Clinical and Neuroimaging Predictors of Alzheimer’s Dementia Conversion in Patients with Mild Cognitive Impairment Using Amyloid Positron Emission Tomography by Quantitative Analysis over 2 Years
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Clinical Assessments
2.3. Neuroimaging
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boyle, P.A.; Wilson, R.S.; Aggarwal, N.T.; Tang, Y.; Bennett, D.A. Mild cognitive impairment: Risk of Alzheimer disease and rate of cognitive decline. Neurology 2006, 67, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Mufson, E.J.; Chen, E.Y.; Cochran, E.J.; Beckett, L.A.; Bennett, D.A.; Kordower, J.H. Entorhinal cortex beta-amyloid load in individuals with mild cognitive impairment. Exp. Neurol. 1999, 158, 469–490. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C.; Smith, G.E.; Waring, S.C.; Ivnik, R.J.; Tangalos, E.G.; Kokmen, E. Mild cognitive impairment: Clinical characterization and outcome. Arch. Neurol. 1999, 56, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Sehar, U.; Rawat, P.; Reddy, A.P.; Kopel, J.; Reddy, P.H. Amyloid Beta in Aging and Alzheimer’s Disease. Int. J. Mol. Sci. 2022, 23, 12924. [Google Scholar] [CrossRef]
- Petersen, R.C.; Parisi, J.E.; Dickson, D.W.; Johnson, K.A.; Knopman, D.S.; Boeve, B.F.; Jicha, G.A.; Ivnik, R.J.; Smith, G.E.; Tangalos, E.G.; et al. Neuropathologic features of amnestic mild cognitive impairment. Arch. Neurol. 2006, 63, 665–672. [Google Scholar] [CrossRef]
- Manly, J.J.; Tang, M.; Schupf, N.; Stern, Y.; Vonsattel, J.G.; Mayeux, R. Frequency and course of mild cognitive impairment in a multiethnic community. Ann. Neurol. 2008, 63, 494–506. [Google Scholar] [CrossRef]
- Villemagne, V.L.; Burnham, S.; Bourgeat, P.; Brown, B.; Ellis, K.A.; Salvado, O.; Masters, C.L. Amyloid beta deposition, neurodegeneration, and cognitive decline in sporadic Alz-heimer’s disease: A prospective cohort study. Lancet Neurol. 2013, 12, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Jack, C.R., Jr.; Knopman, D.S.; Jagust, W.J.; Shaw, L.M.; Aisen, P.S.; Weiner, M.W.; Trojanowski, J.Q. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cas-cade. Lancet Neurol. 2010, 9, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Márquez, F.; Yassa, M.A. Neuroimaging Biomarkers for Alzheimer’s Disease. Mol. Neurodegener. 2019, 14, 21. [Google Scholar] [CrossRef]
- Mufson, E.J.; Ikonomovic, M.D.; Counts, S.E.; Perez, S.E.; Malek-Ahmadi, M.; Scheff, S.W.; Ginsberg, S.D. Molecular and cellular pathophysiology of preclinical Alzheimer’s disease. Behav. Brain Res. 2016, 311, 54–69. [Google Scholar] [CrossRef]
- Aizenstein, H.J.; Nebes, R.D.; Saxton, J.A.; Price, J.C.; Mathis, C.A.; Tsopelas, N.D.; Ziolko, S.K.; James, J.A.; Snitz, B.E.; Houck, P.R.; et al. Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch. Neurol. 2008, 65, 1509–1517. [Google Scholar] [CrossRef]
- Martínez, G.; Vernooij, R.W.; Padilla, P.F.; Zamora, J.; Cosp, X.B.; Flicker, L. 18F PET with florbetapir for the early diagnosis of Alzheimer‘s disease dementia and other dementias in people with mild cognitivie impairment (MCI). Cochrane Database Syst. Rev. 2017, 11, CD012216. [Google Scholar]
- Braak, H.; Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991, 82, 239–259. [Google Scholar] [CrossRef]
- Dubois, B.; Feldman, H.H.; Jacova, C.; DeKosky, S.T.; Barberger-Gateau, P.; Cummings, J.L.; Delacourte, A.; Galasko, D.; Gauthier, S.; Jicha, G.A.; et al. Research criteria for the diagnosis of Alzheimer’s disease: Revising the NINCDS-ADRDA criteria. Lancet Neurol. 2007, 6, 734–746. [Google Scholar] [CrossRef]
- Byun, B.H.; Kim, B.I.; Park, S.Y.; Ko, I.O.; Lee, K.C.; Kim, K.M.; Lim, S.M. Head-to-head comparison of 11C-PiB and 18F-FC119S for Aβ imaging in healthy subjects, mild cognitive impairment patients, and Alzheimer’s disease patients. Medicine 2017, 96, e6441. [Google Scholar] [CrossRef]
- Ikonomovic, M.D.; Klunk, W.E.; Abrahamson, E.E.; Mathis, C.A.; Price, J.C.; Tsopelas, N.D.; DeKosky, S.T. Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s disease. Brain 2008, 131, 1630–1645. [Google Scholar] [CrossRef]
- Keshav, A.; Marwan, S. Amyloid Imaging: Poised for Integration into Medical Practice. Neurotherapeutics 2017, 14, 54–61. [Google Scholar]
- Beydoun, M.A.; Beydoun, H.A.; Gamaldo, A.A.; Teel, A.; Zonderman, A.B.; Wang, Y. Epidemiologic studies of modifiable factors associated with cognition and dementia: Systematic review and meta-analysis. BMC Public. Health 2014, 14, 643. [Google Scholar] [CrossRef]
- Kang, Y.; Jahng, S.; Na, D.L. Seoul Neuropsychological Screening Battery (SNSB-II), 2nd ed.; Human Brain Research & Consulting Co.: Seoul, Republic of Korea, 2012. [Google Scholar]
- Hong, Y.J.; Park, K.W.; Kang, D.Y.; Lee, J.H. Prediction of Alzheimer’s pathological changes in Subjective cognitive decline using the Self-report questionnaire and Neuroimaing biomarkers. Dement. Neurocogn Disorde. 2019, 18, 19–29. [Google Scholar] [CrossRef]
- Scheltens, P.; Leys, D.; Barkhof, F.; Huglo, D.; Weinstein, H.C.; Vermersch, P.; Valk, J. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: Diagnostic value and neuropsychological correlates. J. Neurol. Neurosurg. Psychiatry 1992, 55, 967–972. [Google Scholar] [CrossRef]
- Chételat, G.; La Joie, R.; Villain, N.; Perrotin, A.; de La Sayette, V.; Eustache, F.; Vandenberghe, R. Amyloid imaging in cognitively normal individuals, at-risk populations and preclinical Alzheimer’s disease. NeuroImage Clin. 2013, 2, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.-J.; Lee, Y.-M.; Park, J.-M.; Lee, B.-D.; Moon, E.; Suh, H.; Kim, H.-J.; Pak, K.; Choi, K.-U.; Chung, Y.-I. Reduced thickness of the anterior cingulate cortex as a predictor of amnestic-mild cognitive impairment conversion to Alzheimer’s Disease with psychosis. J. Alzheimers Dis. 2021, 84, 1709–1717. [Google Scholar] [CrossRef] [PubMed]
- Morris, E.; Chalkidou, A.; Hammers, A.; Peacock, J.; Summers, J.; Keevil, S. Diagnostic accuracy of 18F amyloid PET tracers for the diagnosis of Alzheimer’s disease: A systematic review and meta-analysis. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 374–385. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, S.; Landau, S.M.; Fero, A.; Schreiber, F.; Jagust, W.J. Comparison of Visual and Quantitative Florbetapir F 18 Positron Emission Tomography Analysis in Predicting Mild Cognitive Impairment Outcomes. JAMA Neurol. 2015, 72, 1183–1190. [Google Scholar] [CrossRef]
- Joon Yeun, P.; Byung Il, K. Direct Comparision of 18F-FC119S and 11C-PIB of PET in Alzheimer’s disease, Mild Cognitive Impairment and Healthy Control Group. J. Nucl. Med. 2016, 57 (Suppl. S2), 19. [Google Scholar]
- Lee, I.; Na, H.R.; Byun, B.H.; Lim, I.; Kim, B.I.; Choi, C.W.; Ko, I.O.; Lee, K.C.; Kim, K.M.; Park, S.Y.; et al. Clinical Usefulness of 18F-FC119S Positron-Emission Tomography as an Auxiliary Diagnostic Method for Dementia: An Open-Label, Single-Dose, Evaluator-Blind Clinical Trial. J. Clin. Neurol. 2020, 16, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Okello, A.; Koivunen, J.; Edison, P.; Archer, H.A.; Turkheimer, F.E.; Nagren, K.; Brooks, D.J. Conversion of amyloid positive and negative MCI to AD over 3 years: An 11C-PIB PET study. Neurology 2009, 73, 754–760. [Google Scholar] [CrossRef] [PubMed]
- CClark, C.M.; Pontecorvo, M.J.; Beach, T.G.; Bedell, B.J.; Coleman, R.E.; Doraiswamy, P.M.; Fleisher, A.S.; Reiman, E.M.; Sabbagh, M.N.; Sadowsky, C.H.; et al. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: A prospective cohort study. Lancet Neurol. 2012, 11, 669–678. [Google Scholar] [CrossRef] [PubMed]
- Leal, S.L.; Lockhart, S.N.; Maass, A.; Bell, R.K.; Jagust, W.J. Subthreshold Amyloid Predicts Tau Deposition in Aging. J. Neurosci. Off. J. Soc. Neurosci. 2018, 38, 4482–4489. [Google Scholar] [CrossRef]
- van der Lee, S.J.; Wolters, F.J.; Ikram, M.K.; Hofman, A.; Amin, N.; van Duijn, C.M. The effect of APOE and other common genetic variants on the onset of Alzheimer’s disease and dementia: A community-based cohort study. Lancet Neurol. 2018, 17, 434–444. [Google Scholar] [CrossRef]
- Ossenkoppele, R.; Jansen, W.J.; Rabinovici, G.D.; Knol, D.L.; van der Flier, W.M.; van Berckel, B.N.; Amyloid PET Study Group. Prevalence of amyloid PET positivity in dementia syndromes: A meta-analysis. JAMA 2015, 313, 1939–1949. [Google Scholar] [CrossRef] [PubMed]
- Ranganath, C.; Ritchey, M. Two cortical systems for memory-guided behaviour. Nat. Rev. Neurosci. 2012, 13, 713–726. [Google Scholar] [CrossRef] [PubMed]
- Dickerson, B.C.; Bakkour, A.; Salat, D.H.; Feczko, E.; Pacheco, J.; Greve, D.N.; Grodstein, F.; Wright, C.I.; Blacker, D.; Rosas, H.D.; et al. The cortical signature of Alzheimer’s disease: Regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb. Cortex. 2009, 19, 497–510. [Google Scholar] [CrossRef] [PubMed]
Inclusion Criteria |
∙ The presence of consistent complaints of cognitive decline reported by either the patient or the caregiver |
∙ Lower scores of one or more cognitive domains based on neuropsychological battery below the average of −1 standard deviation (SD) of normal considering age and education |
∙ Clinical Dementia Rating (CDR) score of 0.5, with a score of 0.5 or 1 on the memory item |
∙ No significant impairment in activities of daily living |
∙ Not diagnosed with dementia by clinician |
∙ Modified Hachinski ischemic score (HIS) of ≤4 |
∙ The ability to read and write |
∙ Age range of 50–90 years |
∙ Stable use of acetylcholinesterase inhibitors or N-methyl-D-aspartate (NMDA) receptor antagonist for at least 8 weeks prior to consent or no use of these drugs |
∙ The absence of any brain lesions (e.g., tumor, stroke, or subdural hematoma) that can potentially cause cognitive impairment |
∙ Written informed consent provided by the participants |
Exclusion Criteria |
∙ Severe physical illnesses that could interfere with the clinical study |
∙ Major psychiatric disorders that would hinder the performance of amyloid PET |
∙ The presence of other neurologic disorders |
∙ Recent heart surgery or diagnosis of myocardial infarction within 6 months before screening |
∙ Scheduled to receive radiopharmaceuticals for treatment or participation in other clinical trials that may affect PET image acquisition considering effective half-life |
∙ Pregnancy, lactation, or premenopausal women planning a pregnancy |
∙ Assessed as unsuitable for participation in the clinical trial |
Variables | Overall (n = 34) | Amyloid Negative (n = 21) | Amyloid Positive (n = 13) | p-Value |
---|---|---|---|---|
Sex (female) | 22 (64.7) | 12 (57.1) | 10 (76.9) | 0.292 4 |
Age (year) | 70.77 ± 6.14 | 71.86 ± 6.53 | 69.00 ± 5.20 | 0.191 1 |
Education (years) | 10.12 ± 3.60 | 10.67 ± 3.75 | 9.23 ± 3.30 | 0.267 2 |
APOE4 genotyping | ||||
Noncarrier | 21 (77.8) | 15 (88.2) | 6 (60.0) | 0.176 3 |
Heterozygote | 5 (18.5) | 2 (11.8) | 3 (30.0) | |
Homozygote | 1 (3.7) | 0 (0.0) | 1 (10.0) | |
White matter hyperintensities | 4 (14.3) | 3 (18.8) | 1 (8.3) | 0.613 4 |
Medial temporal atrophy | 11 (39.3) | 8 (50.0) | 3 (25.0) | 0.253 4 |
MCI subtype | ||||
Amnestic multiple | 26 (76.5) | 14 (66.7) | 12 (92.3) | 0.116 4 |
Nonamnestic multiple | 8 (23.5) | 7 (33.3) | 1 (7.7) | |
AD conversion in first year | 4 (11.8) | 1 (4.8) | 3 (23.1) | 0.274 4 |
AD conversion in second year | 6 (17.6) | 2 (9.5) | 4 (30.8) | 0.173 4 |
Amyloid positive by quantitative analysis (SUVR cutoff value) | ||||
Composite (≥1.186) | 12 (35.3) | 2 (9.5) | 10 (76.9) | 0.000 4 |
Frontal lobe (≥1.094) | 16 (47.1) | 5 (23.8) | 11 (84.6) | 0.001 4 |
Lateral temporal lobe (≥1.254) | 12 (35.3) | 2 (9.5) | 10 (76.9) | 0.000 4 |
Parietal lobe (≥1.154) | 13 (38.2) | 3 (14.3) | 10 (76.9) | 0.001 4 |
Anterior cingulate (≥1.368) | 10 (29.4) | 3 (14.3) | 7 (53.8) | 0.022 4 |
Posterior cingulate (≥1.380) | 15 (44.1) | 6 (28.6) | 9 (69.2) | 0.034 4 |
K-MMSE (baseline) | 25.94 ± 2.72 | 26.57 ± 1.45 | 24.92 ± 3.50 | 0.086 1 |
CDR (baseline) | 0.50 ± 0.00 | 0.5 ± 0.00 | 0.5 ± 0.00 | 1.000 2 |
CDR-SOB (baseline) | 1.60 ± 0.76 | 1.50 ± 0.74 | 1.77 ± 0.78 | 0.385 2 |
GDS (baseline) | 3.03 ± 0.30 | 3.00 ± 0.32 | 3.08 ± 0.28 | 0.471 2 |
K-IADL (baseline) | 0.10 ± 0.16 | 0.08 ± 0.19 | 0.14 ± 0.08 | 0.004 2 |
K-MMSE (1 year) | 25.27 ± 2.91 | 25.62 ± 2.60 | 24.70 ± 3.38 | 0.374 1 |
CDR (1 year) | 0.50 ± 0.00 | 0.50 ± 0.00 | 0.50 ± 0.00 | 1.000 2 |
CDR-SOB (1 year) | 1.46 ± 0.85 | 1.24 ± 0.75 | 1.81 ± 0.90 | 0.058 2 |
GDS (1 year) | 3.09 ± 0.38 | 3.05 ± 0.38 | 3.15 ± 0.38 | 0.437 2 |
K-IADL (1 year) | 0.13 ± 0.16 | 0.06 ± 0.08 | 0.24 ± 0.21 | 0.001 2 |
K-MMSE (2 years) | 24.53 ± 3.03 | 25.33 ± 2.48 | 23.23 ± 3.47 | 0.047 1 |
CDR (2 years) | 0.50 ± 0.00 | 0.50 ± 0.00 | 0.50 ± 0.00 | 1.000 2 |
CDR-SOB (2 years) | 1.37 ± 0.81 | 1.17 ± 0.73 | 1.70 ± 0.85 | 0.055 2 |
GDS (2 years) | 3.15 ± 0.50 | 3.00 ± 0.45 | 3.39 ± 0.51 | 0.029 2 |
K-IADL (2 years) | 0.21 ± 0.36 | 0.13 ± 0.25 | 0.34 ± 0.47 | 0.084 2 |
Variables | Remained MCI (n = 28) | AD Conversion at 2 Years (n = 6) | p-Value |
---|---|---|---|
Amyloid positivity by visual analysis | |||
Negative | 19 (90.5) | 2 (9.5) | 0.173 |
Positive | 9 (69.2) | 4 (30.8) | |
Amyloid positivity by quantitative analysis | |||
Negative | 20 (90.9) | 2 (9.1) | 0.154 |
Positive | 8 (66.7) | 4 (33.3) | |
Composite | |||
<1.186 | 20 (90.9) | 2 (9.1) | 0.154 |
≥1.186 | 8 (66.7) | 4 (33.3) | |
Frontal lobe | |||
<1.094 | 16 (88.9) | 2 (11.1) | 0.387 |
≥1.094 | 12 (75.0) | 4 (25.0) | |
Lateral temporal lobe | |||
<1.254 | 19 (88.4) | 3 (13.6) | 0.641 |
≥1.254 | 9 (75.0) | 3 (25.0) | |
Parietal lobe | |||
<1.154 | 19 (90.5) | 2 (9.5) | 0.173 |
≥1.154 | 9 (69.2) | 4 (30.8) | |
Occipital lobe | |||
<1.245 | 16 (94.1) | 1 (5.9) | 0.175 |
≥1.245 | 12 (70.6) | 5 (29.4) | |
Anterior cingulate | |||
<1.368 | 21 (87.5) | 3 (12.5) | 0.328 |
≥1.368 | 7 (70.0) | 3 (30.0) | |
Posterior cingulate | |||
<1.380 | 18 (94.7) | 1 (5.3) | 0.066 |
≥1.380 | 10 (66.7) | 5 (33.3) |
Variables | Overall (n = 34) | Remained MCI (n = 28) | AD Conversion at 2 Years (n = 6) | p-Value |
---|---|---|---|---|
Sex (female) | 22 (64.7) | 19 (67.9) | 3 (50.0) | 0.641 4 |
Age (year) | 70.77 ± 6.14 | 70.86 ± 6.28 | 70.33 ± 5.92 | 0.853 1 |
Education (years) | 10.12 ± 3.60 | 10.25 ± 3.60 | 9.50 ± 3.89 | 0.643 2 |
APOE4 genotyping | ||||
Noncarrier | 21 (77.8) | 18 (78.3) | 3 (75.0) | 0.867 3 |
Heterozygote | 5 (18.5) | 4 (17.4) | 1 (25.0) | |
Homozygote | 1 (3.7) | 1 (4.3) | 0 (0.0) | |
White matter hyperintensities | 4 (14.3) | 3 (13.0) | 1 (20.0) | 1.000 4 |
Medial temporal atrophy | 11(39.3) | 9(39.1) | 2(40.0) | 1.000 4 |
MCI subtype | ||||
Amnestic multiple | 26 (76.5) | 21 (75.0) | 5 (83.3) | 1.000 4 |
Nonamnestic multiple | 8 (23.5) | 7 (25.0) | 1 (16.7) | |
K-MMSE (baseline) | 25.94 ± 2.72 | 26.32 ± 2.23 | 24.17 ± 4.17 | 0.268 1 |
CDR (baseline) | 0.50 ± 0.00 | 0.50 ± 0.00 | 0.50 ± 0.00 | 1.000 2 |
CDR-SOB (baseline) | 1.60 ± 0.76 | 1.43 ± 0.65 | 2.42 ± 0.74 | 0.002 1 |
GDS (baseline) | 3.03 ± 0.30 | 3.0 ± 0.27 | 3.17 ± 0.41 | 0.215 2 |
K-IADL (baseline) | 0.10 ± 0.16 | 0.09 ± 0.16 | 0.17 ± 0.15 | 0.081 2 |
K-MMSE (1 year) | 25.27 ± 2.91 | 25.79 ± 2.71 | 22.83 ± 2.71 | 0.022 2 |
CDR (1 year) | 0.50 ± 0.00 | 0.50 ± 0.00 | 0.50 ± 0.00 | 1.000 2 |
CDR-SOB (1 year) | 1.46 ± 0.85 | 1.21 ± 0.67 | 2.58 ± 0.66 | 0.001 2 |
GDS (1 year) | 3.09 ± 0.38 | 3.00 ± 0.27 | 3.50 ± 0.55 | 0.003 2 |
K-IADL (1 year) | 0.13 ± 0.16 | 0.11 ± 0.12 | 0.27 ± 0.28 | 0.069 2 |
K-MMSE (2 years) | 24.53 ± 3.03 | 25.18 ± 2.74 | 21.5 ± 2.59 | 0.005 1 |
CDR (2 years) | 0.50 ± 0.00 | 0.50 ± 0.00 | 0.50 ± 0.00 | 1.000 2 |
CDR-SOB (2 years) | 1.37 ± 0.81 | 1.14 ± 0.65 | 2.42 ± 0.66 | 0.002 2 |
GDS (2 years) | 3.15 ± 0.50 | 3.00 ± 0.38 | 3.83 ± 0.41 | 0.000 2 |
K-IADL (2 years) | 0.21 ± 0.36 | 0.12 ± 0.20 | 0.62 ± 0.62 | 0.0801 |
Variables | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | |
Sex (female) | 0.530 | (0.107–2.626) | 0.437 | |||
Age (year) | 0.984 | (0.862–1.124) | 0.814 | |||
Education (years) | 0.941 | (0.744–1.189) | 0.610 | |||
APOE4 genotyping | ||||||
Noncarrier | 1.000 | |||||
Heterozygote | 8046.5 | (0.000–24,541) | 0.969 | |||
Homozygote | 12,267.8 | (0.000–37,528) | 0.968 | |||
White matter hyperintensities | 1.545 | (0.173–13.834) | 0.697 | |||
Medial temporal atrophy | 1.046 | (0.175–6.260) | 0.961 | |||
MCI subtype | ||||||
Amnestic multiple | 1.000 | |||||
Nonamnestic multiple | 1.630 | (0.190–13.965) | 0.656 | |||
Amyloid positive by visual analysis | ||||||
Amyloid positive | 3.475 | (0.635–19.009) | 0.151 | |||
Amyloid positive by quantitative analysis (SUVR cutoff value) | ||||||
Composite (≥1.186) | 3.982 | (0.728–21.794) | 0.111 | |||
Frontal lobe (≥1.094) | 2.368 | (0.433–12.939) | 0.320 | |||
Lateral temporal lobe (≥1.254) | 1.887 | (0.381–9.354) | 0.437 | |||
Parietal lobe (≥1.154) | 3.475 | (0.635–19.009) | 0.151 | |||
Occipital lobe (≥1.245) | 5.235 | (0.611–44.832) | 0.131 | |||
Anterior cingulate (≥1.368) | 2.522 | (0.506–12.453) | 0.260 | |||
Posterior cingulate (≥1.380) | 6.715 | (0.784–57.531) | 0.082 | |||
K-MMSE (baseline) | 0.798 | (0.624–1.021) | 0.073 | |||
CDR (baseline) | - | - | - | |||
CDR-SOB (baseline) | 4.095 | (1.441–11.643) | 0.008 | 3.757 | (1.041–13.556) | 0.043 |
GDS (baseline) | 3.903 | (0.500–30.490) | 0.194 | |||
K-IADL (baseline) | 5.290 | (0.179–156.10) | 0.335 | |||
K-MMSE (1 year) | 0.712 | (0.519–0.975) | 0.034 | 0.629 | (0.395–1.001) | 0.051 |
CDR (1 year) | - | - | - | |||
CDR-SOB (1 year) | 5.376 | (1.760–16.419) | 0.003 | |||
GDS (1 year) | 9.013 | (1.811–44.856) | 0.007 | |||
K-IADL (1 year) | 30.567 | (1.299–719.04) | 0.034 | |||
K-MMSE (2 years) | 0.668 | (0.487–0.917) | 0.013 | |||
CDR (2 years) | - | - | - | |||
CDR-SOB (2 years) | 4.415 | (1.656–11.767) | 0.003 | |||
GDS (2 years) | 21.839 | (2.551–186.98) | 0.005 | |||
K-IADL (2 years) | 5.542 | (1.431–21.462) | 0.013 | 8.069 | (0.997–65.311) | 0.050 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Yoon, D.; Seong, J.; Jeong, Y.J.; Kang, D.-Y.; Park, K.W. Clinical and Neuroimaging Predictors of Alzheimer’s Dementia Conversion in Patients with Mild Cognitive Impairment Using Amyloid Positron Emission Tomography by Quantitative Analysis over 2 Years. Int. J. Environ. Res. Public Health 2024, 21, 547. https://doi.org/10.3390/ijerph21050547
Kim S, Yoon D, Seong J, Jeong YJ, Kang D-Y, Park KW. Clinical and Neuroimaging Predictors of Alzheimer’s Dementia Conversion in Patients with Mild Cognitive Impairment Using Amyloid Positron Emission Tomography by Quantitative Analysis over 2 Years. International Journal of Environmental Research and Public Health. 2024; 21(5):547. https://doi.org/10.3390/ijerph21050547
Chicago/Turabian StyleKim, Seonjeong, Daye Yoon, Junho Seong, Young Jin Jeong, Do-Young Kang, and Kyung Won Park. 2024. "Clinical and Neuroimaging Predictors of Alzheimer’s Dementia Conversion in Patients with Mild Cognitive Impairment Using Amyloid Positron Emission Tomography by Quantitative Analysis over 2 Years" International Journal of Environmental Research and Public Health 21, no. 5: 547. https://doi.org/10.3390/ijerph21050547
APA StyleKim, S., Yoon, D., Seong, J., Jeong, Y. J., Kang, D. -Y., & Park, K. W. (2024). Clinical and Neuroimaging Predictors of Alzheimer’s Dementia Conversion in Patients with Mild Cognitive Impairment Using Amyloid Positron Emission Tomography by Quantitative Analysis over 2 Years. International Journal of Environmental Research and Public Health, 21(5), 547. https://doi.org/10.3390/ijerph21050547