could offset potential productivity losses and incentivize more businesses to make the necessary adjustments.
- Awareness Campaigns: Widespread public awareness campaigns about Long COVID can drive understanding and empathy. This could foster a more supportive environment for patients, both in workplaces and the broader community.
- Social Welfare Programs: Expanded social welfare programs can provide temporary financial support for those unable to work due to post-COVID symptoms, reducing the long-term economic strain on households.
- Research and Development: Governments and private entities can invest in research to better understand Long COVID, which could lead to effective treatments and therapies, thereby reducing its economic impact.
9. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ballering, A.V.; van Zon, S.K.R.; olde Hartman, T.C.; Rosmalen, J.G.M. Persistence of somatic symptoms after COVID-19 in the Netherlands: An observational cohort study. Lancet 2022, 400, 452–461. [Google Scholar] [CrossRef]
- Chen, C.; Haupert, S.R.; Zimmermann, L.; Shi, X.; Fritsche, L.G.; Mukherjee, B. Global Prevalence of Post-Coronavirus Disease 2019 (COVID-19) Condition or Long COVID: A Meta-Analysis and Systematic Review. J. Infect. Dis. 2022, 226, 1593–1607. [Google Scholar] [CrossRef]
- Goërtz, Y.M.J.; Van Herck, M.; Delbressine, J.M.; Vaes, A.W.; Meys, R.; Machado, F.V.C.; Houben-Wilke, S.; Burtin, C.; Posthuma, R.; Franssen, F.M.E.; et al. Persistent symptoms 3 months after a SARS-CoV-2 infection: The post-COVID-19 syndrome? ERJ Open Res. 2020, 6, 00542–2020. [Google Scholar] [CrossRef]
- Xiong, Q.; Xu, M.; Li, J.; Liu, Y.; Zhang, J.; Xu, Y.; Dong, W. Clinical sequelae of COVID-19 survivors in Wuhan, China: A single-centre longitudinal study. Clin. Microbiol. Infect. 2021, 27, 89–95. [Google Scholar] [CrossRef]
- Carfì, A.; Bernabei, R.; Landi, F. Persistent symptoms in patients after acute COVID-19. JAMA J. Am. Med. Assoc. 2020, 324, 603–605. [Google Scholar] [CrossRef]
- Prescott, H.C.; Angus, D.C. Enhancing recovery from sepsis: A review. JAMA J. Am. Med. Assoc. 2018, 319, 62–75. [Google Scholar] [CrossRef]
- Jassat, W.; Mudara, C.; Vika, C.; Welch, R.; Arendse, T.; Dryden, M.; Blumberg, L.; Mayet, N.; Tempia, S.; Parker, A.; et al. A cohort study of post-COVID-19 condition across the Beta, Delta, and Omicron waves in South Africa: 6-month follow-up of hospitalized and nonhospitalized participants. Int. J. Infect. Dis. 2022, 128, 102–111. [Google Scholar] [CrossRef]
- Stoian, M.; Procopiescu, B.; Șeitan, S.; Scarlat, G. Post-COVID-19 syndrome: Insights into a novel post-infectious systemic disorder. J. Med. Life 2023, 16, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Tanne, J.H. COVID-19: US studies show racial and ethnic disparities in long covid. BMJ 2023, 380, 535. [Google Scholar] [CrossRef] [PubMed]
- Gasparyan, A.Y.; Ayvazyan, L.; Blackmore, H.; Kitas, G.D. Writing a narrative biomedical review: Considerations for authors, peer reviewers, and editors. Rheumatol. Int. 2011, 31, 1409–1417. [Google Scholar] [CrossRef] [PubMed]
- WHO. A Clinical Case Definition of Post COVID-19 Condition by a Delphi Consensus, 6 October 2021; World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications-detail-redirect/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1 (accessed on 15 July 2023).
- Tran, V.T.; Porcher, R.; Pane, I.; Ravaud, P. Course of post COVID-19 disease symptoms over time in the ComPaRe long COVID prospective e-cohort. Nat. Commun. 2022, 13, 1812. [Google Scholar] [CrossRef]
- Huang, C.; Huang, L.; Wang, Y.; Li, X.; Ren, L.; Gu, X.; Kang, L.; Guo, L.; Liu, M.; Zhou, X.; et al. 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet 2021, 397, 220–232. [Google Scholar] [CrossRef]
- Jacobs, L.G.; Paleoudis, E.G.; Bari, D.L.-D.; Nyirenda, T.; Friedman, T.; Gupta, A.; Rasouli, L.; Zetkulic, M.; Balani, B.; Ogedegbe, C.; et al. Persistence of symptoms and quality of life at 35 days after hospitalization for COVID-19 infection. PLoS ONE 2020, 15, e0243882. [Google Scholar] [CrossRef]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef]
- Castanares-Zapatero, D.; Chalon, P.; Kohn, L.; Dauvrin, M.; Detollenaere, J.; de Noordhout, C.M.; Jong, C.P.-D.; Cleemput, I.; Heede, K.V.D. Pathophysiology and mechanism of long COVID: A comprehensive review. Ann. Med. 2022, 54, 1473–1487. [Google Scholar] [CrossRef]
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Nagy, B.; Fejes, Z.; Szentkereszty, Z.; Sütő, R.; Várkonyi, I.; Ajzner, É.; Kappelmayer, J.; Papp, Z.; Tóth, A.; Fagyas, M. A dramatic rise in serum ACE2 activity in a critically ill COVID-19 patient. Int. J. Infect. Dis. 2021, 103, 412–414. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.Y.; Mao, T.; Klein, J.; Dai, Y.; Huck, J.D.; Jaycox, J.R.; Liu, F.; Zhou, T.; Israelow, B.; Wong, P.; et al. Diverse functional autoantibodies in patients with COVID-19. Nature 2021, 595, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Arthur, J.M.; Forrest, J.C.; Boehme, K.W.; Kennedy, J.L.; Owens, S.; Herzog, C.; Liu, J.; Harville, T.O. Development of ACE2 autoantibodies after SARS-CoV-2 infection. PLoS ONE 2021, 16, e0257016. [Google Scholar] [CrossRef] [PubMed]
- O’Mahoney, L.L.; Routen, A.; Gillies, C.; Ekezie, W.; Welford, A.; Zhang, A.; Karamchandani, U.; Simms-Williams, N.; Cassambai, S.; Ardavani, A.; et al. The prevalence and long-term health effects of Long Covid among hospitalised and non-hospitalised populations: A systematic review and meta-analysis. EClinicalMedicine 2022, 55, 101762. [Google Scholar] [CrossRef]
- Subramanian, A.; Nirantharakumar, K.; Hughes, S.; Myles, P.; Williams, T.; Gokhale, K.M.; Taverner, T.; Chandan, J.S.; Brown, K.; Simms-Williams, N.; et al. Symptoms and risk factors for long COVID in non-hospitalized adults. Nat. Med. 2022, 28, 1706–1714. [Google Scholar] [CrossRef]
- Andrade, B.S.; Siqueira, S.; Soares, W.R.d.A.; Rangel, F.d.S.; Santos, N.O.; Freitas, A.d.S.; da Silveira, P.R.; Tiwari, S.; Alzahrani, K.J.; Góes-Neto, A.; et al. Long-covid and post-covid health complications: An up-to-date review on clinical conditions and their possible molecular mechanisms. Viruses 2021, 13, 700. [Google Scholar] [CrossRef]
- Nigro, E.; Polito, R.; Alfieri, A.; Mancini, A.; Imperlini, E.; Elce, A.; Krustrup, P.; Orrù, S.; Buono, P.; Daniele, A. Molecular mechanisms involved in the positive effects of physical activity on coping with COVID-19. Eur. J. Appl. Physiol. 2020, 120, 2569–2582. [Google Scholar] [CrossRef]
- Matic, S.; Popovic, S.; Djurdjevic, P.; Todorovic, D.; Djordjevic, N.; Mijailovic, Z.; Sazdanovic, P.; Milovanovic, D.; Ruzic Zecevic, D.; Petrovic, M.; et al. SARS-CoV-2 infection induces mixed M1/M2 phenotype in circulating monocytes and alterations in both dendritic cell and monocyte subsets. PLoS ONE 2020, 15, e0241097. [Google Scholar] [CrossRef]
- Swarnakar, R.; Jenifa, S.; Wadhwa, S. Musculoskeletal complications in long COVID-19: A systematic review. World J. Virol. 2022, 11, 485–495. [Google Scholar] [CrossRef]
- Bull-Otterson, L.; Baca, S.; Saydah, S.; Boehmer, T.K.; Adjei, S.; Gray, S.; Harris, A.M. Post–COVID Conditions Among Adult COVID-19 Survivors Aged 18–64 and ≥65 Years—United States, March 2020–November 2021. Morb. Mortal. Wkly. Rep. (MMWR) 2022, 71, 713–717. [Google Scholar] [CrossRef]
- Davis, H.E.; Assaf, G.S.; McCorkell, L.; Wei, H.; Low, R.J.; Re’Em, Y.; Redfield, S.; Austin, J.P.; Akrami, A. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine 2021, 38, 101019. [Google Scholar] [CrossRef]
- Yong, S.J. Long COVID or post-COVID-19 syndrome: Putative pathophysiology, risk factors, and treatments. Infect. Dis. 2021, 53, 737–754. [Google Scholar] [CrossRef]
- Desai, A.D.; Lavelle, M.; Boursiquot, B.C.; Wan, E.Y. Long-term complications of COVID-19. Am. J. Physiol. Cell Physiol. 2022, 322, C1–C11. [Google Scholar] [CrossRef]
- Evans, R.A.; McAuley, H.; Harrison, E.M.; Shikotra, A.; Singapuri, A.; Sereno, M.; Elneima, O.; Docherty, A.B.; Lone, N.I.; Leavy, O.C.; et al. Physical, cognitive, and mental health impacts of COVID-19 after hospitalisation (PHOSP-COVID): A UK multicentre, prospective cohort study. Lancet Respir Med. 2021, 9, 1275–1287. [Google Scholar] [CrossRef]
- Zhao, Y.M.; Shang, Y.M.; Song, W.B.; Li, Q.Q.; Xie, H.; Xu, Q.F.; Jia, J.L.; Li, L.M.; Mao, H.L.; Zhou, X.M.; et al. Follow-up study of the pulmonary function and related physiological characteristics of COVID-19 survivors three months after recovery. EClinicalMedicine 2020, 25, 100463. [Google Scholar] [CrossRef]
- Puntmann, V.O.; Carerj, M.L.; Wieters, I.; Fahim, M.; Arendt, C.; Hoffmann, J.; Shchendrygina, A.; Escher, F.; Vasa-Nicotera, M.; Zeiher, A.M.; et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered from Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020, 5, 1265–1273. [Google Scholar] [CrossRef]
- Tabatabaei, S.M.H.; Rajebi, H.; Moghaddas, F.; Ghasemiadl, M.; Talari, H. Chest CT in COVID-19 pneumonia: What are the findings in mid-term follow-up? Emerg. Radiol. 2020, 27, 711–719. [Google Scholar] [CrossRef]
- Korompoki, E.; Gavriatopoulou, M.; Hicklen, R.S.; Ntanasis-Stathopoulos, I.; Kastritis, E.; Fotiou, D.; Stamatelopoulos, K.; Terpos, E.; Kotanidou, A.; Hagberg, C.A.; et al. Epidemiology and organ specific sequelae of post-acute COVID19: A narrative review. J. Infect. 2021, 83, 1–16. [Google Scholar] [CrossRef]
- Tanni, S.E.; Fabro, A.T.; de Albuquerque, A.; Ferreira, E.V.M.; Verrastro, C.G.Y.; Sawamura, M.V.Y.; Ribeiro, S.M.; Baldi, B.G. Pulmonary fibrosis secondary to COVID-19: A narrative review. Expert Rev. Respir. Med. 2021, 15, 791–803. [Google Scholar] [CrossRef]
- Dhawan, R.T.; Gopalan, D.; Howard, L.; Vicente, A.; Park, M.; Manalan, K.; Wallner, I.; Marsden, P.; Dave, S.; Branley, H.; et al. Beyond the clot: Perfusion imaging of the pulmonary vasculature after COVID-19. Lancet Respir. Med. 2020, 9, 107–116. [Google Scholar] [CrossRef]
- Ziauddeen, N.; Gurdasani, D.; O’hara, M.E.; Hastie, C.; Roderick, P.; Yao, G.; Alwan, N.A. Characteristics and impact of Long Covid: Findings from an online survey. PLoS ONE 2022, 17, e0264331. [Google Scholar] [CrossRef]
- Raman, B.; Bluemke, D.A.; Lüscher, T.F.; Neubauer, S. Long COVID: Post-acute sequelae of COVID-19 with a cardiovascular focus STATE OF THE ART REVIEW Epidemiology and Prevention. Eur. Heart J. 2022, 43, 1157–1172. [Google Scholar] [CrossRef]
- Roberts, L.N.; Whyte, M.B.; Georgiou, L.; Giron, G.; Czuprynska, J.; Rea, C.; Vadher, B.; Patel, R.K.; Gee, E.; Arya, R. Postdischarge venous thromboembolism following hospital admission with COVID-19. Blood 2020, 136, 1347–1350. [Google Scholar] [CrossRef]
- Akbarialiabad, H.; Taghrir, M.H.; Abdollahi, A.; Ghahramani, N.; Kumar, M.; Paydar, S.; Razani, B.; Mwangi, J.; Asadi-Pooya, A.A.; Malekmakan, L.; et al. Long COVID, a comprehensive systematic scoping review. Infection 2021, 49, 1163–1186. [Google Scholar] [CrossRef]
- Lee, M.-H.; Perl, D.P.; Nair, G.; Li, W.; Maric, D.; Murray, H.; Dodd, S.J.; Koretsky, A.P.; Watts, J.A.; Cheung, V.; et al. Microvascular Injury in the Brains of Patients with COVID-19. New Engl. J. Med. 2021, 384, 481–483. [Google Scholar] [CrossRef]
- Mao, L.; Jin, H.; Wang, M.; Hu, Y.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; et al. Neurologic Manifestations of Hospitalized Patients with Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020, 77, 683–690. [Google Scholar] [CrossRef]
- Guedj, E.; Campion, J.Y.; Dudouet, P.; Kaphan, E.; Bregeon, F.; Tissot-Dupont, H.; Guis, S.; Barthelemy, F.; Habert, P.; Ceccaldi, M.; et al. 18F-FDG brain PET hypometabolism in patients with long, COVID. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2823–2833. [Google Scholar] [CrossRef]
- Mainland, J.D.; Johnson, B.N.; Khan, R.; Ivry, R.B.; Sobel, N. Olfactory impairments in patients with unilateral cerebellar lesions are selective to inputs from the contralesional nostril. J. Neurosci. 2005, 25, 6362–6371. [Google Scholar] [CrossRef]
- Borsook, D.; Sava, S.; Becerra, L. The pain imaging revolution: Advancing pain into the 21st century. Neuroscience 2010, 16, 171–185. [Google Scholar] [CrossRef]
- Wood, E.; Hall, K.H.; Tate, W. Role of mitochondria, oxidative stress and the response to antioxidants in myalgic encephalomyelitis/chronic fatigue syndrome: A possible approach to SARS-CoV-2 ‘long-haulers’? Chronic Dis. Transl. Med. 2021, 7, 4–26. [Google Scholar] [CrossRef]
- Chan, L.; Chaudhary, K.; Saha, A.; Chauhan, K.; Vaid, A.; Zhao, S.; Paranjpe, I.; Somani, S.; Richter, F.; Miotto, R.; et al. AKI in hospitalized patients with COVID-19. J. Am. Soc. Nephrol. 2021, 32, 151–160. [Google Scholar] [CrossRef]
- Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 2022, 23, 3–20. [Google Scholar] [CrossRef]
- Santos, R.A.S.; Sampaio, W.O.; Alzamora, A.C.; Motta-Santos, D.; Alenina, N.; Bader, M.; Campagnole-Santos, M.J. The ACE2/Angiotensin-(1-7)/Mas axis of the renin-angiotensin system: Focus on Angiotensin-(1-7). Physiol. Rev. 2018, 98, 505–553. [Google Scholar] [CrossRef]
- Sriram, K.; Insel, P.A. A hypothesis for pathobiology and treatment of COVID-19: The centrality of ACE1/ACE2 imbalance. Br. J. Pharmacol. 2020, 177, 4825–4844. [Google Scholar] [CrossRef]
- Shirbhate, E.; Pandey, J.; Patel, V.K.; Kamal, M.; Jawaid, T.; Gorain, B.; Kesharwani, P.; Rajak, H. Understanding the role of ACE-2 receptor in pathogenesis of COVID-19 disease: A potential approach for therapeutic intervention. Pharmacol. Rep. 2021, 73, 1539–1550. [Google Scholar] [CrossRef]
- Copur, S.; Berkkan, M.; Basile, C.; Tuttle, K.; Kanbay, M. Post-acute COVID-19 syndrome and kidney diseases: What do we know? J. Nephrol. 2022, 35, 795–805. [Google Scholar] [CrossRef]
- Mat, O.; Ghisdal, L.; Massart, A.; Aydin, S.; Goubella, A.; Blankoff, N.; Gankam, F.; Debelle, F.; Mat, Q. Kidney Thrombotic Microangiopathy After COVID-19 Associated with C3 Gene Mutation. Kidney Int. Rep. 2021, 6, 1732–1737. [Google Scholar] [CrossRef]
- Wu, H.; Larsen, C.P.; Hernandez-Arroyo, C.F.; Mohamed, M.M.B.; Caza, T.; Sharshir, M.; Chughtai, A.; Xie, L.; Gimenez, J.M.; Sandow, T.A.; et al. AKI and Collapsing Glomerulopathy Associated with COVID-19 and APOL 1 High-Risk Genotype. J. Am. Soc. Nephrol. 2020, 31, 1688–1695. [Google Scholar] [CrossRef]
- Shetty, A.A.; Tawhari, I.; Safar-Boueri, L.; Seif, N.; Alahmadi, A.; Gargiulo, R.; Aggarwal, V.; Usman, I.; Kisselev, S.; Gharavi, A.G.; et al. COVID-19-associated glomerular disease. J. Am. Soc. Nephrol. 2021, 32, 33–40. [Google Scholar] [CrossRef]
- Choudhury, A.; Tariq, R.; Jena, A.; Vesely, E.K.; Singh, S.; Khanna, S.; Sharma, V. Gastrointestinal manifestations of long COVID: A systematic review and meta-analysis. Therap. Adv. Gastroenterol. 2022, 15, 17562848221118403. [Google Scholar] [CrossRef]
- Liu, Q.; Mak, J.W.Y.; Su, Q.; Yeoh, Y.K.; Lui, G.C.-Y.; Ng, S.S.S.; Zhang, F.; Li, A.Y.L.; Lu, W.; Hui, D.S.-C.; et al. Gut microbiota dynamics in a prospective cohort of patients with post-acute COVID-19 syndrome. Gut 2022, 71, 544–552. [Google Scholar] [CrossRef]
- Hou, K.; Wu, Z.X.; Chen, X.Y.; Wang, J.Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in health and diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef]
- Xu, E.; Xie, Y.; Al-Aly, Z. Long-term gastrointestinal outcomes of COVID-19. Nat. Commun. 2023, 14, 983. [Google Scholar] [CrossRef]
- Gentile, S.; Strollo, F.; Mambro, A.; Ceriello, A. COVID-19, ketoacidosis and new-onset diabetes: Are there possible cause and effect relationships among them? Diabetes Obes. Metab. 2020, 22, 2507–2508. [Google Scholar] [CrossRef]
- Steenblock, C.; Hassanein, M.; Khan, E.G.; Yaman, M.; Kamel, M.; Barbir, M.; Lorke, D.E.; Rock, J.A.; Everett, D.; Bejtullah, S.; et al. Diabetes and COVID-19: Short- and Long-Term Consequences. Horm. Metab. Res. 2022, 54, 503–509. [Google Scholar] [CrossRef]
- Tsivgoulis, G.; Fragkou, P.C.; Karofylakis, E.; Paneta, M.; Papathanasiou, K.; Palaiodimou, L.; Psarros, C.; Papathanasiou, M.; Lachanis, S.; Sfikakis, P.P.; et al. Hypothyroidism is associated with prolonged COVID-19-induced anosmia: A case–control study. J. Neurol. Neurosurg. Psychiatry 2021, 92, 911–912. [Google Scholar] [CrossRef]
- Xie, Y.; Al-Aly, Z. Risks and burdens of incident diabetes in long COVID: A cohort study. Lancet Diabetes Endocrinol. 2022, 10, 311–321. [Google Scholar] [CrossRef]
- Zubair, A.S.; McAlpine, L.S.; Gardin, T.; Farhadian, S.; Kuruvilla, D.E.; Spudich, S. Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019: A review. JAMA Neurol. 2020, 77, 1018–1027. [Google Scholar] [CrossRef]
- Zeng, N.; Zhao, Y.-M.; Yan, W.; Li, C.; Lu, Q.-D.; Liu, L.; Ni, S.-Y.; Mei, H.; Yuan, K.; Shi, L.; et al. A systematic review and meta-analysis of long term physical and mental sequelae of COVID-19 pandemic: Call for research priority and action. Mol. Psychiatry 2022, 28, 423–433. [Google Scholar] [CrossRef]
- Bellan, M.; Soddu, D.; Balbo, P.E.; Baricich, A.; Zeppegno, P.; Avanzi, G.C.; Baldon, G.; Bartolomei, G.; Battaglia, M.; Battistini, S.; et al. Respiratory and Psychophysical Sequelae among Patients with COVID-19 Four Months after Hospital Discharge. JAMA Netw. Open 2021, 4, e2036142. [Google Scholar] [CrossRef]
- Freeman, E.E.; McMahon, D.E.; Lipoff, J.B.; Rosenbach, M.; Kovarik, C.; Desai, S.R.; Harp, J.; Takeshita, J.; French, L.E.; Lim, H.W.; et al. The spectrum of COVID-19–associated dermatologic manifestations: An international registry of 716 patients from 31 countries. J. Am. Acad. Dermatol. 2020, 83, 1118–1129. [Google Scholar] [CrossRef]
- Sharma, S.; Raby, E.; Kumarasinghe, S.P. Cutaneous manifestations and dermatological sequelae of Covid-19 infection compared to those from other viruses. Australas. J. Dermatol. 2021, 62, 141–150. [Google Scholar] [CrossRef]
- Tsampasian, V.; Elghazaly, H.; Chattopadhyay, R.; Debski, M.; Naing, T.K.P.; Garg, P.; Clark, A.; Ntatsaki, E.; Vassiliou, V.S. Risk Factors Associated with Post-COVID-19 Condition A Systematic Review and Meta-analysis. JAMA Intern. Med. 2023, 183, 566–580. [Google Scholar] [CrossRef]
- Notarte, K.I.; de Oliveira, M.H.S.; Peligro, P.J.; Velasco, J.V.; Macaranas, I.; Ver, A.T.; Pangilinan, F.C.; Pastrana, A.; Goldrich, N.; Kavteladze, D. Age, Sex and Previous Comorbidities as Risk Factors Not Associated with SARS-CoV-2 Infection for Long COVID-19: A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 7314. [Google Scholar] [CrossRef]
- Pelà, G.; Goldoni, M.; Solinas, E.; Cavalli, C.; Tagliaferri, S.; Ranzieri, S.; Frizzelli, A.; Marchi, L.; Mori, P.A.; Majori, M.; et al. Sex-Related Differences in Long-COVID-19 Syndrome. J. Women’s Health 2022, 31, 620–630. [Google Scholar] [CrossRef]
- Brannock, M.D.; Chew, R.F.; Preiss, A.J.; Hadley, E.C.; Redfield, S.; McMurry, J.A.; Leese, P.J.; Girvin, A.T.; Crosskey, M.; Zhou, A.G.; et al. Long COVID risk and pre-COVID vaccination in an EHR-based cohort study from the RECOVER program. Nat. Commun. 2023, 14, 2914. [Google Scholar] [CrossRef]
- Asadi-Pooya, A.A.; Akbari, A.; Emami, A.; Lotfi, M.; Rostamihosseinkhani, M.; Nemati, H.; Barzegar, Z.; Kabiri, M.; Zeraatpisheh, Z.; Farjoud-Kouhanjani, M.; et al. Long COVID syndrome-associated brain fog. J. Med. Virol. 2021, 94, 979–984. [Google Scholar] [CrossRef]
- Sykes, D.L.; Holdsworth, L.; Jawad, N.; Gunasekera, P.; Morice, A.H.; Crooks, M.G. Post-COVID-19 Symptom Burden: What is Long-COVID and How Should We Manage It? Lung 2021, 199, 113–119. [Google Scholar] [CrossRef]
- Batabyal, R.; Freishtat, N.; Hill, E.; Rehman, M.; Freishtat, R.; Koutroulis, I. Metabolic dysfunction and immunometabolism in COVID-19 pathophysiology and therapeutics. Int. J. Obes. 2021, 45, 1163–1169. [Google Scholar] [CrossRef]
- Thompson, E.J.; Williams, D.M.; Walker, A.J.; Mitchell, R.E.; Niedzwiedz, C.L.; Yang, T.C.; Huggins, C.F.; Kwong, A.S.F.; Silverwood, R.J.; Di Gessa, G.; et al. Long COVID burden and risk factors in 10 UK longitudinal studies and electronic health records. Nat. Commun. 2022, 13, 3528. [Google Scholar] [CrossRef]
- Mackey, K.; Ayers, C.K.; Kondo, K.K.; Saha, S.; Advani, S.M.; Young, S.; Spencer, H.; Rusek, M.; Anderson, J.; Veazie, S.; et al. Racial and ethnic disparities in covid-19-related infections, hospitalizations, and deaths a systematic review. Ann. Intern. Med. 2021, 174, 362–373. [Google Scholar] [CrossRef]
- Jacobs, M.M.; Evans, E.; Ellis, C. Racial, ethnic, and sex disparities in the incidence and cognitive symptomology of long COVID-19. J. Natl. Med. Assoc. 2023, 115, 233–243. [Google Scholar] [CrossRef]
- Price-Haywood, E.G.; Burton, J.; Fort, D.; Seoane, L. Hospitalization and Mortality among Black Patients and White Patients with COVID-19. New Engl. J. Med. 2020, 382, 2534–2543. [Google Scholar] [CrossRef]
- Pan, A.P.; Khan, O.; Meeks, J.R.; Boom, M.L.; Masud, F.N.; Andrieni, J.D.; Phillips, R.A.; Tiruneh, Y.M.; Kash, B.A.; Vahidy, F.S. Disparities in COVID-19 hospitalizations and mortality among black and Hispanic patients: Cross-sectional analysis from the greater Houston metropolitan area. BMC Public Health 2021, 21, 1330. [Google Scholar] [CrossRef]
- Khullar, D.; Zhang, Y.; Zang, C.; Xu, Z.; Wang, F.; Weiner, M.G.; Carton, T.W.; Rothman, R.L.; Block, J.P.; Kaushal, R. Racial/Ethnic Disparities in Post-acute Sequelae of SARS-CoV-2 Infection in New York: An EHR-Based Cohort Study from the RECOVER Program. J. Gen. Intern. Med. 2023, 38, 1127–1136. [Google Scholar] [CrossRef]
- Alvarez-Moreno, C.A.; Pineda, J.; Bareño, A.; Espitia, R.; Rengifo, P. Long COVID-19 in Latin America: Low prevalence, high resilience or low surveillance and difficulties accessing health care? Travel Med. Infect. Dis. 2023, 51, 102492. [Google Scholar] [CrossRef]
- de Miranda, D.A.P.; Gomes, S.V.C.; Filgueiras, P.S.; Corsini, C.A.; Almeida, N.B.F.; Silva, R.A.; Medeiros, M.I.V.A.R.C.; Vilela, R.V.R.; Fernandes, G.R.; Grenfell, R.F.Q. Long COVID-19 syndrome: A 14-months longitudinal study during the two first epidemic peaks in Southeast Brazil. Trans. R. Soc. Trop. Med. Hyg. 2022, 116, 1007–1014. [Google Scholar] [CrossRef]
- Raveendran, A.V. Long COVID-19: Challenges in the diagnosis and proposed diagnostic criteria. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 145–146. [Google Scholar] [CrossRef]
- Thaweethai, T.; Jolley, S.E.; Karlson, E.W.; Levitan, E.B.; Levy, B.; McComsey, G.A.; McCorkell, L.; Nadkarni, G.N.; Parthasarathy, S.; Singh, U.; et al. Development of a Definition of Postacute Sequelae of SARS-CoV-2 Infection. JAMA 2023, 329, 1934–1946. [Google Scholar] [CrossRef]
- Sisó-Almirall, A.; Brito-Zerón, P.; Conangla Ferrín, L.; Kostov, B.; Moragas Moreno, A.; Mestres, J.; Sellarès, J.; Galindo, G.; Morera, R.; Basora, J.; et al. Long COVID-19: Proposed primary care clinical guidelines for diagnosis and disease management. Int. J. Environ. Res. Public Health 2021, 18, 4350. [Google Scholar] [CrossRef]
- COVID-19 Rapid Guideline: Managing the Long-Term Effects of COVID-19; National Institute for Health and Care Excellence (NICE): London, UK, 2020.
- Tenforde, M.W.; Kim, S.S.; Lindsell, C.J.; Billig Rose, E.; Shapiro, N.I.; Files, D.C.; Gibbs, K.W.; Erickson, H.L.; Steingrub, J.S.; Smithline, H.A.; et al. Symptom Duration and Risk Factors for Delayed Return to Usual Health among Outpatients with COVID-19 in a Multistate Health Care Systems Network-United States, March–June 2020 [Internet]. Morb. Mortal. Wkly. Rep. 2020, 69, 993–998. [Google Scholar] [CrossRef]
- Nehme, M.; Braillard, O.; Chappuis, F.; Courvoisier, D.S.; Guessous, I. Prevalence of symptoms more than seven months after diagnosis of symptomatic COVID-19 in an outpatient setting. Ann. Intern. Med. 2021, 174, 1252–1260. [Google Scholar] [CrossRef]
- Hanson, S.W.; Abbafati, C.; Aerts, J.G.; Al-Aly, Z.; Ashbaugh, C.; Ballouz, T.; Blyuss, O.; Bobkova, P.; Bonsel, G.; Borzakova, S.; et al. Estimated Global Proportions of Individuals with Persistent Fatigue, Cognitive, and Respiratory Symptom Clusters Following Symptomatic COVID-19 in 2020 and 2021. JAMA 2022, 328, 1604–1615. [Google Scholar]
- Mansell, V.; Dykgraaf, S.H.; Kidd, M.; Goodyear-Smith, F. Long COVID and older people. Lancet Healthy Longev. 2022, 3, e849–e854. [Google Scholar] [CrossRef]
- Yelin, D.; Moschopoulos, C.D.; Margalit, I.; Gkrania-Klotsas, E.; Landi, F.; Stahl, J.P.; Yahav, D. ESCMID rapid guidelines for assessment management of long, COVID. Clin. Microbiol. Infect. 2022, 28, 955–972. [Google Scholar] [CrossRef]
- Living with COVID-19—Second Review [Internet]. March 2021. Available online: https://evidence.nihr.ac.uk/themedreview/living-with-covid19-second-review/ (accessed on 8 March 2024).
- Nehme, M.; Braillard, O.; Chappuis, F.; CoviCare Study Team; Guessous, I. The chronification of post-COVID condition associated with neurocognitive symptoms, functional impairment and increased healthcare utilization. Sci. Rep. 2022, 12, 14505. [Google Scholar] [CrossRef]
- Fowler-Davis, S.; Platts, K.; Thelwell, M.; Woodward, A.; Harrop, D. A mixed-methods systematic review of post-viral fatigue interventions: Are there lessons for long COVID? PLoS ONE 2021, 16, e0259533. [Google Scholar] [CrossRef]
- Mitchell, W.M. Efficacy of rintatolimod in the treatment of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). Expert Rev. Clin. Pharmacol. 2016, 9, 755–770. [Google Scholar] [CrossRef]
- Ayoubkhani, D.; Bermingham, C.; Pouwels, K.B.; Glickman, M.; Nafilyan, V.; Zaccardi, F.; Khunti, K.; Alwan, N.A.; Walker, A.S. Trajectory of long covid symptoms after COVID-19 vaccination: Community based cohort study. BMJ 2022, 377, e069676. [Google Scholar] [CrossRef]
- O’Kelly, B.; Vidal, L.; McHugh, T.; Woo, J.; Avramovic, G.; Lambert, J.S. Safety and efficacy of low dose naltrexone in a long covid cohort; an interventional pre-post study. Brain Behav. Immun. Health 2022, 24, 100485. [Google Scholar] [CrossRef]
- Mashauri, H.L. COVID-19 Histamine theory: Why antihistamines should be incorporated as the basic component in COVID-19 management? Health Sci. Rep. 2023, 6, e1109. [Google Scholar] [CrossRef]
- Mazza, M.G.; Palladini, M.; Poletti, S.; Benedetti, F. Post-COVID-19 depressive symptoms: Epidemiology, pathophysiology, and pharmacological treatment. CNS Drugs 2022, 36, 681–702. [Google Scholar] [CrossRef]
- Pinto, M.D.; Lambert, N.; Downs, C.A.; Abrahim, H.; Hughes, T.D.; Rahmani, A.M.; Burton, C.W.; Chakraborty, R. Antihistamines for Postacute Sequelae of SARS-CoV-2 Infection. J. Nurse Pract. 2022, 18, 335–338. [Google Scholar] [CrossRef]
- Brown, K.; Yahyouche, A.; Haroon, S.; Camaradou, J.; Turner, G. Long COVID and self-management. Lancet 2022, 399, 355. [Google Scholar] [CrossRef]
- Haroon, S.; Nirantharakumar, K.; Hughes, E.S.; Subramanian, A.; Aiyegbusi, O.L.; Davies, E.H.; Myles, P.; Williams, T.; Turner, G.; Chandan, J.S.; et al. Therapies for Long COVID in non-hospitalised individuals: From symptoms, patient-reported outcomes and immunology to targeted therapies (The TLC Study). BMJ Open 2022, 12, e060413. [Google Scholar] [CrossRef]
- Aiyegbusi, O.L.; Hughes, S.E.; Turner, G.; Rivera, S.C.; McMullan, C.; Chandan, J.S.; Haroon, S.; Price, G.; Davies, E.H.; Nirantharakumar, K.; et al. Symptoms, complications and management of long COVID: A review. J. R. Soc. Med. 2021, 114, 428–442. [Google Scholar] [CrossRef]
- Dillen, H.; Bekkering, G.; Gijsbers, S.; Weygaerde, Y.V.; Van Herck, M.; Haesevoets, S.; Bos, D.A.G.; Li, A.; Janssens, W.; Gosselink, R.; et al. Clinical effectiveness of rehabilitation in ambulatory care for patients with persisting symptoms after COVID-19: A systematic review. BMC Infect Dis. 2023, 23, 419. [Google Scholar] [CrossRef]
- Bowe, B.; Xie, Y.; Al-Aly, Z. Acute and postacute sequelae associated with SARS-CoV-2 reinfection. Nat. Med. 2022, 28, 2398–2405. [Google Scholar] [CrossRef]
- Al-Aly, Z.; Bowe, B.; Xie, Y. Long COVID after breakthrough SARS-CoV-2 infection. Nat. Med. 2022, 28, 1461–1467. [Google Scholar] [CrossRef]
- Al-Aly, Z. Prevention of long COVID: Progress and challenges. Lancet Infect Dis. 2023, 23, 776–777. [Google Scholar] [CrossRef]
- Chuang, M.H.; Wu, J.Y.; Liu, T.H.; Hsu, W.H.; Tsai, Y.W.; Huang, P.Y.; Lai, C.C. Efficacy of nirmatrelvir and ritonavir for post-acute COVID-19 sequelae beyond 3 months of SARS-CoV-2 infection. J. Med. Virol. 2023, 95, e28750. [Google Scholar] [CrossRef]
- Bramante, C.T.; Buse, J.B.; Liebovitz, D.M.; Nicklas, J.M.; Puskarich, M.A.; Cohen, K.; Belani, H.K.; Anderson, B.J.; Huling, J.D.; Tignanelli, C.J.; et al. Outpatient treatment of COVID-19 and the development of long COVID over 10 Months: A multi-center, quadruple-blind, parallel group randomized phase 3 trial. Lancet Infect Dis. 2023, 23, 1119–1129. [Google Scholar] [CrossRef]
- Adler, M.D. What Should We Spend to Save Lives in a Pandemic? A Critique of the Value of Statistical Life. SSRN Electron. J. 2020. [Google Scholar] [CrossRef]
- Colmer, J. What is the meaning of (statistical) life? Benefit-cost analysis in the time of COVID-19. Oxf. Rev. Econ. Policy 2020, 36, S56–S63. [Google Scholar] [CrossRef]
- Fan, C.-Y.; Fann, J.C.-Y.; Yang, M.-C.; Lin, T.-Y.; Chen, H.-H.; Liu, J.-T.; Yang, K.-C. Estimating global burden of COVID-19 with disability-adjusted life years and value of statistical life metrics. J. Formos. Med. Assoc. 2021, 120, S106–S117. [Google Scholar] [CrossRef]
- Sweis, N.J. Revisiting the value of a statistical life: An international approach during COVID-19. Risk Manag. 2022, 24, 259–272. [Google Scholar] [CrossRef]
- Naseer, S.; Khalid, S.; Parveen, S.; Abbass, K.; Song, H.; Achim, M.V. COVID-19 outbreak: Impact on global economy. Front. Public Health 2023, 10, 1009393. [Google Scholar] [CrossRef]
- Voruz, P.; Assal, F.; Péron, J.A. The economic burden of the post-COVID-19 condition: Underestimated long-term consequences of neuropsychological deficits. J. Glob. Health 2023, 13, 03019. [Google Scholar] [CrossRef]
- Cutler, D.M. The Costs of Long COVID. JAMA Health Forum. 2022, 3, 3. [Google Scholar] [CrossRef]
- Bach, K. Is “long Covid” worsening the labor shortage? Brookings 2022. [Google Scholar] [CrossRef]
- Koumpias, A.M.; Schwartzman, D.; Fleming, O. Long-haul COVID: Healthcare utilization and medical expenditures 6 months post-diagnosis. BMC Health Serv. Res. 2022, 22, 1010. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sweis, J.J.G.; Alnaimat, F.; Esparza, V.; Prasad, S.; Azam, A.; Modi, Z.; Al-Awqati, M.; Jetanalin, P.; Sweis, N.J.; Ascoli, C.; et al. From Acute Infection to Prolonged Health Consequences: Understanding Health Disparities and Economic Implications in Long COVID Worldwide. Int. J. Environ. Res. Public Health 2024, 21, 325. https://doi.org/10.3390/ijerph21030325
Sweis JJG, Alnaimat F, Esparza V, Prasad S, Azam A, Modi Z, Al-Awqati M, Jetanalin P, Sweis NJ, Ascoli C, et al. From Acute Infection to Prolonged Health Consequences: Understanding Health Disparities and Economic Implications in Long COVID Worldwide. International Journal of Environmental Research and Public Health. 2024; 21(3):325. https://doi.org/10.3390/ijerph21030325
Chicago/Turabian StyleSweis, Jaleel Jerry G., Fatima Alnaimat, Valeria Esparza, Supritha Prasad, Abeera Azam, Zeel Modi, Mina Al-Awqati, Pim Jetanalin, Nadia J. Sweis, Christian Ascoli, and et al. 2024. "From Acute Infection to Prolonged Health Consequences: Understanding Health Disparities and Economic Implications in Long COVID Worldwide" International Journal of Environmental Research and Public Health 21, no. 3: 325. https://doi.org/10.3390/ijerph21030325
APA StyleSweis, J. J. G., Alnaimat, F., Esparza, V., Prasad, S., Azam, A., Modi, Z., Al-Awqati, M., Jetanalin, P., Sweis, N. J., Ascoli, C., Novak, R. M., Rubinstein, I., Papanikolaou, I. C., & Sweiss, N. (2024). From Acute Infection to Prolonged Health Consequences: Understanding Health Disparities and Economic Implications in Long COVID Worldwide. International Journal of Environmental Research and Public Health, 21(3), 325. https://doi.org/10.3390/ijerph21030325