Wastewater-Based Epidemiology for SARS-CoV-2 in Northern Italy: A Spatiotemporal Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Population Analysis
2.2. Virus Concentration and Wastewater Flow Rate at the WWTP
2.3. Health Data
2.4. Model Equation
2.4.1. Population-Based Coefficient
2.4.2. Fecal Shedding Rate and Mass of Feces
2.4.3. Biodegradation
2.5. Uncertainty and Sensitivity Analysis
3. Results
3.1. Effect of Biodegradation
3.2. Predicted and Reported Infection Rates in the Study Area
3.3. Spatial Comparison of the Predicted and Reported Cases in Each Grouped Area
4. Discussion
4.1. Model Parameters
4.2. Effect of the Biodegradation and Contribution of Each Area
4.3. Health Variables Analysis to Compare the Predicted and Reported Infection Rates
4.4. Spatial Comparison of the Predicted and Reported Cases in Each Grouped Area
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Corchis-Scott, R.; Geng, Q.; Seth, R.; Ray, R.; Beg, M.R.; Biswas, N.; Charron, L.; Drouillard, K.D.; D’Souza, R.; Heath, D.D.; et al. Averting an Outbreak of SARS-CoV-2 in a University Residence Hall through Wastewater Surveillance. Microbiol. Spectr. 2021, 9, e00792-21. [Google Scholar] [CrossRef] [PubMed]
- Bertels, X.; Demeyer, P.; Van Den Bogaert, S.; Boogaerts, T.; Van Nuijs, A.L.N.; Delputte, P.; Lahousse, L. Factors influencing SARS-CoV-2 RNA concentrations in wastewater up to the sampling stage: A systematic review. Sci. Total Environ. 2022, 820, 153290. [Google Scholar] [CrossRef]
- Li, X.; Zhang, S.; Shi, J.; Luby, S.P.; Jiang, G. Uncertainties in estimating SARS-CoV-2 prevalence by wastewater-based epidemiology. Chem. Eng. J. 2021, 415, 129039. [Google Scholar] [CrossRef] [PubMed]
- Weidhaas, J.; Aanderud, Z.T.; Roper, D.K.; VanDerslice, J.; Gaddis, E.; Ostermiller, J.; Hoffman, K.; Jamal, R.; Heck, P.E.; Zhang, Y.; et al. Correlation of SARS-CoV-2 RNA in wastewater with COVID-19 disease burden in sewersheds. Sci. Total Environ. 2021, 775, 145790. [Google Scholar] [CrossRef] [PubMed]
- Robotto, A.; Lembo, D.; Quaglino, P.; Brizio, E.; Polato, D.; Civra, A.; Cusato, J.; Di Perri, G. Wastewater-based SARS-CoV-2 environmental monitoring for Piedmont, Italy. Environ. Res. 2022, 203, 111901. [Google Scholar] [CrossRef]
- Baldovin, T.; Amoruso, I.; Fonzo, M.; Bertoncello, C.; Groppi, V.; Pitter, G.; Russo, F.; Baldo, V. Trends in SARS-CoV-2 clinically confirmed cases and viral load in wastewater: A critical alignment for Padua city (NE Italy). Heliyon 2023, 9, e20571. [Google Scholar] [CrossRef]
- McMahan, C.S.; Self, S.; Rennert, L.; Kalbaugh, C.A.; Kriebel, P.D.; Graves, D.; Colby, C.; Deaver, B.J.A.; Popat, S.C.; Karanfil, P.T.; et al. COVID-19 wastewater epidemiology: A model to estimate infected populations. Lancet Planet. Health 2021, 5, e874–e881. [Google Scholar] [CrossRef]
- La Rosa, G.; Iaconelli, M.; Veneri, C.; Mancini, P.; Ferraro, G.B.; Brandtner, D.; Lucentini, L.; Bonadonna, L.; Rossi, M.; Grigioni, M.; et al. The rapid spread of SARS-COV-2 Omicron variant in Italy reflected early through wastewater surveillance. Sci. Total Environ. 2022, 837, 155767. [Google Scholar] [CrossRef]
- EUR-LEX—32021H0472—EN—EUR-LEX. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32021H0472&qid=1628798981209 (accessed on 27 May 2024).
- Ciannella, S.; González-Fernández, C.; Gómez-Pastora, J. Recent progress on wastewater-based epidemiology for COVID-19 surveillance: A systematic review of analytical procedures and epidemiological modeling. Sci. Total Environ. 2023, 878, 162953. [Google Scholar] [CrossRef]
- Rauch, W.; Schenk, H.; Insam, H.; Markt, R.; Kreuzinger, N. Data modelling recipes for SARS-CoV-2 wastewater-based epidemiology. Environ. Res. 2022, 214, 113809. [Google Scholar] [CrossRef]
- Morvan, M.; Lo Jacomo, A.; Souque, C.; Wade, M.J.; Hoffmann, T.; Pouwels, K.B.; Lilley, C.; Singer, A.C.; Porter, J.; Evens, N.; et al. An analysis of 45 large-scale wastewater sites in England to estimate SARS-CoV-2 community prevalence. Nat. Commun. 2022, 13, 4313. [Google Scholar] [CrossRef]
- Jiang, G.; Wu, J.; Weidhaas, J.; Li, X.; Chen, Y.; Mueller, J.F.; Li, J.; Kumar, M.; Zhou, X.; Arora, S.; et al. Artificial neural network-based estimation of COVID-19 case numbers and effective reproduction rate using wastewater-based epidemiology. Water Res. 2022, 218, 118451. [Google Scholar] [CrossRef]
- Ahmed, W.; Angel, N.; Edson, J.; Bibby, K.; Bivins, A.; O’Brien, J.; Choi, P.M.; Kitajima, M.; Simpson, S.L.; Li, J.; et al. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Sci. Total Environ. 2020, 728, 138764. [Google Scholar] [CrossRef] [PubMed]
- Prasek, S.M.; Pepper, I.L.; Innes, G.K.; Slinski, S.; Ruedas, M.; Sánchez, A.C.; Brierley, P.; Betancourt, W.Q.; Stark, E.R.; Foster, A.R.; et al. Population level SARS-CoV-2 fecal shedding rates determined via wastewater-based epidemiology. Sci. Total Environ. 2022, 838, 156535. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, B.W.; Innes, G.K.; Prasek, S.M.; Betancourt, W.Q.; Stark, E.R.; Foster, A.R.; Abraham, A.G.; Gerba, C.P.; Pepper, I.L. Enumerating asymptomatic COVID-19 cases and estimating SARS-CoV-2 fecal shedding rates via wastewater-based epidemiology. Sci. Total Environ. 2021, 801, 149794. [Google Scholar] [CrossRef] [PubMed]
- Wani, H.; Menon, S.; Desai, D.; Dsouza, N.; Bhathena, Z.; Desai, N.B.; Rose, J.B.; Shrivastava, S. Wastewater-Based Epidemiology of SARS-CoV-2: Assessing Prevalence and Correlation with Clinical Cases. Food Environ. Virol. 2023, 15, 131–143. [Google Scholar] [CrossRef]
- McCall, C.; Fang, Z.; Li, D.; Czubai, A.J.; Juan, A.; LaTurner, Z.W.; Ensor, K.B.; Hopkins, L.; Bedient, P.B.; Stadler, L.B. Modeling SARS-CoV-2 RNA degradation in small and large sewersheds. Environ. Sci. 2022, 8, 290–300. [Google Scholar] [CrossRef]
- Databases and Information System. Available online: https://www.istat.it/en/analysis-and-products/databases (accessed on 27 May 2024).
- Statistical Areas of Bologna. Available online: https://opendata.comune.bologna.it/explore/dataset/aree-statistiche/information/ (accessed on 27 May 2024).
- La Rosa, G.; Bonadonna, L.; Suffredini, E. Protocollo della Sorveglianza di SARS-CoV-2 in reflui urbani (SARI)-rev. 3. Zenodo 2022, 1, 1–26. [Google Scholar] [CrossRef]
- Wu, F.; Zhang, J.; Xiao, A.; Gu, X.; Lee, W.L.; Armas, F.; Kauffman, K.M.; Hanage, W.P.; Matus, M.; Ghaeli, N.; et al. SARS-CoV-2 Titers in Wastewater Are Higher than Expected from Clinically Confirmed Cases. MSystems 2020, 5, 10–1128. [Google Scholar] [CrossRef]
- Ahmed, W.; Bertsch, P.M.; Bibby, K.; Haramoto, E.; Hewitt, J.; Huygens, F.; Gyawali, P.; Korajkic, A.; Riddell, S.; Sherchan, S.P.; et al. Decay of SARS-CoV-2 and surrogate murine hepatitis virus RNA in untreated wastewater to inform application in wastewater-based epidemiology. Environ. Res. 2020, 191, 110092. [Google Scholar] [CrossRef]
- La Rosa, G.; Mancini, P.; Ferraro, G.B.; Veneri, C.; Iaconelli, M.; Bonadonna, L.; Lucentini, L.; Suffredini, E. SARS-CoV-2 has been circulating in northern Italy since December 2019: Evidence from environmental monitoring. Sci. Total Environ. 2021, 750, 141711. [Google Scholar] [CrossRef] [PubMed]
- dext3r. Available online: https://simc.arpae.it/dext3r (accessed on 27 May 2024).
- Cleveland, W.S.; Devlin, S.J. Locally Weighted Regression: An approach to regression analysis by local fitting. J. Am. Stat. Assoc. 1988, 83, 596–610. [Google Scholar] [CrossRef]
- Cappellari, M.; McDermid, R.M.; Alatalo, K.; Blitz, L.; Bois, M.; Bournaud, F.; Bureau, M.; Crocker, A.F.; Davies, R.L.; Davis, T.A.; et al. The ATLAS3D project—XX. Mass–size and mass–σ distributions of early-type galaxies: Bulge fraction drives kinematics, mass-to-light ratio, molecular gas fraction and stellar initial mass function. Mon. Not. R. Astron. Soc. 2013, 432, 1862–1893. [Google Scholar] [CrossRef]
- Benefield, A.E.; Skrip, L.A.; Clement, A.; Althouse, R.A.; Chang, S.; Althouse, B.M. SARS-CoV-2 viral load peaks prior to symptom onset: A systematic review and individual-pooled analysis of coronavirus viral load from 66 studies. MedRxiv (Cold Spring Harb. Lab.) 2020, 1, 1–26. [Google Scholar] [CrossRef]
- Foladori, P.; Cutrupi, F.; Segata, N.; Manara, S.; Pinto, F.; Malpei, F.; Bruni, L.; La Rosa, G. SARS-CoV-2 from faeces to wastewater treatment: What do we know? A review. Sci. Total Environ. 2020, 743, 140444. [Google Scholar] [CrossRef] [PubMed]
- Zeleke, A.J.; Miglio, R.; Palumbo, P.; Malaguti, E.; Chiari, L.; Due, U. Spatiotemporal heterogeneity of SARS-CoV-2 diffusion at the city level using geographically weighted Poisson regression model: The case of Bologna, Italy. Geospat. Health 2022, 17. [Google Scholar] [CrossRef] [PubMed]
- Prasek, S.M.; Pepper, I.L.; Innes, G.K.; Slinski, S.; Betancourt, W.Q.; Foster, A.R.; Yaglom, H.; Porter, W.T.; Engelthaler, D.M.; Schmitz, B.W. Variant-specific SARS-CoV-2 shedding rates in wastewater. Sci. Total Environ. 2023, 857, 159165. [Google Scholar] [CrossRef] [PubMed]
- Rose, C.; Parker, A.; Jefferson, B.; Cartmell, E. The Characterization of feces and Urine: A review of the literature to inform advanced Treatment technology. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1827–1879. [Google Scholar] [CrossRef]
- Bivins, A.; Greaves, J.; Fischer, R.J.; Yinda, K.C.; Ahmed, W.; Kitajima, M.; Munster, V.J.; Bibby, K. Persistence of SARS-COV-2 in water and wastewater. Environ. Sci. Technol. Lett. 2020, 7, 937–942. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Dong, Q.; Li, S.; Zhao, C.; Kang, X.; Ren, D.; Xu, C.; Zhou, X.H.; Peng, L.; Sun, L.; et al. Persistence of SARS-CoV-2 RNA in wastewater after the end of the COVID-19 epidemics. J. Hazard. Mater. 2022, 429, 128358. [Google Scholar] [CrossRef]
- Silverman, A.I.; Boehm, A.B. Systematic Review and Meta-Analysis of the persistence and disinfection of human coronaviruses and their viral surrogates in water and wastewater. Environ. Sci. Technol. Lett. 2020, 7, 544–553. [Google Scholar] [CrossRef]
- Cipolla, S.S.; Maglionico, M. Heat Recovery from Urban Wastewater: Analysis of the Variability of Flow Rate and Temperature in the Sewer of Bologna, Italy. Energy Procedia 2014, 45, 288–297. [Google Scholar] [CrossRef]
- Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms; MIT Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Compagni, R.D.; Polesel, F.; Von Borries, K.J.F.; Zhang, Z.; Turolla, A.; Antonelli, M.; Vezzaro, L. Modelling micropollutant fate in sewer systems—A new systematic approach to support conceptual model construction based on in-sewer hydraulic retention time. J. Environ. Manag. 2019, 246, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Bareš, V.; Jirák, J.; Pollert, J. Spatial and temporal variation of turbulence characteristics in combined sewer flow. Flow Meas. Instrum. 2008, 19, 145–154. [Google Scholar] [CrossRef]
- Zhang, Y.; Cen, M.; Hu, M.; Du, L.; Hu, W.; Kim, J.J.; Dai, N. Prevalence and persistent shedding of fecal SARS-COV-2 RNA in patients with COVID-19 infection: A systematic review and meta-analysis. Clin. Transl. Gastroenterol. 2021, 12, e00343. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, A.; Zlitni, S.; Brooks, E.F.; Vance, S.E.; Dahlen, A.; Hedlin, H.; Park, R.; Han, A.X.; Schmidtke, D.T.; Verma, R.; et al. Gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA suggest prolonged gastrointestinal infection. Med 2022, 3, 371–387.e9. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.; Hung, I.; Chan, P.P.Y.; Lung, K.-C.; Tso, E.Y.; Liu, R.; Ng, Y.Y.; Chu, M.Y.; Chung, T.W.-H.; Tam, A.R.; et al. Gastrointestinal manifestations of SARS-COV-2 infection and virus load in fecal samples from a Hong Kong cohort: Systematic review and meta-analysis. Gastroenterology 2020, 159, 81–95. [Google Scholar] [CrossRef]
- Cavany, S.; Bivins, A.; Wu, Z.; North, D.; Bibby, K.; Perkins, A. Inferring SARS-CoV-2 RNA shedding into wastewater relative to the time of infection. Epidemiol. Infect. 2022, 150, e21. [Google Scholar] [CrossRef]
- Hart, O.E.; Halden, R.U. Computational analysis of SARS-CoV-2/COVID-19 surveillance by wastewater-based epidemiology locally and globally: Feasibility, economy, opportunities and challenges. Sci. Total Environ. 2020, 730, 138875. [Google Scholar] [CrossRef]
- Petala, M.; Dafou, D.; Kostoglou, M.; Karapantsios, T.; Kanata, Ε.; Chatziefstathiou, A.; Sakaveli, F.; Kotoulas, K.; Arsenakis, M.; Roilides, E.; et al. A physicochemical model for rationalizing SARS-CoV-2 concentration in sewage. Case study: The city of Thessaloniki in Greece. Sci. Total Environ. 2021, 755, 142855. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ahmed, W.; Metcalfe, S.; Smith, W.; Choi, P.M.; Jackson, G.; Cen, X.; Zheng, M.; Simpson, S.; Thomas, K.V.; et al. Impact of sewer biofilms on fate of SARS-CoV-2 RNA and wastewater surveillance. Nat. Water 2023, 1, 272–280. [Google Scholar] [CrossRef]
- Verani, M.; Federigi, I.; Muzio, S.; Lauretani, G.; Calà, P.; Mancuso, F.; Salvadori, R.; Valentini, C.; La Rosa, G.; Suffredini, E.; et al. Calibration of Methods for SARS-CoV-2 Environmental Surveillance: A Case Study from Northwest Tuscany. Int. J. Environ. Res. Public Health 2022, 19, 16588. [Google Scholar] [CrossRef] [PubMed]
- EpiCentro. Sorveglianza Genomica del Virus SARS-CoV-2 e delle sue Varianti di Interesse in Sanità Pubblica in Italia. Available online: https://www.epicentro.iss.it/coronavirus/sars-cov-2-monitoraggio-varianti (accessed on 27 May 2024).
- Rector, A.; Bloemen, M.; Thijssen, M.; Delang, L.; Raymenants, J.; Thibaut, J.; Pussig, B.; Fondu, L.; Aertgeerts, B.; Van Ranst, M.; et al. Monitoring of SARS-CoV-2 concentration and circulation of variants of concern in wastewater of Leuven, Belgium. J. Med. Virol. 2023, 95, e28587. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.S.-Y.; Fernando, D.; Chan, M.Y.; Sia, C. Obesity in COVID-19: A Systematic review and Meta-analysis. Ann. Acad. Med. Singap. 2020, 49, 996–1008. [Google Scholar] [CrossRef] [PubMed]
Max | Min | Median | St.Dev. | 25% | 75% | |
---|---|---|---|---|---|---|
Linear distance i [km] | 26.7 | 0.5 | 10.9 | 4.7 | 8.7 | 13.3 |
Di [km] | 34.4 | 0.8 | 14.5 | 6.6 | 11.8 | 18.8 |
ϴi [h] | 11.9 | 0.3 | 5.0 | 2.3 | 4.1 | 6.5 |
1 − e−kϴi [%], k = 0.097 [h−1] | 68.6 | 2.8 | 38.6 | 13.0 | 32.8 | 46.9 |
1 − e−kϴi [%], k = 0.101 [h−1] | 70.0 | 2.9 | 39.8 | 13.2 | 33.8 | 48.3 |
1 − e−kϴi [%], k = 0.104 [h−1] | 71.1 | 3.0 | 40.7 | 13.4 | 34.6 | 49.3 |
1° Wave (19 December 2021–28 February 2022) | 2° Wave (1 March 2022–2 June 2022) | 3° Wave (3 June 2022–15 August 2022) | Off-Waves (13 October 2021–19 December 2021 and 15 August 2022–24 May 2023) | Entire Study Period (13 October 2021–24 May 2023) | |
---|---|---|---|---|---|
MAE | 47 | 120 | 109 | 26 | 54 |
MAPE | 0.3 | 1.5 | 1.3 | 3.6 | 2.5 |
Spearman | 0.858 | 0.954 | 0.897 | -0.223 | 0.599 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fondriest, M.; Vaccari, L.; Aldrovandi, F.; De Lellis, L.; Ferretti, F.; Fiorentino, C.; Mari, E.; Mascolo, M.G.; Minelli, L.; Perlangeli, V.; et al. Wastewater-Based Epidemiology for SARS-CoV-2 in Northern Italy: A Spatiotemporal Model. Int. J. Environ. Res. Public Health 2024, 21, 741. https://doi.org/10.3390/ijerph21060741
Fondriest M, Vaccari L, Aldrovandi F, De Lellis L, Ferretti F, Fiorentino C, Mari E, Mascolo MG, Minelli L, Perlangeli V, et al. Wastewater-Based Epidemiology for SARS-CoV-2 in Northern Italy: A Spatiotemporal Model. International Journal of Environmental Research and Public Health. 2024; 21(6):741. https://doi.org/10.3390/ijerph21060741
Chicago/Turabian StyleFondriest, Matilde, Lorenzo Vaccari, Federico Aldrovandi, Laura De Lellis, Filippo Ferretti, Carmine Fiorentino, Erica Mari, Maria Grazia Mascolo, Laura Minelli, Vincenza Perlangeli, and et al. 2024. "Wastewater-Based Epidemiology for SARS-CoV-2 in Northern Italy: A Spatiotemporal Model" International Journal of Environmental Research and Public Health 21, no. 6: 741. https://doi.org/10.3390/ijerph21060741
APA StyleFondriest, M., Vaccari, L., Aldrovandi, F., De Lellis, L., Ferretti, F., Fiorentino, C., Mari, E., Mascolo, M. G., Minelli, L., Perlangeli, V., Bortone, G., Pandolfi, P., Colacci, A., & Ranzi, A. (2024). Wastewater-Based Epidemiology for SARS-CoV-2 in Northern Italy: A Spatiotemporal Model. International Journal of Environmental Research and Public Health, 21(6), 741. https://doi.org/10.3390/ijerph21060741