Prevalence and Diagnosis of PCOS Using Electronic Health Records: A Scoping Review and a Database Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Scoping Review
2.2. Database Analysis
- “Yes” in at least one of oligomenorrhea (ICD code N91/N91.2/N92.5/N92.6) or female infertility associated with anovulation (ICD code N97.0) as evidence of chronic oligo-anovulation.
- “Yes” in at least one of hirsutism (ICD code L68.0), hair loss or alopecia (ICD code L64/L65), or having had a serum testosterone conducted as evidence of hyperandrogenism.
- “Yes” to having had a pelvic ultrasound scan carried out as evidence that polycystic ovaries with ultrasound had been assessed.
- “Yes” in at least one of hirsutism (ICD code L68.0), hair loss or alopecia (ICD code L64/L65), or having had a serum testosterone (with or without sex hormone binding globulin (SHBG)) carried out as evidence of hyperandrogenism.
- “Yes” in at least one of oligomenorrhea (ICD code N91/N91.2/N92.5/N92.6) or female infertility associated with anovulation (ICD code N97.0) as evidence of chronic anovulation.
- “Yes” to having had all the following endocrine investigations performed: LH, FSH, PL, TFT, and 17-hydroxy progesterone (17-OH P) as evidence that other known disorders had been excluded.
- “Yes” in at least one of hirsutism (ICD code L68.0), hair loss or alopecia (ICD code L64/L65), or having had a serum testosterone (with or without sex hormone binding globulin (SHBG)) performed as evidence of hyperandrogenism.
- “Yes” in at least one of oligomenorrhea (ICD code N91/N91.2/N92.5/N92.6) or female infertility associated with anovulation (ICD code N97.0) as evidence of chronic oligo-anovulation and/or “Yes” to having had a pelvic ultrasound scan carried out as evidence of ovarian dysfunction.
- “Yes” to having had all of the following endocrine investigations conducted: LH, FSH, PL, TFT, and 17-hydroxy progesterone (17-OH P) as evidence that other androgen excess or related disorders had been excluded.
2.3. Statistical Analysis
3. Results
3.1. Scoping Review
3.2. Database Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deswal, R.; Narwal, V.; Dang, A.; Pundir, C.S. The Prevalence of Polycystic Ovary Syndrome: A Brief Systematic Review. J. Hum. Reprod. Sci. 2020, 13, 261–271. [Google Scholar] [CrossRef]
- Haoula, Z.; Salman, M.; Atiomo, W. Evaluating the Association between Endometrial Cancer and Polycystic Ovary Syndrome. Hum. Reprod. 2012, 27, 1327–1331. [Google Scholar] [CrossRef] [PubMed]
- Mirza, F.G.; Tahlak, M.A.; Rjeili, R.B.; Hazari, K.; Ennab, F.; Hodgman, C.; Khamis, A.H.; Atiomo, W. Polycystic Ovarian Syndrome (PCOS): Does the Challenge End at Conception? Int. J. Environ. Res. Public Health 2022, 19, 14914. [Google Scholar] [CrossRef] [PubMed]
- Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 Consensus on Diagnostic Criteria and Long-Term Health Risks Related to Polycystic Ovary Syndrome (PCOS). Hum. Reprod. 2004, 19, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Azziz, R.; Carmina, E.; Dewailly, D.; Diamanti-Kandarakis, E.; Escobar-Morreale, H.F.; Futterweit, W.; Janssen, O.E.; Legro, R.S.; Norman, R.J.; Taylor, A.E.; et al. Criteria for Defining Polycystic Ovary Syndrome as a Predominantly Hyperandrogenic Syndrome: An Androgen Excess Society Guideline. J. Clin. Endocrinol. Metab. 2006, 91, 4237–4245. [Google Scholar] [CrossRef]
- Kiconco, S.; Teede, H.J.; Azziz, R.; Norman, R.J.; Joham, A.E. The Need to Reassess the Diagnosis of Polycystic Ovary Syndrome (PCOS): A Review of Diagnostic Recommendations from the International Evidence-Based Guideline for the Assessment and Management of PCOS. Semin. Reprod. Med. 2021, 39, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Mills, E.G.; Abbara, A.; Dhillo, W.S.; Comninos, A.N. Effects of Distinct Polycystic Ovary Syndrome Phenotypes on Bone Health. Front. Endocrinol. 2023, 14, 1163771. [Google Scholar] [CrossRef]
- Hirsch, J.A.; Nicola, G.; McGinty, G.; Liu, R.W.; Barr, R.M.; Chittle, M.D.; Manchikanti, L. ICD-10: History and Context. AJNR Am. J. Neuroradiol. 2016, 37, 596–599. [Google Scholar] [CrossRef]
- Auble, B.; Elder, D.; Gross, A.; Hillman, J.B. Differences in the Management of Adolescents with Polycystic Ovary Syndrome across Pediatric Specialties. J. Pediatr. Adolesc. Gynecol. 2013, 26, 234–238. [Google Scholar] [CrossRef]
- Christensen, S.B.; Black, M.H.; Smith, N.; Martinez, M.M.; Jacobsen, S.J.; Porter, A.H.; Koebnick, C. Prevalence of Polycystic Ovary Syndrome in Adolescents. Fertil. Steril. 2013, 100, 470–477. [Google Scholar] [CrossRef]
- Castro, V.; Shen, Y.; Yu, S.; Finan, S.; Pau, C.T.; Gainer, V.; Keefe, C.C.; Savova, G.; Murphy, S.N.; Cai, T.; et al. Identification of Subjects with Polycystic Ovary Syndrome Using Electronic Health Records. Reprod. Biol. Endocrinol. 2015, 13, 116. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Doktorchik, C.; Martin, E.A.; D’Souza, A.G.; Eastwood, C.; Shaheen, A.A.; Naugler, C.; Lee, J.; Quan, H. Electronic Medical Record-Based Case Phenotyping for the Charlson Conditions: Scoping Review. JMIR Med. Inform. 2021, 9, e23934. [Google Scholar] [CrossRef]
- Kumar, A.; Hammond, N.; Grattan, S.; Finfer, S.; Delaney, A. Accuracy of International Classification of Disease Coding Methods to Estimate Sepsis Epidemiology: A Scoping Review. J. Intensive Care Med. 2024, 39, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Arksey, H.; O’Malley, L. Scoping Studies: Towards a Methodological Framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Mirza, F.G.; Tahlak, M.A.; Hazari, K.; Khamis, A.H.; Atiomo, W. Prevalence of Polycystic Ovary Syndrome amongst Females Aged between 15 and 45 Years at a Major Women’s Hospital in Dubai, United Arab Emirates. Int. J. Environ. Res. Public Health 2023, 20, 5717. [Google Scholar] [CrossRef] [PubMed]
- Azziz, R.; Carmina, E.; Dewailly, D.; Diamanti-Kandarakis, E.; Escobar-Morreale, H.F.; Futterweit, W.; Janssen, O.E.; Legro, R.S.; Norman, R.J.; Taylor, A.E.; et al. The Androgen Excess and PCOS Society Criteria for the Polycystic Ovary Syndrome: The Complete Task Force Report. Fertil. Steril. 2009, 91, 456–488. [Google Scholar] [CrossRef]
- Actkins, K.V.; Singh, K.; Hucks, D.; Velez Edwards, D.R.; Aldrich, M.; Cha, J.; Wellons, M.; Davis, L.K. Characterizing the Clinical and Genetic Spectrum of Polycystic Ovary Syndrome in Electronic Health Records. J. Clin. Endocrinol. Metab. 2021, 106, 153–167. [Google Scholar] [CrossRef]
- Okoroh, E.M.; Hooper, W.C.; Atrash, H.K.; Yusuf, H.R.; Boulet, S.L. Prevalence of Polycystic Ovary Syndrome among the Privately Insured, United States, 2003–2008. Am. J. Obstet. Gynecol. 2012, 207, 299.e1–299.e7. [Google Scholar] [CrossRef]
- Al Khaduri, M.; Al Farsi, Y.; Al Najjar, T.A.A.; Gowri, V. Hospital-Based Prevalence of Polycystic Ovarian Syndrome among Omani Women. Middle East Fertil. Soc. J. 2014, 19, 135–138. [Google Scholar] [CrossRef]
- Lo, J.C.; Feigenbaum, S.L.; Yang, J.; Pressman, A.R.; Selby, J.V.; Go, A.S. Epidemiology and Adverse Cardiovascular Risk Profile of Diagnosed Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2006, 91, 1357–1363. [Google Scholar] [CrossRef] [PubMed]
- Miazgowski, T.; Martopullo, I.; Widecka, J.; Miazgowski, B.; Brodowska, A. National and Regional Trends in the Prevalence of Polycystic Ovary Syndrome since 1990 within Europe: The Modeled Estimates from the Global Burden of Disease Study 2016. Arch. Med. Sci. 2021, 17, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Sirmans, S.M.; Parish, R.C.; Blake, S.; Wang, X. Epidemiology and Comorbidities of Polycystic Ovary Syndrome in an Indigent Population. J. Investig. Med. 2014, 62, 868–874. [Google Scholar] [CrossRef] [PubMed]
- Ding, T.; Hardiman, P.J.; Petersen, I.; Wang, F.-F.; Qu, F.; Baio, G. The Prevalence of Polycystic Ovary Syndrome in Reproductive-Aged Women of Different Ethnicity: A Systematic Review and Meta-Analysis. Oncotarget 2017, 8, 96351–96358. [Google Scholar] [CrossRef]
- Reed, G.M.; First, M.B.; Kogan, C.S.; Hyman, S.E.; Gureje, O.; Gaebel, W.; Maj, M.; Stein, D.J.; Maercker, A.; Tyrer, P.; et al. Innovations and Changes in the ICD-11 Classification of Mental, Behavioural and Neurodevelopmental Disorders. World Psychiatry 2019, 18, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Stausberg, J.; Lehmann, N.; Kaczmarek, D.; Stein, M. Reliability of Diagnoses Coding with ICD-10. Int. J. Med. Inform. 2008, 77, 50–57. [Google Scholar] [CrossRef] [PubMed]
- O’Malley, K.J.; Cook, K.F.; Price, M.D.; Wildes, K.R.; Hurdle, J.F.; Ashton, C.M. Measuring Diagnoses: ICD Code Accuracy. Health Serv. Res. 2005, 40, 1620–1639. [Google Scholar] [CrossRef]
- Kostroun, K.E.; Goldrick, K.; Mondshine, J.N.; Robinson, R.D.; Mankus, E.; Reddy, S.; Wang, Z.; Song, X.; Knudtson, J.F. Impact of Updated International Diagnostic Criteria for the Diagnosis of Polycystic Ovary Syndrome. F S Rep. 2023, 4, 173–178. [Google Scholar] [CrossRef]
- Sanchez, N. Suitability of the National Health Care Surveys to Examine Behavioral Health Services Associated with Polycystic Ovary Syndrome. J. Behav. Health Serv. Res. 2018, 45, 252–268. [Google Scholar] [CrossRef]
- Munro, M.G.; Balen, A.H.; Cho, S.; Critchley, H.O.D.; Díaz, I.; Ferriani, R.; Henry, L.; Mocanu, E.; van der Spuy, Z.M. The FIGO Ovulatory Disorders Classification System. Fertil. Steril. 2022, 118, 768–786. [Google Scholar] [CrossRef]
- Ganie, M.A.; Rashid, A.; Sahu, D.; Nisar, S.; Wani, I.A.; Khan, J. Prevalence of Polycystic Ovary Syndrome (PCOS) among Reproductive Age Women from Kashmir Valley: A Cross-Sectional Study. Int. J. Gynecol. Obstet. 2020, 149, 231–236. [Google Scholar] [CrossRef]
- Boucher, H.; Robin, G.; Ribière, L.; Martin, C.; Espiard, S.; Catteau-Jonard, S. Is It Useful to Measure DHEAS Levels in PCOS. In Annales d’Endocrinologie (Paris); Elsevier Masson: Issy-les-Moulineaux, France, 2024. [Google Scholar] [CrossRef]
First Author, Year of Publication and Country or Region. | Study Design | Sample Size; Participants. | Age Groups | Definition of PCOS | Prevalence of PCOS | Accuracy of HER Diagnosis of PCOS Checked? |
---|---|---|---|---|---|---|
Lo 2006, USA [21]. | Cross sectional | 12,734 | 15–44 years | ICD-9 | 2.2–2.7% depending on age group | No |
Okoroh 2012, USA [19] | Cross sectional | 12,171,830 | 18–45 years | ICD-9 codes were used to create 4 mutually exclusive PCOS phenotypes that were based on the NIH, Rotterdam, and Androgen Society criteria. | 1.58% | No |
Christensen 2013, USA [10]. | Cross sectional | 137,502 | 15–19 years | ICD-9 | 0.56% | Yes |
Al Khaduri 2014, Oman [20]. | Cross sectional | 3644 | 12–45 years | Rotterdam criteria | 2.80% | No |
Miazgowski 2019, Europe [22]. | Retrospective observational | Not provided | Not provided | ICD-9 & ICD-10 | 0.27% | No |
Sirmans 2014, USA [23] in [24] | Cross-sectional | 259,904 | 15–45 years | ICD-9 | 0.88% | No |
Actkins 2020, USA [18]. | Cross sectional | 704,970 | 11–44 years | ICD-9 & ICD-10 and presence of a PCOS-related keyword | 5.80% | Yes |
Mirza 2023, UAE [16]. | Cross sectional | 64,722 | 15–45 years | ICD-10 | 1.60% | No |
ICD Code Descriptor | Number (%) |
---|---|
H/O polycystic ovarian syndrome [Z87.42] | 4 (0.4) |
History of PCOS [Z87.42] | 64 (6.2) |
History of polycystic ovarian disease [Z87.42] | 1 (0.1) |
History of polycystic ovarian syndrome [Z87.42] | 1 (0.1) |
History of polycystic ovaries [Z87.42] | 3 (0.3) |
PCO (polycystic ovaries) [E28.2] | 211 (20.5) |
Bilateral polycystic ovarian syndrome [E28.2] | 1 (0.1) |
PCOD (polycystic ovarian disease) [E28.2] | 82 (8) |
PCOS (polycystic ovarian syndrome) [E28.2] | 380 (36.9) |
Polycystic disease, ovaries [E28.2] | 102 (9.9) |
Polycystic ovarian disease [E28.2] | 45 (4.4) |
Polycystic ovarian syndrome [E28.2] | 28 (2.7) |
Polycystic ovaries [E28.2] | 79 (7.7) |
Polycystic ovary disease [E28.2] | 2 (0.2) |
Polycystic ovary syndrome [E28.2] | 6 (0.6) |
Polycystic ovary [E28.2] | 22 (2.1) |
Total | 1031 |
Diagnostic Variable | 16–18 Years (n = 39) | ≥19 Years (n = 774) | p-Value |
---|---|---|---|
Serum testosterone | 7 (17.9%) | 218 (22%) | 0.359 |
Sex hormone binding globulin | 1 (2.6%) | 65 (6.6%) | 0.272 |
Luteinizing hormone | 27 (69.2%) | 718 (72.4%) | 0.393 |
Prolactin | 26 (66.7%) | 695 (70.1% | 0.384 |
Thyroid function test | 32 (82.1% | 860 (86.7%) | 0.265 |
OH_17_progesterone | 10 (25.6% | 171 (17.2% | 0.129 |
Follicle stimulating hormone | 27 (69.2%) | 730 (73.6%) | 0.330 |
Pelvic ultrasound | 35 (89.7%) | 855 (86.2%) | 0.364 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atiomo, W.; Rizwan, M.N.H.; Bajwa, M.H.; Furniturewala, H.J.; Hazari, K.S.; Harab, D.; Abdelkareem, W.; Inuwa, S.; Khamis, A.H.; Tahlak, M.; et al. Prevalence and Diagnosis of PCOS Using Electronic Health Records: A Scoping Review and a Database Analysis. Int. J. Environ. Res. Public Health 2024, 21, 354. https://doi.org/10.3390/ijerph21030354
Atiomo W, Rizwan MNH, Bajwa MH, Furniturewala HJ, Hazari KS, Harab D, Abdelkareem W, Inuwa S, Khamis AH, Tahlak M, et al. Prevalence and Diagnosis of PCOS Using Electronic Health Records: A Scoping Review and a Database Analysis. International Journal of Environmental Research and Public Health. 2024; 21(3):354. https://doi.org/10.3390/ijerph21030354
Chicago/Turabian StyleAtiomo, William, Mohamed Nor Haq Rizwan, Muhammad Hamza Bajwa, Hussain Juzer Furniturewala, Komal Sundeep Hazari, Deemah Harab, Widad Abdelkareem, Sumayya Inuwa, Amar Hassan Khamis, Muna Tahlak, and et al. 2024. "Prevalence and Diagnosis of PCOS Using Electronic Health Records: A Scoping Review and a Database Analysis" International Journal of Environmental Research and Public Health 21, no. 3: 354. https://doi.org/10.3390/ijerph21030354
APA StyleAtiomo, W., Rizwan, M. N. H., Bajwa, M. H., Furniturewala, H. J., Hazari, K. S., Harab, D., Abdelkareem, W., Inuwa, S., Khamis, A. H., Tahlak, M., & Mirza, F. G. (2024). Prevalence and Diagnosis of PCOS Using Electronic Health Records: A Scoping Review and a Database Analysis. International Journal of Environmental Research and Public Health, 21(3), 354. https://doi.org/10.3390/ijerph21030354