Impact of Specific Bioactive Collagen Peptides on Joint Discomforts in the Lower Extremity during Daily Activities: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
- Diagnosis of acute injuries within the last 6 weeks;
- Structural joint diseases of the knee or hip as osteoarthritis and rheumatoid arthritis;
- Use of high-dose analgesic therapy over a longer period (>2 weeks), intra-articular injections or the ingestion of glucosamine, chondroitin, hyaluronic acid or collagen products in the last 6 months;
- Comorbidity, age-induced frailty or dementia that was reported during the anamnesis;
- Change in weight of more than ±5 kg within 3 months;
- Changes in lifestyle patterns as diet and activity habits (self-reported).
2.2. Investigational Product
2.3. Efficacy Endpoints
- Pain at rest: “pain when lying down”, “pain when sitting”, “pain when standing”;
- Pain during activity: “pain when walking”, “pain when climbing stairs”, “pain when getting up from a chair”, “pain when kneeling down”, “pain when carrying purchases”;
- Joint stiffness: “initial joint stiffness in the morning”, “stiffness when getting up from a chair”;
- Restriction during everyday activities: “when walking”, “when climbing stairs”, “when getting up from a chair”, “when squatting”.
2.4. Statistical Analysis
3. Results
3.1. Subjects
3.2. Analysis of Joint Health Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Briggs, A.M.; Cross, M.J.; Hoy, D.G.; Sànchez-Riera, L.; Blyth, F.M.; Woolf, A.D.; March, L. Musculoskeletal Health Conditions Represent a Global Threat to Healthy Aging: A Report for the 2015 World Health Organization World Report on Ageing and Health. Gerontologist 2016, 56, S243–S255. [Google Scholar] [CrossRef]
- Fuchs, J.; Rabenberg, M.; Scheidt-Nave, C. Prevalence of selected musculoskeletal conditions in Germany: Results of the German Health Interview and Examination Survey for Adults (DEGS1). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2013, 56, 678–686. [Google Scholar] [CrossRef] [PubMed]
- Bedson, J.; Croft, P.R. The Discordance between Clinical and Radiographic Knee Osteoarthritis: A Systematic Search and Summary of the Literature. BMC Musculoskelet. Disord. 2008, 9, 116. [Google Scholar] [CrossRef] [PubMed]
- Eitner, A.; Hofmann, G.O.; Schaible, H.-G. Mechanisms of Osteoarthritic Pain. Studies in Humans and Experimental Models. Front. Mol. Neurosci. 2017, 10, 349. [Google Scholar] [CrossRef] [PubMed]
- Arrich, J.; Piribauer, F.; Mad, P.; Schmid, D.; Klaushofer, K.; Müllner, M. Intra-Articular Hyaluronic Acid for the Treatment of Osteoarthritis of the Knee: Systematic Review and Meta-Analysis. CMAJ 2005, 172, 1039–1043. [Google Scholar] [CrossRef]
- Karlsson, J.; Sjögren, L.S.; Lohmander, L.S. Comparison of Two Hyaluronan Drugs and Placebo in Patients with Knee Osteoarthritis. A Controlled, Randomized, Double-Blind, Parallel-Design Multicentre Study. Rheumatology 2002, 41, 1240–1248. [Google Scholar] [CrossRef] [PubMed]
- Martin Martin, L.S.; Massafra, U.; Bizzi, E.; Migliore, A. A Double Blind Randomized Active-Controlled Clinical Trial on the Intra-Articular Use of Md-Knee versus Sodium Hyaluronate in Patients with Knee Osteoarthritis (“Joint”). BMC Musculoskelet. Disord. 2016, 17, 94. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-T.; Lin, J.; Chang, C.-J.; Lin, Y.-T.; Hou, S.-M. Therapeutic Effects of Hyaluronic Acid on Osteoarthritis of the Knee. A Meta-Analysis of Randomized Controlled Trials. J. Bone Jt. Surg. Am. 2004, 86, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Hildner, F.; Albrecht, C.; Gabriel, C.; Redl, H.; van Griensven, M. State of the Art and Future Perspectives of Articular Cartilage Regeneration: A Focus on Adipose-Derived Stem Cells and Platelet-Derived Products. J. Tissue Eng. Regen. Med. 2011, 5, e36–e51. [Google Scholar] [CrossRef] [PubMed]
- Uthman, I.; Raynauld, J.-P.; Haraoui, B. Intra-Articular Therapy in Osteoarthritis. Postgrad. Med. J. 2003, 79, 449–453. [Google Scholar] [CrossRef] [PubMed]
- Ruano-Ravina, A.; Jato Díaz, M. Autologous Chondrocyte Implantation: A Systematic Review. Osteoarthr. Cartil. 2006, 14, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Betti, M. Transepithelial Transport Efficiency of Bovine Collagen Hydrolysates in a Human Caco-2 Cell Line Model. Food Chem. 2017, 224, 242–250. [Google Scholar] [CrossRef]
- Fu, Y.; Young, J.F.; Rasmussen, M.K.; Dalsgaard, T.K.; Lametsch, R.; Aluko, R.E.; Therkildsen, M. Angiotensin I-Converting Enzyme-Inhibitory Peptides from Bovine Collagen: Insights into Inhibitory Mechanism and Transepithelial Transport. Food Res. Int. 2016, 89, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Osawa, Y.; Mizushige, T.; Jinno, S.; Sugihara, F.; Inoue, N.; Tanaka, H.; Kabuyama, Y. Absorption and Metabolism of Orally Administered Collagen Hydrolysates Evaluated by the Vascularly Perfused Rat Intestine and Liver in Situ. Biomed. Res. 2018, 39, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, K.; Sato, M.; Zhang, Y.; Kouguchi, T.; Takahata, Y.; Morimatsu, F.; Shimizu, M. Molecular Size of Collagen Peptide Reverses the Permeability of Caco-2 Cells. Biosci. Biotechnol. Biochem. 2010, 74, 1123–1125. [Google Scholar] [CrossRef] [PubMed]
- Taga, Y.; Kusubata, M.; Ogawa-Goto, K.; Hattori, S. Highly Accurate Quantification of Hydroxyproline-Containing Peptides in Blood Using a Protease Digest of Stable Isotope-Labeled Collagen. J. Agric. Food Chem. 2014, 62, 12096–12102. [Google Scholar] [CrossRef] [PubMed]
- Taga, Y.; Kusubata, M.; Ogawa-Goto, K.; Hattori, S. Efficient Absorption of X-Hydroxyproline (Hyp)-Gly after Oral Administration of a Novel Gelatin Hydrolysate Prepared Using Ginger Protease. J. Agric. Food Chem. 2016, 64, 2962–2970. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Q.; Liang, Q.; He, Y.; Wang, Z.; He, S.; Xu, J.; Ma, H. Determination of Bioavailability and Identification of Collagen Peptide in Blood after Oral Ingestion of Gelatin. J. Sci. Food Agric. 2015, 95, 2712–2717. [Google Scholar] [CrossRef] [PubMed]
- Alcock, R.D.; Shaw, G.C.; Burke, L.M. Bone Broth Unlikely to Provide Reliable Concentrations of Collagen Precursors Compared With Supplemental Sources of Collagen Used in Collagen Research. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Schadow, S.; Siebert, H.-C.; Lochnit, G.; Kordelle, J.; Rickert, M.; Steinmeyer, J. Collagen Metabolism of Human Osteoarthritic Articular Cartilage as Modulated by Bovine Collagen Hydrolysates. PLoS ONE 2013, 8, e53955. [Google Scholar] [CrossRef] [PubMed]
- Schadow, S.; Simons, V.S.; Lochnit, G.; Kordelle, J.; Gazova, Z.; Siebert, H.-C.; Steinmeyer, J. Metabolic Response of Human Osteoarthritic Cartilage to Biochemically Characterized Collagen Hydrolysates. Int. J. Mol. Sci. 2017, 18, 207. [Google Scholar] [CrossRef]
- Stötzel, S.; Schurink, M.; Wienk, H.; Siebler, U.; Burg-Roderfeld, M.; Eckert, T.; Kulik, B.; Wechselberger, R.; Sewing, J.; Steinmeyer, J.; et al. Molecular Organization of Various Collagen Fragments as Revealed by Atomic Force Microscopy and Diffusion-Ordered NMR Spectroscopy. Chemphyschem 2012, 13, 3117–3125. [Google Scholar] [CrossRef] [PubMed]
- Duconseille, A.; Astruc, T.; Quintana, N.; Meersman, F.; Sante-Lhoutellier, V. Gelatin Structure and Composition Linked to Hard Capsule Dissolution: A Review. Food Hydrocoll. 2015, 43, 360–376. [Google Scholar] [CrossRef]
- Gómez-Guillén, M.C.; Giménez, B.; López-Caballero, M.E.; Montero, M.P. Functional and Bioactive Properties of Collagen and Gelatin from Alternative Sources: A Review. Food Hydrocoll. 2011, 25, 1813–1827. [Google Scholar] [CrossRef]
- Ichikawa, S.; Morifuji, M.; Ohara, H.; Matsumoto, H.; Takeuchi, Y.; Sato, K. Hydroxyproline-Containing Dipeptides and Tripeptides Quantified at High Concentration in Human Blood after Oral Administration of Gelatin Hydrolysate. Int. J. Food Sci. Nutr. 2010, 61, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Nikoo, M.; Boran, G.; Zhou, P.; Regenstein, J.M. Collagen and Gelatin. Annu. Rev. Food Sci. Technol. 2015, 6, 527–557. [Google Scholar] [CrossRef] [PubMed]
- Offengenden, M.; Chakrabarti, S.; Wu, J. Chicken Collagen Hydrolysates Differentially Mediate Anti-Inflammatory Activity and Type I Collagen Synthesis on Human Dermal Fibroblasts. Food Sci. Human Wellness 2018, 7, 138–147. [Google Scholar] [CrossRef]
- Isaka, S.; Someya, A.; Nakamura, S.; Naito, K.; Nozawa, M.; Inoue, N.; Sugihara, F.; Nagaoka, I.; Kaneko, K. Evaluation of the Effect of Oral Administration of Collagen Peptides on an Experimental Rat Osteoarthritis Model. Exp. Ther. Med. 2017, 13, 2699–2706. [Google Scholar] [CrossRef] [PubMed]
- Nakatani, S.; Mano, H.; Sampei, C.; Shimizu, J.; Wada, M. Chondroprotective Effect of the Bioactive Peptide Prolyl-Hydroxyproline in Mouse Articular Cartilage in Vitro and in Vivo. Osteoarthr. Cartil. 2009, 17, 1620–1627. [Google Scholar] [CrossRef] [PubMed]
- Ng, K.W.; Saliman, J.D.; Lin, E.Y.; Statman, L.Y.; Kugler, L.E.; Lo, S.B.; Ateshian, G.A.; Hung, C.T. Culture Duration Modulates Collagen Hydrolysate-Induced Tissue Remodeling in Chondrocyte-Seeded Agarose Hydrogels. Ann. Biomed. Eng. 2007, 35, 1914–1923. [Google Scholar] [CrossRef] [PubMed]
- Oesser, S.; Seifert, J. Stimulation of Type II Collagen Biosynthesis and Secretion in Bovine Chondrocytes Cultured with Degraded Collagen. Cell Tissue Res. 2003, 311, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Ohara, H.; Iida, H.; Ito, K.; Takeuchi, Y.; Nomura, Y. Effects of Pro-Hyp, a Collagen Hydrolysate-Derived Peptide, on Hyaluronic Acid Synthesis Using in Vitro Cultured Synovium Cells and Oral Ingestion of Collagen Hydrolysates in a Guinea Pig Model of Osteoarthritis. Biosci. Biotechnol. Biochem. 2010, 74, 2096–2099. [Google Scholar] [CrossRef] [PubMed]
- McAlindon, T.E.; Nuite, M.; Krishnan, N.; Ruthazer, R.; Price, L.L.; Burstein, D.; Griffith, J.; Flechsenhar, K. Change in Knee Osteoarthritis Cartilage Detected by Delayed Gadolinium Enhanced Magnetic Resonance Imaging Following Treatment with Collagen Hydrolysate: A Pilot Randomized Controlled Trial. Osteoarthr. Cartil. 2011, 19, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Benito-Ruiz, P.; Camacho-Zambrano, M.M.; Carrillo-Arcentales, J.N.; Mestanza-Peralta, M.A.; Vallejo-Flores, C.A.; Vargas-López, S.V.; Villacís-Tamayo, R.A.; Zurita-Gavilanes, L.A. A Randomized Controlled Trial on the Efficacy and Safety of a Food Ingredient, Collagen Hydrolysate, for Improving Joint Comfort. Int. J. Food Sci. Nutr. 2009, 60 (Suppl. S2), 99–113. [Google Scholar] [CrossRef] [PubMed]
- Bruyère, O.; Zegels, B.; Leonori, L.; Rabenda, V.; Janssen, A.; Bourges, C.; Reginster, J.-Y. Effect of Collagen Hydrolysate in Articular Pain: A 6-Month Randomized, Double-Blind, Placebo Controlled Study. Complement. Ther. Med. 2012, 20, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Clark, K.L.; Sebastianelli, W.; Flechsenhar, K.R.; Aukermann, D.F.; Meza, F.; Millard, R.L.; Deitch, J.R.; Sherbondy, P.S.; Albert, A. 24-Week Study on the Use of Collagen Hydrolysate as a Dietary Supplement in Athletes with Activity-Related Joint Pain. Curr. Med. Res. Opin. 2008, 24, 1485–1496. [Google Scholar] [CrossRef] [PubMed]
- Figueres Juher, T.; Basés Pérez, E. An overview of the beneficial effects of hydrolysed collagen intake on joint and bone health and on skin ageing. Nutr. Hosp. 2015, 32 (Suppl. S1), 62–66. [Google Scholar] [CrossRef]
- García-Coronado, J.M.; Martínez-Olvera, L.; Elizondo-Omaña, R.E.; Acosta-Olivo, C.A.; Vilchez-Cavazos, F.; Simental-Mendía, L.E.; Simental-Mendía, M. Effect of Collagen Supplementation on Osteoarthritis Symptoms: A Meta-Analysis of Randomized Placebo-Controlled Trials. Int. Orthop. 2019, 43, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Jiang, I.-X.; Yu, S.; Huang, X.-L.; Zhang, C.-Q.; Zhou, J.-L.; Prawitt, J. Collagen Peptides Improve Knee Osteoarthritis in Elderly Women. Agro Food Ind. Hi Tech 2014, 25, 19–23. [Google Scholar]
- Moskowitz, R.W. Role of Collagen Hydrolysate in Bone and Joint Disease. Semin. Arthritis Rheum. 2000, 30, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Zdzieblik, D.; Oesser, S.; Gollhofer, A.; König, D. Improvement of Activity-Related Knee Joint Discomfort Following Supplementation of Specific Collagen Peptides. Appl. Physiol. Nutr. Metab. 2017, 42, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Zdzieblik, D.; Brame, J.; Oesser, S.; Gollhofer, A.; König, D. The Influence of Specific Bioactive Collagen Peptides on Knee Joint Discomfort in Young Physically Active Adults: A Randomized Controlled Trial. Nutrients 2021, 13, 523. [Google Scholar] [CrossRef] [PubMed]
- Newman, C.; Adriaens, E.; Virgilio, N.; Vleminckx, S.; de Pelsmaeker, S.; Prawitt, J.; Silva, C.I.F. Development of a Mobile App to Monitor the Effectiveness of a Hydrolyzed Cartilage Matrix Supplement on Joint Discomfort: Real-World Study. JMIR Form. Res. 2023, 7, e42967. [Google Scholar] [CrossRef] [PubMed]
- Schön, C.; Knaub, K.; Alt, W.; Durkee, S.; Saiyed, Z.; Juturu, V. UC-II Undenatured Type II Collagen for Knee Joint Flexibility: A Multicenter, Randomized, Double-Blind, Placebo-Controlled Clinical Study. J. Integr. Complement. Med. 2022, 28, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Lugo, J.P.; Saiyed, Z.M.; Lau, F.C.; Molina, J.P.L.; Pakdaman, M.N.; Shamie, A.N.; Udani, J.K. Undenatured Type II Collagen (UC-II®) for Joint Support: A Randomized, Double-Blind, Placebo-Controlled Study in Healthy Volunteers. J. Int. Soc. Sports Nutr. 2013, 10, 48. [Google Scholar] [CrossRef] [PubMed]
- Kriz, P. Overuse Injuries in the Young Athlete. Med. Health R. I. 2011, 94, 203, 206–208. [Google Scholar] [PubMed]
- Nygaard, N.-P.B.; Thomsen, G.F.; Rasmussen, J.; Skadhauge, L.R.; Gram, B. Ergonomic and Individual Risk Factors for Musculoskeletal Pain in the Ageing Workforce. BMC Public Health 2022, 22, 1975. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Moon, J.H.; Kim, H.J.; Kong, M.H.; Oh, Y.H. Sedentary Lifestyle: Overview of Updated Evidence of Potential Health Risks. Korean J. Fam. Med. 2020, 41, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Linton, S.J.; Shaw, W.S. Impact of Psychological Factors in the Experience of Pain. Phys. Ther. 2011, 91, 700–711. [Google Scholar] [CrossRef] [PubMed]
- Inoue, S.; Taguchi, T.; Yamashita, T.; Nakamura, M.; Ushida, T. The Prevalence and Impact of Chronic Neuropathic Pain on Daily and Social Life: A Nationwide Study in a Japanese Population. Eur. J. Pain. 2017, 21, 727–737. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.; He, S. A Double-Blind, Randomized, Placebo-Controlled Trial to Evaluate the Efficacy of a Hydrolyzed Chicken Collagen Type II Supplement in Alleviating Joint Discomfort. Nutrients 2021, 13, 2454. [Google Scholar] [CrossRef] [PubMed]
- Urbaniak, G.C.; Plous, S. Research Randomizer (Version 3.0). Available online: https://www.randomizer.org/about/ (accessed on 29 January 2013).
- Volpi, P.; Zini, R.; Erschbaumer, F.; Beggio, M.; Busilacchi, A.; Carimati, G. Effectiveness of a Novel Hydrolyzed Collagen Formulation in Treating Patients with Symptomatic Knee Osteoarthritis: A Multicentric Retrospective Clinical Study. Int. Orthop. 2021, 45, 375–380. [Google Scholar] [CrossRef] [PubMed]
- García-Domingo, M.I.; Alijotas-Reig, J.; Cisteró-Bahima, A.; Tresserra, F.; Enrique, E. Disseminated and Recurrent Sarcoid-like Granulomatous Panniculitis Due to Bovine Collagen Injection. J. Investig. Allergol. Clin. Immunol. 2000, 10, 107–109. [Google Scholar] [PubMed]
- Aito-Inoue, M.; Lackeyram, D.; Fan, M.Z.; Sato, K.; Mine, Y. Transport of a Tripeptide, Gly-Pro-Hyp, across the Porcine Intestinal Brush-Border Membrane. J. Pept. Sci. 2007, 13, 468–474. [Google Scholar] [CrossRef]
- Guo, L.; Harnedy, P.A.; Zhang, L.; Li, B.; Zhang, Z.; Hou, H.; Zhao, X.; FitzGerald, R.J. In Vitro Assessment of the Multifunctional Bioactive Potential of Alaska Pollock Skin Collagen Following Simulated Gastrointestinal Digestion. J. Sci. Food Agric. 2015, 95, 1514–1520. [Google Scholar] [CrossRef] [PubMed]
- Sarmadi, B.H.; Ismail, A. Antioxidative Peptides from Food Proteins: A Review. Peptides 2010, 31, 1949–1956. [Google Scholar] [CrossRef] [PubMed]
- Aleman, A.; Martinez-Alvarez, O. Marine Collagen as a Source of Bioactive Molecules: A Review. Nat. Prod. J. 2013, 3, 105–114. [Google Scholar] [CrossRef]
- Bongers, C.C.W.G.; Ten Haaf, D.S.M.; Catoire, M.; Kersten, B.; Wouters, J.A.; Eijsvogels, T.M.H.; Hopman, M.T.E. Effectiveness of Collagen Supplementation on Pain Scores in Healthy Individuals with Self-Reported Knee Pain: A Randomized Controlled Trial. Appl. Physiol. Nutr. Metab. 2020, 45, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-C.; Chang, S.-S.; Chang, C.-H.; Hu, C.-C.; Nakao, Y.; Yong, S.M.; Mandy, Y.L.O.; Lim, C.J.; Shim, E.K.-S.; Shih, H.-N. Randomized, Double-Blind, Four-Arm Pilot Study on the Effects of Chicken Essence and Type II Collagen Hydrolysate on Joint, Bone, and Muscle Functions. Nutr. J. 2023, 22, 17. [Google Scholar] [CrossRef] [PubMed]
- Buckwalter, J.A.; Mankin, H.J.; Grodzinsky, A.J. Articular Cartilage and Osteoarthritis. Instr. Course Lect. 2005, 54, 465–480. [Google Scholar] [PubMed]
- Helminen, H.J.; Hyttinen, M.M.; Lammi, M.J.; Arokoski, J.P.; Lapveteläinen, T.; Jurvelin, J.; Kiviranta, I.; Tammi, M.I. Regular Joint Loading in Youth Assists in the Establishment and Strengthening of the Collagen Network of Articular Cartilage and Contributes to the Prevention of Osteoarthrosis Later in Life: A Hypothesis. J. Bone Miner. Metab. 2000, 18, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.M.; Wilson, W.; Ito, K.; van Donkelaar, C.C. A Numerical Model to Study Mechanically Induced Initiation and Progression of Damage in Articular Cartilage. Osteoarthr. Cartil. 2014, 22, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Mawatari, T.; Lindsey, D.P.; Harris, A.H.S.; Goodman, S.B.; Maloney, W.J.; Smith, R.L. Effects of Tensile Strain and Fluid Flow on Osteoarthritic Human Chondrocyte Metabolism in Vitro. J. Orthop. Res. 2010, 28, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Iatridis, J.C.; Hlibczuk, V.; Ratcliffe, A.; Mow, V.C. Determination of Collagen-Proteoglycan Interactions in Vitro. J. Biomech. 1996, 29, 773–783. [Google Scholar] [CrossRef] [PubMed]
- Clements, K.M.; Hollander, A.P.; Sharif, M.; Adams, M.A. Cyclic Loading Can Denature Type II Collagen in Articular Cartilage. Connect. Tissue Res. 2004, 45, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Kafka, V. Surface Fissures in Articular Cartilage: New Concepts, Hypotheses and Modeling. Clin. Biomech. 2002, 17, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Kerin, A.J.; Coleman, A.; Wisnom, M.R.; Adams, M.A. Propagation of Surface Fissures in Articular Cartilage in Response to Cyclic Loading in Vitro. Clin. Biomech. 2003, 18, 960–968. [Google Scholar] [CrossRef] [PubMed]
- Steinmeyer, J.; Knue, S.; Raiss, R.X.; Pelzer, I. Effects of Intermittently Applied Cyclic Loading on Proteoglycan Metabolism and Swelling Behaviour of Articular Cartilage Explants. Osteoarthr. Cartil. 1999, 7, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Boonmaleerat, K.; Wanachewin, O.; Phitak, T.; Pothacharoen, P.; Kongtawelert, P. Fish Collagen Hydrolysates Modulate Cartilage Metabolism. Cell Biochem. Biophys. 2017, 76, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Comblain, F.; Sanchez, C.; Lesponne, I.; Balligand, M.; Serisier, S.; Henrotin, Y. Curcuminoids Extract, Hydrolyzed Collagen and Green Tea Extract Synergically Inhibit Inflammatory and Catabolic Mediator’s Synthesis by Normal Bovine and Osteoarthritic Human Chondrocytes in Monolayer. PLoS ONE 2015, 10, e0121654. [Google Scholar] [CrossRef]
- de Almeida Jackix, E.; Cúneo, F.; Amaya-Farfan, J.; de Assunção, J.V.; Quintaes, K.D. A Food Supplement of Hydrolyzed Collagen Improves Compositional and Biodynamic Characteristics of Vertebrae in Ovariectomized Rats. J. Med. Food 2010, 13, 1385–1390. [Google Scholar] [CrossRef] [PubMed]
- Oesser, S.; Haggenmüller, D.; Schulze, C.H. Collagen Hydrolysate Modulates the Extracellular Matrix Metabolism of Human Chondrocytes. Ann. Rheum. Dis. 2006, 65 (Suppl. S2), 401. [Google Scholar]
- Schunck, M.; Schulze, C.H.; Oesser, S. Collagen Peptide Supplementation Stimulates Proteoglycan Biosynthesis and Aggrecan Expression of Articular Chondrocytes. Osteoarthr. Cartil. 2009, 17, S143. [Google Scholar] [CrossRef]
- Oesser, S.; Proksch, E.; Schunck, M. Prophylactic Treatment with a Specific Collagen Hydrolysate Decreases Cartilage Tissue Degeneration in Knee Joints. Osteoarthr. Cartil. 2008, 16, S45. [Google Scholar] [CrossRef]
CP-G (n = 74) | P-G (n = 80) | p Value | |
---|---|---|---|
Age [y] | 51.9 ± 12.9 | 49.8 ± 12.7 | 0.376 |
Gender (female/male) | 42/32 | 50/30 | 0.742 |
Height [m] | 1.71 ± 0.086 | 1.74 ± 0.103 | 0.454 |
Body weight [kg] | 80.9 ± 16.4 | 84.0 ± 20.4 | 0.247 |
BMI [kg/m2] | 27.5 ± 5.22 | 27.6 ± 5.5 | 0.803 |
CP-G (n = 74) | P-G (n = 80) | p Value | Cohen’s d | |||||
---|---|---|---|---|---|---|---|---|
V0 | V12 | ΔNRS (abs.) | V0 | V12 | ΔNRS (abs.) | |||
Evaluation of pain by the physician | ||||||||
At rest | 2.92 ± 2.09 | 1.77 ± 1.18 *** | 1.15 ± 1.80 | 2.90 ± 1.83 | 2.35 ± 1.66 *** | 0.550 ± 1.74 | 0.018 | 0.339 |
During walking | 4.24 ± 2.01 | 2.57 ± 1.78 *** | 1.68 ± 1.48 | 4.33 ± 1.68 | 3.19 ± 1.84 ** | 1.14 ± 2.12 | 0.032 | 0.295 |
After 10 × climbing stairs | 4.47 ± 2.30 | 2.70 ± 2.10 *** | 1.77 ± 2.11 | 4.11 ± 2.18 | 2.90 ± 2.05 *** | 1.21 ± 1.72 | 0.056 | 0.291 |
Evaluation of pain at rest by the participant | ||||||||
When lying down | 2.45 ± 1.67 | 1.69 ± 1.25 *** | 0.760 ± 1.36 | 2.94 ± 2.06 | 2.16 ± 1.56 *** | 0.780 ± 1.80 | 0.670 | 0.013 |
When sitting | 2.65 ± 1.57 | 1.78 ± 1.21 *** | 0.860 ± 1.45 | 2.91 ± 1.88 | 2.31 ± 1.70 *** | 0.600 ± 1.29 | 0.207 | 0.189 |
When standing | 3.36 ± 2.01 | 2.19 ± 1.46 *** | 1.18 ± 1.72 | 3.51 ± 1.86 | 2.74 ± 1.77 *** | 0.780 ± 1.41 | 0.070 | 0.254 |
Evaluation of pain during activity by the participant | ||||||||
When walking | 4.22 ± 1.88 | 2.81 ± 1.69 *** | 1.41 ± 1.53 | 4.34 ± 1.70 | 3.29 ± 1.81 *** | 1.05 ± 1.79 | 0.080 | 0.216 |
When climbing stairs | 5.20 ± 2.10 | 3.26 ± 1.98 *** | 1.95 ± 1.92 | 4.95 ± 2.72 | 3.69 ± 2.19 *** | 1.26 ± 2.26 | 0.040 | 0.329 |
When getting up from chair | 4.35 ± 2.17 | 2.81 ± 1.81 *** | 1.54 ± 1.63 | 4.38 ± 2.21 | 3.11 ± 1.98 *** | 1.26 ± 2.13 | 0.231 | 0.148 |
When kneeling down | 5.74 ± 2.26 | 3.65 ± 2.27 *** | 2.09 ± 1.92 | 5.86 ± 2.55 | 4.75 ± 2.57 *** | 1.11 ± 2.27 | <0.001 | 0.466 |
When carrying purchases | 3.96 ± 1.96 | 2.91 ± 1.91 *** | 1.05 ± 1.72 | 4.61 ± 2.16 | 3.36 ± 2.09 *** | 1.25 ± 2.16 | 0.655 | 0.102 |
Evaluation of joint stiffness by the participant | ||||||||
Initially in the morning | 3.69 ± 2.31 | 2.59 ± 1.75 *** | 1.09 ± 1.90 | 3.89 ± 2.26 | 3.06 ± 2.04 *** | 0.830 ± 1.99 | 0.349 | 0.134 |
When getting up from chair | 4.15 ± 2.42 | 2.85 ± 1.80 *** | 1.30 ± 2.02 | 4.38 ± 2.25 | 3.36 ± 2.03 *** | 1.01 ± 2.03 | 0.141 | 0.143 |
Evaluation of restriction during everyday activities by the participant | ||||||||
When walking | 2.92 ± 2.19 † | 2.32 ± 1.72 ** | 0.590 ± 1.53 | 3.44 ± 1.85 | 2.61 ± 1.69 *** | 0.830 ± 1.69 | 0.407 | 0.149 |
When climbing stairs | 4.12 ± 2.48 | 2.91 ± 2.02 *** | 1.22 ± 1.72 | 4.38 ± 2.32 | 3.28 ± 2.06 *** | 1.10 ± 2.09 | 0.608 | 0.063 |
When getting up from chair | 3.74 ± 2.32 | 2.53 ± 1.87 *** | 1.22 ± 1.75 | 3.80 ± 2.29 | 2.86 ± 1.79 *** | 0.940 ± 1.98 | 0.257 | 0.150 |
When squatting | 4.95 ± 2.63 | 3.26 ± 2.25 *** | 1.69 ± 1.80 | 5.46 ± 2.76 | 4.43 ± 2.47 *** | 1.04 ± 2.24 | 0.014 | 0.320 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schulze, C.; Schunck, M.; Zdzieblik, D.; Oesser, S. Impact of Specific Bioactive Collagen Peptides on Joint Discomforts in the Lower Extremity during Daily Activities: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2024, 21, 687. https://doi.org/10.3390/ijerph21060687
Schulze C, Schunck M, Zdzieblik D, Oesser S. Impact of Specific Bioactive Collagen Peptides on Joint Discomforts in the Lower Extremity during Daily Activities: A Randomized Controlled Trial. International Journal of Environmental Research and Public Health. 2024; 21(6):687. https://doi.org/10.3390/ijerph21060687
Chicago/Turabian StyleSchulze, Claas, Michael Schunck, Denise Zdzieblik, and Steffen Oesser. 2024. "Impact of Specific Bioactive Collagen Peptides on Joint Discomforts in the Lower Extremity during Daily Activities: A Randomized Controlled Trial" International Journal of Environmental Research and Public Health 21, no. 6: 687. https://doi.org/10.3390/ijerph21060687
APA StyleSchulze, C., Schunck, M., Zdzieblik, D., & Oesser, S. (2024). Impact of Specific Bioactive Collagen Peptides on Joint Discomforts in the Lower Extremity during Daily Activities: A Randomized Controlled Trial. International Journal of Environmental Research and Public Health, 21(6), 687. https://doi.org/10.3390/ijerph21060687