Influence of Environmental Risk Exposure on the Determinants of COVID-19 Booster Vaccination in an Urban Thai Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
- LERE = level of environmental risk exposure
- EF1, 2, 3, 4 = environmental factors
- Sk = score of each factor (EF) i between 0 and 3.
2.2. Study Population and Procedure
2.3. Measurement
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramniwas, S.; Kumar, G.; Pandey, M.; Singh, D. Impact of Urbanization and Temperature on local abundance of Drosophila repleta Wollaston (1858) in the Western Himalayas. J. Asia Pac. Entomol. 2024, 27, 102200. [Google Scholar] [CrossRef]
- Qing, W.; Wang, Y.; Zhang, Y.; Han, J.; Li, C. How Does Urbanization Affect Citizens’ Pro-Environment Behavior? A Hierarchical Analysis of the Chinese General Social Survey. Front. Environ. Sci. 2022, 10, 880852. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Zhai, K. Identifying the Predictors of Community Acceptance of Waste Incineration Plants in Urban China: A Qualitative Analysis from a Public Perspective. Int. J. Environ. Res. Public Health 2021, 18, 10189. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Y.; Ahmad, A.B.; Shah, A.A.; Qing, W. How Do Individual-Level Characteristics Influence Cross-Domain Risk Perceptions Among Chinese Urban Residents? SAGE Open 2021, 11, 21582440211003570. [Google Scholar] [CrossRef]
- Thunis, P. On the Validity of the Incremental Approach to Estimate the Impact of Cities on Air Quality. Atmos. Environ. 2018, 173, 210–222. [Google Scholar] [CrossRef]
- Yanga, J.; Shia, B.; Shia, Y.; Marvinb, S.; Zhenga, Y.; Xiaa, G. Air Pollution Dispersal in High Density Urban Areas: Research on the Triadic Relation of Wind, Air pollution, and Urban Form. Sustain. Cities Soc. 2020, 54, 101941. [Google Scholar] [CrossRef]
- Jareemit, D.; Liu, J.; Srivanit, M. Modeling the Effects of Urban form on Ventilation Patterns and Traffic-related PM2.5 Pollution in a Central Business Area of Bangkok. Build. Environ. 2023, 244, 110756. [Google Scholar] [CrossRef]
- The World Bank. Urbanization in Thailand is Dominated by the Bangkok Urban Area. Available online: https://www.worldbank.org/en/news/feature/2015/01/26/urbanization-in-thailand-is-dominated-by-the-bangkok-urban-area (accessed on 10 April 2024).
- Olsen, J.R.; Mitchell, R.; McCrorie, P.; Ellaway, A. Children’s Mobility and Environmental Exposures in Urban Landscapes: A Cross-sectional Study of 10–11 Year Old Scottish Children. Soc. Sci. Med. 2019, 224, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Aabed, K.; Lashin, M.M.M. An Analytical Study of the Factors that Influence COVID-19 Spread. Saudi J. Biol. Sci. 2021, 28, 1177–1195. [Google Scholar] [CrossRef]
- Moriyama, M.; Hugentobler, W.; Iwasaki, A. Seasonality of Respiratory Viral Infections. Annu. Rev. Virol. 2020, 7, 83–101. [Google Scholar] [CrossRef]
- Núñez-Delgado, A. What Do We Know about the SARS-CoV-2 Coronavirus in the Environment? Sci. Total Environ. 2020, 727, 138647. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhou, J.; Yao, J.; Zhang, X.; Li, L.; Xu, X.; He, X.; Wang, B.; Fu, S.; Niu, T.; et al. Impact of Meteorological Factors on the COVID-19 Transmission: A Multicity Study in China. Sci. Total Environ. 2020, 726, 138513. [Google Scholar] [CrossRef] [PubMed]
- Sanghatawatana, P.; Thaithatkul, P.; Anuchitchanchai, O.; Liang, J.; Chalermpong, S. The Effect of COVID-19 Lockdown on Particulate Matters Concentration: Case of Land Use Regression Difference Modeling in Bangkok, Thailand. City Environ. Interact. 2023, 20, 100125. [Google Scholar] [CrossRef]
- Cascetta, E.; Henke, I.; Di Francesco, L. The Effects of Air Pollution, Sea Exposure and Altitude on COVID-19 Hospitalization Rates in Italy. Int. J. Environ. Res. Public Health 2021, 18, 452. [Google Scholar] [CrossRef] [PubMed]
- Coccia, M. The Effects of Atmospheric Stability with Low Wind Speed and of Air Pollution on the Accelerated Transmission Dynamics of COVID-19. Int. J. Environ. Stud. 2021, 78, 1–27. [Google Scholar] [CrossRef]
- Coccia, M. An Index to Quantify Environmental Risk of Exposure to Future Epidemics of the COVID-19 and Similar Viral Agents: Theory and Practice. Environ. Res. 2020, 191, 110155. [Google Scholar] [CrossRef] [PubMed]
- Tharwat, S.; Eleraky, E.S.; Adel, T.; Nassar, M.K.; Saleh, M. Attitudes and Concerns regarding Booster Dose of COVID-19 Vaccine among Egyptian Patients with Autoimmune and Rheumatic Diseases: A Cross-Sectional Survey Study. J. Pharm. Policy Pract. 2023, 16, 54. [Google Scholar] [CrossRef]
- Stevens, C.W.; Neely, S.R.; Scacco, J.M. Breakthrough Infections and Acceptance of COVID-19 Vaccine Boosters: A Survey Analysis. PEC Innov. 2023, 2, 100167. [Google Scholar] [CrossRef] [PubMed]
- Neely, S.R.; Eldredge, C.; Ersing, R.; Remington, C. Vaccine Hesitancy and Exposure to Misinformation: A Survey Analysis. J. Gen. Intern. Med. 2022, 37, 179–187. [Google Scholar] [CrossRef]
- Wood, S.; Schulman, K. Beyond Politics—Promoting Covid-19 Vaccination in the United States. N. Engl. J. Med. 2021, 384, e23. [Google Scholar] [CrossRef]
- Levin, E.G.; Lustig, Y.; Cohen, C.; Fluss, R.; Indenbaum, V.; Amit, S.; Doolman, R.; Asraf, K.; Mendelson, E.; Ziv, A.; et al. Waning Immune Humoral Response to BNT162b2 Covid-19 Vaccine over 6 Months. N. Engl. J. Med. 2021, 385, e84. [Google Scholar] [CrossRef] [PubMed]
- WHO Estimates COVID-19 Boosters Needed Yearly for Most Vulnerable. Available online: https://www.reuters.com/business/healthcare-pharmaceuticals/exclusive-who-estimates-covid-19-boosters-needed-yearly-most-vulnerable-2021-06-24/ (accessed on 10 December 2023).
- Sirison, K.; Nittayasoot, N.; Techasuwanna, R.; Cetthakrikul, N.; Suphanchaimat, R. Cost-Effectiveness Analysis of COVID-19 Vaccine Booster Dose in the Thai Setting during the Period of Omicron Variant Predominance. Trop. Med. Infect. Dis. 2023, 8, 91. [Google Scholar] [CrossRef] [PubMed]
- Ounsaneha, W.; Laosee, O.; Suksaroj, T.T.; Rattanapan, C. Combined Impact of Omicron Vaccination and Environmental Risk Exposure: A Thailand Case Study. Vaccines 2023, 11, 297. [Google Scholar] [CrossRef] [PubMed]
- Intawong, K.; Chariyalertsak, S.; Chalom, K.; Wonghirundecha, T.; Kowatcharakul, W.; Thongprachum, A.; Chotirosniramit, N.; Teacharak, W.; Khammawan, P.; Waneesorn, J.; et al. Effectiveness of Heterologous Third and Fourth dose COVID-19 Vaccine Schedules for SARS-CoV-2 Infection during Delta and Omicron Predominance in Thailand: A Test-negative, Case-control Study. Lancet Reg. Health—Southeast Asia 2023, 10, 100121. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. COVID-19 Vaccinations in the United States. Available online: https://covid.cdc.gov/covid-data-tracker/#vaccinations_vacc-people-one-dose-pop-total (accessed on 15 December 2023).
- World Health Organization. Cities and Urban Health. Available online: https://www.who.int/sustainable-development/new/en/ (accessed on 15 December 2023).
- Phosri, A.; Ueda, K.; Phung, V.L.H.; Tawatsupa, B.; Honda, A.; Takano, H. Effects of Ambient Air Pollution on Daily Hospital Admissions for Respiratory and Cardiovascular Diseases in Bangkok, Thailand. Sci. Total Environ. 2019, 651, 1144–1153. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.C.; Andersen, Z.J.; Baccarelli, A.; Diver, W.R.; Gapstur, S.M.; Pope, C.A., III; Prada, D.; Samet, J.; Thurston, G.; Cohen, A. Outdoor Air Pollution and Cancer: An Overview of the Current Evidence and Public Health Recommendations. CAA Cancer J. Clin. 2020, 70, 460–479. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Global Air Quality Guidelines: ParticulateMatter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Poapongsakorn, N.; Pantakua, K.; Ratchakom, S. Challenges in tackling PM2.5 Crisis, Thailand Development Research Institute (TDRI). Available online: https://tdri.or.th/en/2023/04/challenges-in-tackling-pm2-5-crisis (accessed on 15 December 2023).
- Department of Disease Control Ministry of Public Health. COVID-19 Infected Situation. 2022. Available online: https://ddc.moph.go.th/covid19-dashboard/ (accessed on 15 March 2023).
- Pollution Control Department. Daily Air Quality Data. 2022. Available online: http://air4thai.pcd.go.th/webV2/download.php/ (accessed on 10 March 2023).
- Thai Meteorological Department. Daily Wind Speed Data. 2022. Available online: https://www3.tmd.go.th/climate/summaryyearly/ (accessed on 10 March 2023).
- National Statistical Office of Thailand. Number of Population from Registration. 2022. Available online: https://www.nso.go.th/sites/2014/%E0%B8%AA%E0%B8%B3%E0%B8%A1%E0%B8%B0%E0%B9%82%E0%B8%99%E0%B8%AA%E0%B8%B3%E0%B8%A3%E0%B8%A7%E0%B8%88 (accessed on 10 March 2023).
- Health Information System Development Office. Thai Health Data Information. 2022. Available online: https://www.hiso.or.th/ (accessed on 10 March 2023).
- Lee, K. The Role of Media Exposure, Social Exposure and Biospheric Value Orientation in the Environmental Attitude-Intention-Behavior Model in Adolescents. J. Environ. Psychol. 2011, 31, 301–308. [Google Scholar] [CrossRef]
- Daryanto, A.; Song, Z.; Soopramanien, D. The COVID-19 Pandemic as an Impetus for Pro-Environmental Behaviours: The Rol of Causal Attribution. Pers. Individ. Differ. 2022, 187, 111415. [Google Scholar] [CrossRef] [PubMed]
- Tsai, A.Y.J.; Tan, A.Y.K. The Expanded Theory of Planned Behavior in the Context of Environmental Protection Behaviors for Undergraduates: Roles of Moral Norms and University Class Standings. Int. J. Environ. Res. Public Health 2022, 19, 9256. [Google Scholar] [CrossRef]
- Ounsaneha, W.; Laosee, O.; Suksaroj, T.T.; Rattanapan, C. Preventive Behaviors and Influencing Factors among Thai Residents in Endemic Areas during the Highest Epidemic Peak of the COVID-19 Outbreak. Int. J. Environ. Res. Public Health 2023, 20, 2525. [Google Scholar] [CrossRef]
- McKay, J.D.; Hung, R.J.; Han, Y.; Zong, X.; Carreras-Torres, R.; Christiani, D.C.; Caporaso, N.E.; Johansson, M.; Xiao, X.; Li, Y.; et al. Large-scale Association Analysis Identifies New Lung Cancer Susceptibility Loci and Heterogeneity in Genetic Susceptibility Across Histological Subtypes. Nat. Genet. 2017, 49, 1126–1132. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, W. Causal Effects of Exposure to Ambient Air Pollution on Cancer Risk: Insights from Genetic Evidence. Sci. Total Environ. 2024, 912, 168843. [Google Scholar] [CrossRef] [PubMed]
- Laiphrakpan, M.; Arronsrimorakoy, S.; Paisantanakij, W. Socio-economic Impact on COVID-19 (Novel Coronavirus SARS-CoV-2) in Thailand and India: A Brief Review. J. Community Dev. Res. 2022, 15, 1–14. [Google Scholar]
- Zakar, R.; Momina, A.U.; Shahzad, S.; Hayee, M.; Shahzad, R.; Zakar, M.Z. COVID-19 Vaccination Hesitancy or Acceptance and Its Associated Factors: Findings from Post-Vaccination Cross-Sectional Survey from Punjab Pakistan. Int. J. Environ. Res. Public. Health 2022, 19, 1305. [Google Scholar] [CrossRef] [PubMed]
- Andrews, N.; Tessier, E.; Stowe, J.; Gower, C.; Kirsebom, F.; Simmons, R.; Gallagher, E.; Thelwall, S.; Groves, N.; Dabrera, G.; et al. Duration of Protection Against Mild and Severe Disease by COVID-19 Vaccines. N. Engl. J. Med. 2022, 386, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Yorsaeng, R.; Atsawawaranunt, K.; Suntronwong, N.; Kanokudom, S.; Chansaenroj, J.; Assawakosri, S.; Nilyanimit, P.; Aeemjinda, R.; Khanarat, N.; Wongsrisang, L.; et al. SARS-CoV-2 Antibody Dynamics after COVID-19 Vaccination and Infection: A Real-World Cross-Sectional Analysis. Vaccines 2023, 11, 1184. [Google Scholar] [CrossRef]
- Choi, Y.; Park, S.; Lee, J.; Kim, Y.; Kim, B.J.; Lin, L.; Fox, A.M. Who gets COVID-19 Booster Vaccination? Trust in Public Health Institutions and Promotion Strategies Post-Pandemic in the Republic of Korea. Vaccine 2023, 41, 7560–7572. [Google Scholar] [CrossRef]
- Sprengholz, P.; Henkel, L.; Böhm, R.; Betsch, C. Different Interventions for COVID-19 Primary and Booster Vaccination? Effects of Psychological Factors and Health Policies on Vaccine Uptake. Med. Decis. Mak. 2023, 43, 239–251. [Google Scholar] [CrossRef] [PubMed]
- Limbu, Y.B.; Huhmann, B.A. Why Some People Are Hesitant to Receive COVID-19 Boosters: A Systematic Review. Trop. Med. Infect. Dis. 2023, 8, 159. [Google Scholar] [CrossRef]
- Lack of High School Education Predicts Vaccine Hesitancy CIDRAP. Available online: https://www.cidrap.umn.edu/lack-highschool-education-predicts-vaccine-hesitancy (accessed on 15 December 2023).
- An, K.Y.K.; Soh, A.S.E.; Ong, B.W.L.; Chen, M.I.; Griva, K. Determining the Prevalence and Correlates of COVID-19 Booster Vaccine Hesitancy in the Singapore Population Following the Completion of the Primary Vaccination Series. Vaccines 2022, 10, 1088. [Google Scholar]
- Al-Qerem, W.; Al Bawab, A.Q.; Hammad, A.; Ling, J.; Alasmari, F. Willingness of the Jordanian Population to Receive a COVID-19 Booster Dose: A Cross-Sectional Study. Vaccines 2022, 10, 410. [Google Scholar] [CrossRef] [PubMed]
- Lucarelli, C.; Mazzoli, C.; Severini, S. Applying the Theory of Planned Behavior to Examine Pro-Environmental Behavior: The Moderating Effect of COVID-19 Beliefs. Sustainability 2020, 12, 10556. [Google Scholar] [CrossRef]
- Shahin, M.A.H.; Hussien, R.M. Risk perception regarding the COVID-19 outbreak among the general population: A comparative Middle East survey. Middle East Curr. Psychiatry 2020, 27, 71. [Google Scholar] [CrossRef]
Order | Province | Number of Cases of COVID-19 | Total Value of Environmental Factors | Level of Environment Risk Exposure |
---|---|---|---|---|
Highest Number of Cases of COVID-19 | ||||
* 1 | Bangkok | 965,782 | 10.00 | 0.83 |
* 2 | Samut Prakan | 243,199 | 10.00 | 0.83 |
3 | Chon Buri | 229,716 | 6.00 | 0.50 |
* 4 | Samut Sakhon | 170,343 | 12.00 | 1.00 |
5 | Nonthaburi | 142,346 | 9.00 | 0.75 |
6 | Nakhon Si Thammarat | 126,883 | 5.00 | 0.42 |
7 | Songkhla | 103,443 | 3.00 | 0.25 |
8 | Rayong | 89,310 | 4.00 | 0.33 |
9 | Pathum Thani | 86,701 | 9.00 | 0.75 |
10 | Ratchaburi | 85,937 | 8.00 | 0.67 |
Lowest Number of Cases of COVID-19 | ||||
* 11 | Mae Hong Son | 6030 | 4.00 | 0.33 |
12 | Lamphun | 6260 | 6.00 | 0.50 |
13 | Chai Nat | 7178 | 7.00 | 0.58 |
14 | Phayao | 8899 | 9.00 | 0.75 |
* 15 | Mukdahan | 9942 | 3.00 | 0.25 |
16 | Amnat Charoen | 10,683 | 6.00 | 0.50 |
17 | Phrae | 11,341 | 7.00 | 0.58 |
* 18 | Phichit | 11,341 | 5.00 | 0.42 |
19 | Chiang Rai | 11,606 | 6.00 | 0.50 |
20 | Lampang | 13,214 | 6.00 | 0.50 |
Characteristic | Category | Area [n (%)] | p-Value | ||
---|---|---|---|---|---|
Low Risk | High Risk | Total | |||
Sex | Male | 265 (47.0) | 299 (53.0) | 564 (42.9) | 0.654 |
Female | 336 (44.7) | 415 (55.3) | 751 (57.1) | ||
Age | 18–24 | 78 (50.3) | 77 (49.7) | 155 (11.8) | <0.001 |
25–37 | 165 (40.7) | 227 (53.0) | 383 (29.1) | ||
38–45 | 100 (37.2) | 169 (62.8) | 269 (20.5) | ||
46–53 | 102 (50.7) | 99 (43.3) | 201 (15.3) | ||
54+ | 165 (53.7) | 142 (46.3) | 307 (23.3) | ||
Education | Primary school | 164 (52.2) | 150 (47.8) | 314 (23.9) | 0.007 |
Secondary school | 239 (43.8) | 307 (56.2) | 546 (40.5) | ||
Diploma degree | 183 (45.4) | 220 (54.6) | 403 (30.6) | ||
Bachelor’s degree and above | 15 (28.8) | 37 (71.2) | 52 (4.0) | ||
Marital status | Single/divorced | 282 (32.0) | 599 (68.0) | 881 (67.0) | <0.001 |
Married | 319 (73.5) | 115 (26.5) | 484 (33.0) | ||
Occupation | Self-employed | 174 (42.5) | 235 (57.5) | 409 (31.1) | <0.001 |
General employee | 212 (46.8) | 241 (53.2) | 453 (34.4) | ||
Student/not working | 70 (49.0) | 73 (51.0) | 143 (10.9) | ||
Government sector | 110 (60.4) | 72 (39.6) | 182 (13.8) | ||
Private sector | 35 (27.3) | 93 (72.7) | 128 (9.7) | ||
Monthly income (USD) | Less than 144 | 101 (64.3) | 56 (35.7) | 157 (11.9) | <0.001 |
144.1–287 | 273 (59.0) | 190 (41.0) | 463 (35.2) | ||
More than 287 | 227 (32.7) | 468 (67.3) | 695 (52.9) | ||
COVID positive | No | 198 (39.1) | 308 (60.9) | 506 (38.5) | <0.001 |
Yes | 403 (49.8) | 406 (50.2) | 809 (61.5) | ||
Source of COVID-19 | Do not know | 86 (39.1) | 76 (46.9) | 162 (21.8) | 0.008 |
Family member | 107 (47.3) | 119 (52.7) | 226 (30.4) | ||
Colleague | 86 (45.7) | 102 (54.3) | 188 (25.3) | ||
Expose to high-risk area | 58 (34.7) | 109 (65.3) | 167 (22.5) | ||
Health insurance | No | 506 (46.9) | 574 (53.1) | 1080 (82.1) | 0.070 |
Yes | 95 (40.4) | 140 (59.6) | 235 (17.9) |
Characteristic | Category | Area [n (%)] | p-Value | ||
---|---|---|---|---|---|
Low Risk | High Risk | Total | |||
Number of vaccines received | 1 | 4 (19.0) | 17 (81.0) | 21 (1.6) | 0.001 |
2 | 178 (42.2) | 244 (57.8) | 422 (32.1) | ||
3 | 297 (52.0) | 274 (48.0) | 57.1 (43.4) | ||
4 | 88 (41.1) | 126 (58.9) | 214 (16.3) | ||
5 | 17 (36.2) | 30 (63.8) | 47 (3.6) | ||
Booster dose received | No | 199 (41.2) | 284 (58.8) | 483 (36.7) | 0.013 |
Yes | 402 (48.3) | 430 (51.7) | 832 (63.7) |
Characteristic | Category | Area [n (%)] | p-Value | ||
---|---|---|---|---|---|
Low Risk | High Risk | Total | |||
COVID-19 Impact | |||||
Causal attribution | Low | 376 (44.9) | 461 (55.1) | 837 (63.7) | 0.452 |
High | 225 (47.1) | 253 (52.9) | 478 (36.3) | ||
Emotion | Low | 372 (46.3) | 432 (53.7) | 804 (61.1) | 0.606 |
High | 229 (44.8) | 282 (52.2) | 511 (38.9) | ||
Resilience | Low | 406 (46.4) | 469 (53.6) | 875 (66.5) | 0.475 |
High | 195 (44.3) | 245 (55.7) | 440 (33.5) | ||
Environmental Concern | |||||
Environmental attitude | Poor | 176 (46.4) | 203 (53.6) | 379 (28.8) | 0.734 |
Good | 425 (45.4) | 511 (57.6) | 936 (71.2) | ||
Environmental behavior | Poor | 398 (40.3) | 589 (59.7) | 987 (75.1) | <0.001 |
Good | 203 (61.9) | 125 (38.1) | 328 (25.9) | ||
COVID-19 Preventive Behavior | |||||
Preventive behavior | Low | 357 (43.0) | 476 (57.0) | 833 (63.4) | 0.009 |
Variable | Booster Dose Vaccination | Bivariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|---|---|
No (%) | Yes (%) | COR a (95% CI)c | p-Value | AOR b (95% CI)c | p-Value | |
Gender | ||||||
Male | 189 (35.1) | 349 (64.9) | 1 | |||
Female | 254 (34.5) | 483 (65.5) | 1.03 (0.81–1.30) | 0.805 | ||
Age | ||||||
18–24 | 72 (47.4) | 80 (52.6) | 1 | 1 | ||
25–37 | 115 (30.5) | 262 (69.5) | 2.05 (1.39–3.01) | <0.001 | 1.74 (1.06–2.85) | 0.028 |
38–45 | 76 (29.2) | 184 (70.8) | 2.17 (1.43–3.30) | <0.001 | 2.24 (1.31–3.83) | 0.003 |
46–53 | 63 (32.1) | 133 (67.9) | 1.90 (1.22–2.94) | 0.004 | 2.25 (1.29–3.92) | 0.004 |
54+ | 117 (40.3) | 173 (59.7) | 1.33 (0.89–1.97) | 0.157 | 2.21 (1.31–3.74) | 0.003 |
Education | ||||||
Primary school | 141 (47.2) | 158 (52.8) | 1 | 1 | ||
Secondary school | 211 (40.3) | 312 (59.7) | 1.32 (0.99–1.75) | 0.058 | 1.39 (0.98–1.97) | 0.060 |
Diploma degree | 33 (20.7) | 318 (79.3) | 3.41 (2.45–4.76) | <0.001 | 2.39 (1.53–3.72) | <0.001 |
Bachelor’s degree or higher | 8 (15.4) | 44 (84.6) | 4.90 (2.23–10.78) | <0.001 | 2.60 (1.10–6.40) | 0.029 |
Marital status | ||||||
Single/divorced | 289 (33.7) | 569 (66.3) | 1.15 (0.90–1.42) | 0.307 | ||
Married | 154 (36.9) | 263 (63.1) | 1 | |||
Occupation | ||||||
Self-employed | 153 (38.7) | 242 (61.3) | 1 | 1 | ||
General employee | 190 (44.0) | 242 (56.0) | 0.80 (0.61–1.06) | 0.126 | 0.93 (0.69–1.24) | 0.631 |
Student/not working | 64 (45.4) | 77 (54.6) | 0.76 (0.51–1.12) | 0.168 | 1.50 (0.86–2.63) | 0.148 |
Government sector | 12 (6.7) | 167 (93.3) | 8.79 (4.73–16.35) | <0.001 | 6.09 (3.19–11.63) | <0.001 |
Private sector | 24 (18.8) | 104 (81.3) | 2.74 (1.64–4.46) | <0.001 | 2.15 (1.27–3.65) | 0.004 |
Income (USD) | ||||||
Less than 144 | 79 (53.4) | 69 (46.6) | 1 | 1 | ||
144.1–287 | 174 (38.8) | 274 (61.2) | 1.80 (1.24–2.62) | 0.002 | 1.76 (1.12–2.76) | 0.013 |
More than 287 | 190 (28.0) | 489 (72.0) | 2.94 (2.04–4.24) | <0.001 | 1.73 (1.05–2.87) | 0.031 |
COVID-19 | ||||||
No | 177 (36.6) | 307 (63.4) | 1 | |||
Yes | 266 (33.6) | 525 (66.4) | 0.81 (0.69–1.11) | 0.284 | ||
Insurance | ||||||
Yes | 367 (35.2) | 675 (64.8) | 1 | |||
No | 76 (32.6) | 157 (67.4) | 1.12 (0.83–1.51) | 0.451 | ||
Area | ||||||
Low risk | 182 (31.2) | 402 (68.8) | 1.34 (1.06–1.69) | 0.014 | 1.45 (1.11–1.89) | 0.006 |
High risk | 261 (37.8) | 430 (62.2) | 1 | |||
COVID-19 impact | ||||||
Causal attribution | ||||||
Low | 282 (34.8) | 528 (65.2) | 1 | |||
High | 161 (34.7) | 303 (65.3) | 1.00 (0.78–1.27) | 0.979 | ||
Emotion | ||||||
Low | 276 (35.4) | 503 (64.6) | 1 | |||
High | 167 (33.7) | 324 (66.3) | 0.08 (0.85–1.37) | 0.520 | ||
Resilience | ||||||
Low | 289 (34.0) | 560 (660.) | 1 | |||
High | 154 (36.2) | 272 (63.8) | 0.92 (0.71–1.16) | 0.455 | ||
Environmental | ||||||
concern | ||||||
Environmental attitude | ||||||
Poor | 123 (34.7) | 231 (65.3) | 1 | |||
Good | 320 (34.7) | 601 (65.3) | 1.00 (0.77–1.29) | 1.00 | ||
Environmental behavior | ||||||
Poor | 333 (35.0) | 619 (65.0) | 1 | |||
Good | 110 (34.1) | 213 (65.9) | 1.01 (7.9–1.28) | 0.903 | ||
COVID-19 preventive behavior | ||||||
Poor | 280 (34.9) | 523 (65.1) | 1 | |||
Good | 163 (34.5) | 309 (65.5) | 1.04 (0.79–1.35) | 0.763 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ounsaneha, W.; Laosee, O.; Rattanapan, C. Influence of Environmental Risk Exposure on the Determinants of COVID-19 Booster Vaccination in an Urban Thai Population. Int. J. Environ. Res. Public Health 2024, 21, 745. https://doi.org/10.3390/ijerph21060745
Ounsaneha W, Laosee O, Rattanapan C. Influence of Environmental Risk Exposure on the Determinants of COVID-19 Booster Vaccination in an Urban Thai Population. International Journal of Environmental Research and Public Health. 2024; 21(6):745. https://doi.org/10.3390/ijerph21060745
Chicago/Turabian StyleOunsaneha, Weerawat, Orapin Laosee, and Cheerawit Rattanapan. 2024. "Influence of Environmental Risk Exposure on the Determinants of COVID-19 Booster Vaccination in an Urban Thai Population" International Journal of Environmental Research and Public Health 21, no. 6: 745. https://doi.org/10.3390/ijerph21060745
APA StyleOunsaneha, W., Laosee, O., & Rattanapan, C. (2024). Influence of Environmental Risk Exposure on the Determinants of COVID-19 Booster Vaccination in an Urban Thai Population. International Journal of Environmental Research and Public Health, 21(6), 745. https://doi.org/10.3390/ijerph21060745