Bidirectional Relationships between Sarcopenia and Pelvic Floor Disorders
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Sarcopenia
3.2. Pelvic Floor Disorders
3.3. Bidirectional Relationships between Sarcopenia and PFDs
3.4. Mechanisms of Interaction
3.5. Shared Risk Factors
3.6. Implications for Patient Care
3.7. Implications for Research
4. Conclusions
5. Limitations
Author Contributions
Funding
Conflicts of Interest
References
- World Population Prospects—Population Division—United Nations. Available online: https://population.un.org/wpp/ (accessed on 8 August 2022).
- Maresova, P.; Javanmardi, E.; Barakovic, S.; Barakovic Husic, J.; Tomsone, S.; Krejcar, O.; Kuca, K. Consequences of Chronic Diseases and Other Limitations Associated with Old Age—A Scoping Review. BMC Public Health 2019, 19, 1431. [Google Scholar] [CrossRef]
- Atella, V.; Piano Mortari, A.; Kopinska, J.; Belotti, F.; Lapi, F.; Cricelli, C.; Fontana, L. Trends in Age-Related Disease Burden and Healthcare Utilization. Aging Cell 2019, 18, e12861. [Google Scholar] [CrossRef]
- Peinado Molina, R.A.; Hernández Martínez, A.; Martínez Vázquez, S.; Martínez Galiano, J.M. Influence of Pelvic Floor Disorders on Quality of Life in Women. Front. Public Health 2023, 11, 1180907. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Sayer, A.A. Sarcopenia. Lancet 2019, 393, 2636–2646. [Google Scholar] [CrossRef]
- Messelink, B.; Benson, T.; Berghmans, B.; Bø, K.; Corcos, J.; Fowler, C.; Laycock, J.; Lim, P.H.C.; Van Lunsen, R.; Lycklama, Á.; et al. Standardization of Terminology of Pelvic Floor Muscle Function and Dysfunction: Report from the Pelvic Floor Clinical Assessment Group of the International Continence Society. Neurourol. Urodyn. 2005, 24, 374–380. [Google Scholar] [CrossRef]
- Quaghebeur, J.; Petros, P.; Wyndaele, J.J.; De Wachter, S. Pelvic-Floor Function, Dysfunction, and Treatment. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 265, 143–149. [Google Scholar] [CrossRef]
- Bo, K.; Frawley, H.C.; Haylen, B.T.; Abramov, Y.; Almeida, F.G.; Berghmans, B.; Bortolini, M.; Dumoulin, C.; Gomes, M.; McClurg, D.; et al. An International Urogynecological Association (IUGA)/International Continence Society (ICS) Joint Report on the Terminology for the Conservative and Nonpharmacological Management of Female Pelvic Floor Dysfunction. Neurourol. Urodyn. 2017, 36, 221–244. [Google Scholar] [CrossRef]
- Tim, S.; Mazur-Bialy, A.I. The Most Common Functional Disorders and Factors Affecting Female Pelvic Floor. Life 2021, 11, 1397. [Google Scholar] [CrossRef]
- MacLennan, A.H.; Taylor, A.W.; Wilson, D.H.; Wilson, D. The Prevalence of Pelvic Floor Disorders and Their Relationship to Gender, Age, Parity and Mode of Delivery. Br. J. Obstet. Gynaecol. 2000, 107, 1460–1470. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.-V.; Hsu, T.-H.; Wu, W.-T.; Huang, K.-C.; Han, D.-S. Is Sarcopenia Associated with Depression? A Systematic Review and Meta-Analysis of Observational Studies. Age Ageing 2017, 46, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.R.L.; Coutinho, J.F.V.; Vasconcelos, C.T.M.; Vasconcelos Neto, J.A.; Barbosa, R.G.B.; Marques, M.B.; Saboia, D.M.; Maia, J.C. Prevalence of Sarcopenia in Older Women with Pelvic Floor Dysfunction. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 263, 159–163. [Google Scholar] [CrossRef]
- Rosenberg, I.H. Sarcopenia: Origins and Clinical Relevance. J. Nutr. 1997, 127, 990S–991S. [Google Scholar] [CrossRef] [PubMed]
- Anker, S.D.; Morley, J.E.; von Haehling, S. Welcome to the ICD-10 Code for Sarcopenia. J. Cachexia. Sarcopenia Muscle 2016, 7, 512–514. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Aihie, A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed]
- McLeod, M.; Breen, L.; Hamilton, D.L.; Philp, A. Live Strong and Prosper: The Importance of Skeletal Muscle Strength for Healthy Ageing. Biogerontology 2016, 17, 497–510. [Google Scholar] [CrossRef] [PubMed]
- Akima, H.; Kano, Y.; Enomoto, Y.; Ishizu, M.; Okada, M.; Oishi, Y.; Katsuta, S.; Kuno, S.Y. Muscle Function in 164 Men and Women Aged 20–84 Yr. Med. Sci. Sports Exerc. 2001, 33, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I.; Heymsfield, S.B.; Wang, Z.M.; Ross, R. Skeletal Muscle Mass and Distribution in 468 Men and Women Aged 18–88 Yr. J. Appl. Physiol. 2000, 89, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Landi, F.; Calvani, R.; Tosato, M.; Martone, A.M.; Fusco, D.; Sisto, A.; Ortolani, E.; Savera, G.; Salini, S.; Marzetti, E. Age-Related Variations of Muscle Mass, Strength, and Physical Performance in Community-Dwellers: Results From the Milan EXPO Survey. J. Am. Med. Dir. Assoc. 2017, 18, 88.e17–88.e24. [Google Scholar] [CrossRef]
- Keller, K.; Engelhardt, M. Strength and Muscle Mass Loss with Aging Process. Age and Strength Loss. Muscles. Ligaments Tendons J. 2013, 3, 346–350. [Google Scholar] [CrossRef]
- Goodpaster, B.H.; Park, S.W.; Harris, T.B.; Kritchevsky, S.B.; Nevitt, M.; Schwartz, A.V.; Simonsick, E.M.; Tylavsky, F.A.; Visser, M.; Newman, A.B.; et al. The Loss of Skeletal Muscle Strength, Mass, and Quality in Older Adults: The Health, Aging and Body Composition Study. J. Gerontol. Ser. A 2006, 61, 1059–1064. [Google Scholar] [CrossRef]
- Nishikawa, H.; Fukunishi, S.; Asai, A.; Yokohama, K.; Nishiguchi, S.; Higuchi, K. Pathophysiology and Mechanisms of Primary Sarcopenia (Review). Int. J. Mol. Med. 2021, 48, 156. [Google Scholar] [CrossRef]
- Larsson, L.; Degens, H.; Li, M.; Salviati, L.; Lee, Y.I.; Thompson, W.; Kirkland, J.L.; Sandri, M. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiol. Rev. 2019, 99, 427–511. [Google Scholar] [CrossRef]
- Picca, A.; Calvani, R.; Bossola, M.; Allocca, E.; Menghi, A.; Pesce, V.; Lezza, A.M.S.; Bernabei, R.; Landi, F.; Marzetti, E. Update on Mitochondria and Muscle Aging: All Wrong Roads Lead to Sarcopenia. Biol. Chem. 2018, 399, 421–436. [Google Scholar] [CrossRef]
- Pan, L.; Xie, W.; Fu, X.; Lu, W.; Jin, H.; Lai, J.; Zhang, A.; Yu, Y.; Li, Y.; Xiao, W. Inflammation and Sarcopenia: A Focus on Circulating Inflammatory Cytokines. Exp. Gerontol. 2021, 154, 111544. [Google Scholar] [CrossRef]
- Wilkinson, D.J.; Piasecki, M.; Atherton, P.J. The Age-Related Loss of Skeletal Muscle Mass and Function: Measurement and Physiology of Muscle Fibre Atrophy and Muscle Fibre Loss in Humans. Ageing Res. Rev. 2018, 47, 123–132. [Google Scholar] [CrossRef]
- Kim, J.W.; Kim, R.; Choi, H.; Lee, S.J.; Bae, G.U. Understanding of Sarcopenia: From Definition to Therapeutic Strategies. Arch. Pharm. Res. 2021, 44, 876–889. [Google Scholar] [CrossRef]
- Ganapathy, A.; Nieves, J.W. Nutrition and Sarcopenia—What Do We Know? Nutrients 2020, 12, 1755. [Google Scholar] [CrossRef]
- Peterson, M.D.; Rhea, M.R.; Sen, A.; Gordon, P.M. Resistance Exercise for Muscular Strength in Older Adults: A Meta-Analysis. Ageing Res. Rev. 2010, 9, 226–237. [Google Scholar] [CrossRef]
- Gianoudis, J.; Bailey, C.A.; Daly, R.M. Associations between Sedentary Behaviour and Body Composition, Muscle Function and Sarcopenia in Community-Dwelling Older Adults. Osteoporos. Int. 2015, 26, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Studenski, S.A.; Peters, K.W.; Alley, D.E.; Cawthon, P.M.; McLean, R.R.; Harris, T.B.; Ferrucci, L.; Guralnik, J.M.; Fragala, M.S.; Kenny, A.M.; et al. The FNIH Sarcopenia Project: Rationale, Study Description, Conference Recommendations, and Final Estimates. J. Gerontol.-Ser. A Biol. Sci. Med. Sci. 2014, 69A, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307. [Google Scholar] [CrossRef]
- Bhasin, S.; Travison, T.G.; Manini, T.M.; Patel, S.; Pencina, K.M.; Fielding, R.A.; Magaziner, J.M.; Newman, A.B.; Kiel, D.P.; Cooper, C.; et al. Sarcopenia Definition: The Position Statements of the Sarcopenia Definition and Outcomes Consortium. J. Am. Geriatr. Soc. 2020, 68, 1410–1418. [Google Scholar] [CrossRef]
- Fielding, R.; Vellas, B.; Evans, W. Sarcopenia: An Undiagnosed Condition in Older Adults. Consensus Definition: Prevalence, Etiology, and Consequences. J. Am. Med. Dir. Assoc. 2011, 12, 249–256. [Google Scholar] [CrossRef]
- Schaap, L.A.; Van Schoor, N.M.; Lips, P.; Visser, M. Associations of Sarcopenia Definitions, and Their Components, With the Incidence of Recurrent Falling and Fractures: The Longitudinal Aging Study Amsterdam. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 1199–1204. [Google Scholar] [CrossRef]
- Lim, S.K.; Kong, S. Prevalence, Physical Characteristics, and Fall Risk in Older Adults with and without Possible Sarcopenia. Aging Clin. Exp. Res. 2022, 34, 1365–1371. [Google Scholar] [CrossRef]
- Malmstrom, T.K.; Miller, D.K.; Simonsick, E.M.; Ferrucci, L.; Morley, J.E. SARC-F: A Symptom Score to Predict Persons with Sarcopenia at Risk for Poor Functional Outcomes. J. Cachexia. Sarcopenia Muscle 2016, 7, 28–36. [Google Scholar] [CrossRef]
- Santos, L.D.; Cyrino, E.S.; Antunes, M.; Santos, D.A.; Sardinha, L.B. Sarcopenia and Physical Independence in Older Adults: The Independent and Synergic Role of Muscle Mass and Muscle Function. J. Cachexia. Sarcopenia Muscle 2016, 8, 245–250. [Google Scholar] [CrossRef]
- Cawthon, P.M.; Lui, L.Y.; Taylor, B.C.; McCulloch, C.E.; Cauley, J.A.; Lapidus, J.; Orwoll, E.; Ensrud, K.E. Clinical Definitions of Sarcopenia and Risk of Hospitalization in Community-Dwelling Older Men: The Osteoporotic Fractures in Men Study. J. Gerontol.-Ser. A Biol. Sci. Med. Sci. 2017, 72, 1383–1389. [Google Scholar] [CrossRef]
- Hirani, V.; Blyth, F.; Naganathan, V.; Le Couteur, D.G.; Seibel, M.J.; Waite, L.M.; Handelsman, D.J.; Cumming, R.G. Sarcopenia Is Associated With Incident Disability, Institutionalization, and Mortality in Community-Dwelling Older Men: The Concord Health and Ageing in Men Project. J. Am. Med. Dir. Assoc. 2015, 16, 607–613. [Google Scholar] [CrossRef]
- Koon-Yee Lee, G.; Chun-Ming Au, P.; Hoi-Yee Li, G.; Chan, M.; Li, H.-L.; Man-Yung Cheung, B.; Chi-Kei Wong, I.; Ho-Fun Lee, V.; Mok, J.; Hon-Kei Yip, B.; et al. Sarcopenia and Mortality in Different Clinical Conditions: A Meta-Analysis. Osteoporos. Sarcopenia 2021, 7, S19–S27. [Google Scholar] [CrossRef]
- Scott, D.; de Courten, B.; Ebeling, P.R. Sarcopenia: A Potential Cause and Consequence of Type 2 Diabetes in Australia’s Ageing Population? Med. J. Aust. 2016, 205, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Clynes, M.A.; Gregson, C.L.; Bruyère, O.; Cooper, C.; Dennison, E.M. Osteosarcopenia: Where Osteoporosis and Sarcopenia Collide. Rheumatology 2021, 60, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Bahat, G.; Ilhan, B. Sarcopenia and the Cardiometabolic Syndrome: A Narrative Review. Eur. Geriatr. Med. 2016, 7, 220–223. [Google Scholar] [CrossRef]
- Dodds, R.M.; Granic, A.; Robinson, S.M.; Sayer, A.A. Sarcopenia, Long-Term Conditions, and Multimorbidity: Findings from UK Biobank Participants. J. Cachexia. Sarcopenia Muscle 2020, 11, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Peng, T.C.; Chen, W.L.; Wu, L.W.; Chang, Y.W.; Kao, T.W. Sarcopenia and Cognitive Impairment: A Systematic Review and Meta-Analysis. Clin. Nutr. 2020, 39, 2695–2701. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, T.; Umegaki, H.; Makino, T.; Cheng, X.W.; Shimada, H.; Kuzuya, M. Association between Sarcopenia and Depressive Mood in Urban-Dwelling Older Adults: A Cross-Sectional Study. Geriatr. Gerontol. Int. 2019, 19, 508–512. [Google Scholar] [CrossRef] [PubMed]
- McNevin, M.S. Overview of Pelvic Floor Disorders. Surg. Clin. N. Am. 2010, 90, 195–205. [Google Scholar] [CrossRef]
- Peinado-Molina, R.A.; Hernández-Martínez, A.; Martínez-Vázquez, S.; Rodríguez-Almagro, J.; Martínez-Galiano, J.M. Pelvic Floor Dysfunction: Prevalence and Associated Factors. BMC Public Health 2023, 23, 2005. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.M.; Vaughan, C.P.; Goode, P.S.; Redden, D.T.; Burgio, K.L.; Richter, H.E.; Markland, A.D. Prevalence and Trends of Symptomatic Pelvic Floor Disorders in U.S. Women. Obstet. Gynecol. 2014, 123, 141–148. [Google Scholar] [CrossRef]
- Wu, J.M.; Hundley, A.F.; Fulton, R.G.; Myers, E.R. Forecasting the Prevalence of Pelvic Floor Disorders in U.S. Women. Obstet. Gynecol. 2009, 114, 1278–1283. [Google Scholar] [CrossRef]
- Wyndaele, M.; Hashim, H. Pathophysiology of Urinary Incontinence. Surgery 2017, 35, 287–292. [Google Scholar] [CrossRef]
- Haylen, B.T.; De Ridder, D.; Freeman, R.M.; Swift, S.E.; Berghmans, B.; Lee, J.; Monga, A.; Petri, E.; Rizk, D.E.; Sand, P.K.; et al. An International Urogynecological Association (IUGA)/International Continence Society (ICS) Joint Report on the Terminology for Female Pelvic Floor Dysfunction. Int. Urogynecol. J. 2010, 21, 5–26. [Google Scholar] [CrossRef] [PubMed]
- DeLancey, J.O.L. Why Do Women Have Stress Urinary Incontinence? Neurourol. Urodyn. 2010, 29, S13–S17. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.M. Stress Incontinence in Women. N. Engl. J. Med. 2021, 384, 2428–2436. [Google Scholar] [CrossRef] [PubMed]
- Minassian, V.A.; Bazi, T.; Stewart, W.F. Clinical Epidemiological Insights into Urinary Incontinence. Int. Urogynecol. J. 2017, 28, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Aoki, Y.; Brown, H.W.; Brubaker, L.; Cornu, J.N.; Daly, J.O.; Cartwright, R. Urinary Incontinence in Women. Nat. Rev. Dis. Prim. 2017, 3, 17042. [Google Scholar] [CrossRef] [PubMed]
- Komesu, Y.M.; Schrader, R.M.; Ketai, L.H.; Rogers, R.G.; Dunivan, G.C. Epidemiology of Mixed, Stress, and Urgency Urinary Incontinence in Middle-Aged/Older Women: The Importance of Incontinence History. Int. Urogynecol. J. 2016, 27, 763–772. [Google Scholar] [CrossRef]
- Wald, A.; Bharucha, A.E.; Limketkai, B.; Malcolm, A.; Remes-Troche, J.M.; Whitehead, W.E.; Zutshi, M. ACG Clinical Guidelines: Management of Benign Anorectal Disorders. Am. J. Gastroenterol. 2021, 116, 1987–2008. [Google Scholar] [CrossRef]
- Bharucha, A.E.; Dunivan, G.; Goode, P.S.; Lukacz, E.S.; Markland, A.D.; Matthews, C.A.; Mott, L.; Rogers, R.G.; Zinsmeister, A.R.; Whitehead, W.E.; et al. Epidemiology, Pathophysiology, and Classification of Fecal Incontinence: State of the Science Summary for the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) Workshop. Am. J. Gastroenterol. 2015, 110, 127–136. [Google Scholar] [CrossRef]
- Menees, S.; Chey, W.D. Fecal Incontinence. Gastroenterol. Clin. N. Am. 2022, 51, 71–91. [Google Scholar] [CrossRef]
- Bordeianou, L.G.; Thorsen, A.J.; Keller, D.S.; Hawkins, A.T.; Messick, C.; Oliveira, L.; Feingold, D.L.; Lightner, A.L.; Paquette, I.M. The American Society of Colon and Rectal Surgeons Clinical Practice Guidelines for the Management of Fecal Incontinence. Dis. Colon Rectum 2023, 66, 647–661. [Google Scholar] [CrossRef]
- Yu, S.W.B.; Rao, S.S.C. Anorectal Physiology and Pathophysiology in the Elderly. Clin. Geriatr. Med. 2014, 30, 95–106. [Google Scholar] [CrossRef]
- Nielsen, M.B.; Pedersen, J.F. Changes in the Anal Sphincter with Age: An Endosonographic Study. Acta Radiol. 1996, 37, 357–361. [Google Scholar] [CrossRef]
- Fox, J.C.; Fletcher, J.G.; Zinsmeister, A.R.; Seide, B.; Riederer, S.J.; Bharucha, A.E. Effect of Aging on Anorectal and Pelvic Floor Functions in Females. Dis. Colon Rectum 2006, 49, 1726–1735. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.S.C. Pathophysiology of Adult Fecal Incontinence. Gastroenterology 2004, 126, S14–S22. [Google Scholar] [CrossRef] [PubMed]
- Barber, M.D. Symptoms and Outcome Measures of Pelvic Organ Prolapse. Clin. Obstet. Gynecol. 2005, 48, 648–661. [Google Scholar] [CrossRef] [PubMed]
- Good, M.M.; Solomon, E.R. Pelvic Floor Disorders. Obstet. Gynecol. Clin. N. Am. 2019, 46, 527–540. [Google Scholar] [CrossRef]
- Zietarska-Cisak, M.; Zwierzchowska, A.; Barcz, E.; Horosz, E. Sexual Function in Women with Pelvic Organ Prolapse and Surgery Influence on Their Complaints. Ginekol. Pol. 2023, 94, 939–943. [Google Scholar] [CrossRef]
- Donaldson, K.; Meilan, J.; Rivers, T.; Rutherford, K.; Shine, K.; Manríquez, V.; Digesu, G.A.; Edenfield, A.; Swift, S. The Incidence of Pelvic and Low Back Pain in Patients with Pelvic Organ Prolapse. Int. Urogynecol. J. 2024, 35, 609–613. [Google Scholar] [CrossRef]
- Machin, S.E.; Mukhopadhyay, S. Pelvic Organ Prolapse: Review of the Aetiology, Presentation, Diagnosis and Management. Menopause Int. 2011, 17, 132–136. [Google Scholar] [CrossRef]
- Carroll, L.; Sullivan, C.O.; Doody, C.; Perrotta, C.; Fullen, B.M. Pelvic Organ Prolapse: Women’s Experiences of Accessing Care & Recommendations for Improvement. BMC Womens Health 2023, 23, 672. [Google Scholar] [CrossRef]
- Weintraub, A.Y.; Glinter, H.; Marcus-Braun, N. Narrative Review of the Epidemiology, Diagnosis and Pathophysiology of Pelvic Organ Prolapse. Int. Braz. J. Urol. 2020, 46, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Deprest, J.A.; Cartwright, R.; Dietz, H.P.; Brito, L.G.O.; Koch, M.; Allen-Brady, K.; Manonai, J.; Weintraub, A.Y.; Chua, J.W.F.; Cuffolo, R.; et al. International Urogynecological Consultation (IUC): Pathophysiology of Pelvic Organ Prolapse (POP). Int. Urogynecol. J. 2022, 33, 1699–1710. [Google Scholar] [CrossRef] [PubMed]
- Shull, B.L. Pelvic Organ Prolapse: Anterior, Superior, and Posterior Vaginal Segment Defects. Am. J. Obstet. Gynecol. 1999, 181, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Tinelli, A.; Malvasi, A.; Rahimi, S.; Negro, R.; Vergara, D.; Martignago, R.; Pellegrino, M.; Cavallotti, C. Age-Related Pelvic Floor Modifications and Prolapse Risk Factors in Postmenopausal Women. Menopause 2010, 17, 204–212. [Google Scholar] [CrossRef]
- Suskind, A.M.; Cawthon, P.M.; Nakagawa, S.; Subak, L.L.; Reinders, I.; Satterfield, S.; Cummings, S.; Cauley, J.A.; Harris, T.; Huang, A.J. Urinary Incontinence in Older Women: The Role of Body Composition and Muscle Strength: From the Health, Aging, and Body Composition Study. J. Am. Geriatr. Soc. 2017, 65, 42–50. [Google Scholar] [CrossRef]
- Erdogan, T.; Bahat, G.; Kilic, C.; Kucukdagli, P.; Oren, M.M.; Erdogan, O.; Karan, M.A. The Relationship between Sarcopenia and Urinary Incontinence. Eur. Geriatr. Med. 2019, 10, 923–929. [Google Scholar] [CrossRef] [PubMed]
- Bag Soytas, R.; Soytas, M.; Danacioglu, Y.O.; Citgez, S.; Yavuzer, H.; Can, G.; Onal, B.; Doventas, A. Relationship between the Types of Urinary Incontinence, Handgrip Strength, and Pelvic Floor Muscle Strength in Adult Women. Neurourol. Urodyn. 2021, 40, 1532–1538. [Google Scholar] [CrossRef]
- Neshatian, L.; Lam, J.P.; Gurland, B.H.; Liang, T.; Becker, L.; Sheth, V.R. MRI Biomarker of Muscle Composition Is Associated with Severity of Pelvic Organ Prolapse. Tech. Coloproctol. 2022, 26, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, S.; Wakabayashi, H.; Yamakawa, M.; Wada, F.; Kato, R.; Furiya, Y.; Nishioka, S.; Momosaki, R. Sarcopenia Is Associated with Fecal Incontinence in Patients with Dysphagia: Implication for Anal Sarcopenia. J. Nutr. Health Aging 2022, 26, 84–88. [Google Scholar] [CrossRef]
- Kido, Y.; Yoshimura, Y.; Wakabayashi, H.; Momosaki, R.; Nagano, F.; Bise, T.; Shimazu, S.; Shiraishi, A. Sarcopenia Is Associated with Incontinence and Recovery of Independence in Urination and Defecation in Post-Acute Rehabilitation Patients. Nutrition 2021, 91–92, 111397. [Google Scholar] [CrossRef] [PubMed]
- Stav, K.; Alcalay, M.; Peleg, S.; Lindner, A.; Gayer, G.; Hershkovitz, I. Pelvis Architecture and Urinary Incontinence in Women. Eur. Urol. 2007, 52, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Alperin, M.; Cook, M.; Tuttle, L.J.; Esparza, M.C.; Lieber, R.L. Impact of Vaginal Parity and Aging on the Architectural Design of Pelvic Floor Muscles. Am. J. Obstet. Gynecol. 2016, 215, 312.e1–312.e9. [Google Scholar] [CrossRef] [PubMed]
- Supriya, R.; Singh, K.P.; Gao, Y.; Gu, Y.; Baker, J.S. Effect of Exercise on Secondary Sarcopenia: A Comprehensive Literature Review. Biology 2022, 11, 51. [Google Scholar] [CrossRef] [PubMed]
- Jóźwik, M.; Jóźwik, M. The Physiological Basis of Pelvic Floor Exercises in the Treatment of Stress Urinary Incontinence. BJOG Int. J. Obstet. Gynaecol. 1998, 105, 1046–1051. [Google Scholar] [CrossRef]
- Miles, T.P.; Palmer, R.F.; Espino, D.V.; Mouton, C.P.; Lichtenstein, M.J.; Markides, K.S. New-Onset Incontinence and Markers of Frailty: Data From the Hispanic Established Populations for Epidemiologic Studies of the Elderly. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, M19–M24. [Google Scholar] [CrossRef]
- Parker-Autry, C.; Leng, I.; Matthews, C.A.; Thorne, N.; Kritchevsky, S. Characterizing the Physical Function Decline and Disabilities Present among Older Adults with Fecal Incontinence: A Secondary Analysis of the Health, Aging, and Body Composition Study. Int. Urogynecol. J. 2022, 33, 2815–2824. [Google Scholar] [CrossRef] [PubMed]
- Dakic, J.G.; Cook, J.; Hay-Smith, J.; Lin, K.Y.; Frawley, H. Pelvic Floor Disorders Stop Women Exercising: A Survey of 4556 Symptomatic Women. J. Sci. Med. Sport 2021, 24, 1211–1217. [Google Scholar] [CrossRef]
- Sanses, T.V.; Kudish, B.; Guralnik, J.M. The Relationship Between Urinary Incontinence, Mobility Limitations, and Disability in Older Women. Curr. Geriatr. Rep. 2017, 6, 74–80. [Google Scholar] [CrossRef]
- Slieker-ten Hove, M.C.P.; Pool-Goudzwaard, A.L.; Eijkemans, M.J.C.; Steegers-Theunissen, R.P.M.; Burger, C.W.; Vierhout, M.E. Pelvic Floor Muscle Function in a General Female Population in Relation with Age and Parity and the Relation between Voluntary and Involuntary Contractions of the Pelvic Floor Musculature. Int. Urogynecol. J. Pelvic Floor Dysfunct. 2009, 20, 1497–1504. [Google Scholar] [CrossRef]
- Bordoni, B.; Zanier, E. Anatomic Connections of the Diaphragm: Influence of Respiration on the Body System. J. Multidiscip. Healthc. 2013, 6, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Han, D. The Effect of the Correlation between the Contraction of the Pelvic Floor Muscles and Diaphragmatic Motion during Breathing. J. Phys. Ther. Sci. 2015, 27, 2113–2115. [Google Scholar] [CrossRef]
- Cook, M.S.; Bou-Malham, L.; Esparza, M.C.; Alperin, M. Age-Related Alterations in Female Obturator Internus Muscle. Int. Urogynecol. J. 2017, 28, 729–734. [Google Scholar] [CrossRef]
- Yaşar, L.; Telci, S.O.; Doğan, K.; Kaya, E.; Ekin, M. Predictive Role of Measurement of Pelvic Floor Muscle Thickness with Static MRI in Stress and Mixed Urinary Incontinence. Int. Urogynecol. J. 2019, 30, 271–277. [Google Scholar] [CrossRef]
- Cervigni, M.; Gambacciani, M. Female Urinary Stress Incontinence. Climacteric 2015, 18, 30–36. [Google Scholar] [CrossRef]
- Dias, N.; Zhang, C.; Li, X.; Neshatian, L.; Orejuela, F.J.; Zhang, Y. Neural Control Properties of the External Anal Sphincter in Young and Elderly Women. Neurourol. Urodyn. 2019, 38, 1828–1833. [Google Scholar] [CrossRef] [PubMed]
- Peinado-Molina, R.A.; Martínez-Vázquez, S.; Hernández-Martínez, A.; Martínez-Galiano, J.M. Impact and Influence of Urinary Incontinence on Physical Activity Levels. Eur. Urol. Open Sci. 2023, 55, 50–58. [Google Scholar] [CrossRef]
- Escribà-Salvans, A.; Jerez-Roig, J.; Molas-Tuneu, M.; Farrés-Godayol, P.; Moreno-Martin, P.; Goutan-Roura, E.; Güell-Masramon, H.; Amblàs-Novellas, J.; de Souza, D.L.B.; Skelton, D.A.; et al. Sarcopenia and Associated Factors According to the EWGSOP2 Criteria in Older People Living in Nursing Homes: A Cross-Sectional Study. BMC Geriatr. 2022, 22, 350. [Google Scholar] [CrossRef] [PubMed]
- Si, K.; Cao, Z.; Liu, Q.; Yang, Y.; Dai, Q.; Yao, Y.; Qiao, Y.; Xu, C.; Wu, G. Accelerometer-Measured Physical Activity, Sedentary Behavior, and Risk of Incident Pelvic Organ Prolapse: A Prospective Cohort Study in the UK Biobank. Int. J. Behav. Nutr. Phys. Act. 2024, 21, 12. [Google Scholar] [CrossRef]
- Nishikawa, H.; Asai, A.; Fukunishi, S.; Nishiguchi, S.; Higuchi, K. Metabolic Syndrome and Sarcopenia. Nutrients 2021, 13, 3519. [Google Scholar] [CrossRef]
- Micussi, M.T.; Freitas, R.P.; Angelo, P.H.; Soares, E.M.; Lemos, T.M.; Maranhão, T.M. Evaluation of the Relationship between the Pelvic Floor Muscles and Insulin Resistance. Diabetes Metab. Syndr. Obes. 2015, 8, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Carvalhais, A.; Araújo, J.; Natal Jorge, R.; Bø, K. Urinary Incontinence and Disordered Eating in Female Elite Athletes. J. Sci. Med. Sport 2019, 22, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Asaoka, D.; Takeda, T.; Inami, Y.; Abe, D.; Shimada, Y.; Matsumoto, K.; Ueyama, H.; Matsumoto, K.; Komori, H.; Akazawa, Y.; et al. Association between the Severity of Constipation and Sarcopenia in Elderly Adults: A Single-Center University Hospital-Based, Cross-Sectional Study. Biomed. Rep. 2021, 14, 2. [Google Scholar] [CrossRef]
- Collins, B.C.; Laakkonen, E.K.; Lowe, D.A. Aging of the Musculoskeletal System: How the Loss of Estrogen Impacts Muscle Strength. Bone 2019, 123, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, K.; Horie-Inoue, K.; Inoue, S. Functions of Estrogen and Estrogen Receptor Signaling on Skeletal Muscle. J. Steroid Biochem. Mol. Biol. 2019, 191, 105375. [Google Scholar] [CrossRef] [PubMed]
- Geraci, A.; Calvani, R.; Ferri, E.; Marzetti, E.; Arosio, B.; Cesari, M. Sarcopenia and Menopause: The Role of Estradiol. Front. Endocrinol. 2021, 12, 682012. [Google Scholar] [CrossRef] [PubMed]
- Messier, V.; Rabasa-Lhoret, R.; Barbat-Artigas, S.; Elisha, B.; Karelis, A.D.; Aubertin-Leheudre, M. Menopause and Sarcopenia: A Potential Role for Sex Hormones. Maturitas 2011, 68, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Cioffi, M.; Esposito, K.; Vietri, M.T.; Gazzerro, P.; D’Auria, A.; Ardovino, I.; Puca, G.A.; Molinari, A.M. Cytokine Pattern in Postmenopause. Maturitas 2002, 41, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Le, G.; Novotny, S.A.; Mader, T.L.; Greising, S.M.; Chan, S.S.K.; Kyba, M.; Lowe, D.A.; Warren, G.L. A Moderate Oestradiol Level Enhances Neutrophil Number and Activity in Muscle after Traumatic Injury but Strength Recovery Is Accelerated. J. Physiol. 2018, 596, 4665–4680. [Google Scholar] [CrossRef]
- Smith, P.; Heimer, G.; Norgren, A.; Ulmsten, U. Localization of Steroid Hormone Receptors in the Pelvic Muscles. Eur. J. Obstet. Gynecol. Reprod. Biol. 1993, 50, 83–85. [Google Scholar] [CrossRef]
- Lang, J.H.; Zhu, L.; Sun, Z.J.; Chen, J. Estrogen Levels and Estrogen Receptors in Patients with Stress Urinary Incontinence and Pelvic Organ Prolapse. Int. J. Gynecol. Obstet. 2003, 80, 35–39. [Google Scholar] [CrossRef]
- Moalli, P.A.; Talarico, L.C.; Sung, V.W.; Klingensmith, W.L.; Shand, S.H.; Meyn, L.A.; Watkins, S.C. Impact of Menopause on Collagen Subtypes in the Arcus Tendineous Fasciae Pelvis. Am. J. Obstet. Gynecol. 2004, 190, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Johnston, S.L. Pelvic Floor Dysfunction in Midlife Women. Climacteric 2019, 22, 270–276. [Google Scholar] [CrossRef]
- Bodner-Adler, B.; Alarab, M.; Ruiz-Zapata, A.M.; Latthe, P. Effectiveness of Hormones in Postmenopausal Pelvic Floor Dysfunction—International Urogynecological Association Research and Development—Committee Opinion. Int. Urogynecol. J. 2020, 31, 1577–1582. [Google Scholar] [CrossRef] [PubMed]
- Trutnovsky, G.; Guzman-Rojas, R.; Martin, A.; Dietz, H.P. Pelvic Floor Dysfunction-Does Menopause Duration Matter? Maturitas 2013, 76, 134–138. [Google Scholar] [CrossRef] [PubMed]
- Sipilä, S.; Taaffe, D.R.; Cheng, S.; Puolakka, J.; Toivanen, J.; Suominen, H. Effects of Hormone Replacement Therapy and High-Impact Physical Exercise on Skeletal Muscle in Post-Menopausal Women: A Randomized Placebo-Controlled Study. Clin. Sci. 2001, 101, 147–157. [Google Scholar] [CrossRef]
- Greising, S.M.; Baltgalvis, K.A.; Lowe, D.A.; Warren, G.L. Hormone Therapy and Skeletal Muscle Strength: A Meta-Analysis. J. Gerontol.-Ser. A Biol. Sci. Med. Sci. 2009, 64, 1071–1081. [Google Scholar] [CrossRef]
- Huang, L.T.; Wang, J.H. The Therapeutic Intervention of Sex Steroid Hormones for Sarcopenia. Front. Med. 2021, 8, 739251. [Google Scholar] [CrossRef] [PubMed]
- Rolland, Y.; Dray, C.; Vellas, B.; Barreto, P.D.S. Current and Investigational Medications for the Treatment of Sarcopenia. Metabolism 2023, 149, 155597. [Google Scholar] [CrossRef] [PubMed]
- Cardozo, L.; Lose, G.; McClish, D.; Versi, E. A Systematic Review of the Effects of Estrogens for Symptoms Suggestive of Overactive Bladder. Acta Obstet. Gynecol. Scand. 2004, 83, 892–897. [Google Scholar] [CrossRef]
- Bach, F.L.; Sairally, B.Z.F.; Latthe, P. Effect of Oestrogen Therapy on Faecal Incontinence in Postmenopausal Women: A Systematic Review. Int. Urogynecol. J. 2020, 31, 1289–1297. [Google Scholar] [CrossRef] [PubMed]
- Alperin, M.; Burnett, L.; Lukacz, E.; Brubaker, L. The Mysteries of Menopause and Urogynecologic Health. Menopause 2019, 26, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Cheng, R.; Song, G.; Teng, J.; Shen, S.; Fu, X.; Yan, Y.; Liu, C. The Effect of Resistance Training on the Rehabilitation of Elderly Patients with Sarcopenia: A Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 5491. [Google Scholar] [CrossRef] [PubMed]
- Dent, E.; Morley, J.E.; Cruz-Jentoft, A.J.; Arai, H.; Kritchevsky, S.B.; Guralnik, J.; Bauer, J.M.; Pahor, M.; Clark, B.C.; Cesari, M.; et al. International Clinical Practice Guidelines for Sarcopenia (ICFSR): Screening, Diagnosis and Management. J. Nutr. Health Aging 2018, 22, 1148–1161. [Google Scholar] [CrossRef] [PubMed]
- Nygaard, I.E.; Shaw, J.M. Physical Activity and the Pelvic Floor. Am. J. Obstet. Gynecol. 2016, 214, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Bø, K.; Nygaard, I.E. Is Physical Activity Good or Bad for the Female Pelvic Floor? A Narrative Review. Sport. Med. 2020, 50, 471–484. [Google Scholar] [CrossRef] [PubMed]
- Marinkovic, S.P.; Stanton, S.L. Incontinence and Voiding Difficulties Associated with Prolapse. J. Urol. 2004, 171, 1021–1028. [Google Scholar] [CrossRef] [PubMed]
- Kuutti, M.A.; Hyvärinen, M.; Kauppinen, M.; Sipilä, S.; Aukee, P.; Laakkonen, E.K. Early Adulthood and Current Physical Activity and Their Association with Symptoms of Pelvic Floor Disorders in Middle-Aged Women: An Observational Study with Retrospective Physical Activity Assessment. BJOG Int. J. Obstet. Gynaecol. 2023, 130, 664–673. [Google Scholar] [CrossRef] [PubMed]
- Menezes, E.C.; da Silva Pereira, F.; Porto, R.M.; Fank, F.; Mazo, G.Z. Effect of Exercise on Female Pelvic Floor Morphology and Muscle Function: A Systematic Review. Int. Urogynecol. J. 2023, 34, 963–977. [Google Scholar] [CrossRef]
- Bø, K.; Herbert, R.D. There Is Not yet Strong Evidence That Exercise Regimens Other than Pelvic Floor Muscle Training Can Reduce Stress Urinary Incontinence in Women: A Systematic Review. J. Physiother. 2013, 59, 159–168. [Google Scholar] [CrossRef]
- Torelli, L.; de Jarmy Di Bella, Z.I.K.; Rodrigues, C.A.; Stüpp, L.; Girão, M.J.B.C.; Sartori, M.G.F. Effectiveness of Adding Voluntary Pelvic Floor Muscle Contraction to a Pilates Exercise Program: An Assessor-Masked Randomized Controlled Trial. Int. Urogynecol. J. 2016, 27, 1743–1752. [Google Scholar] [CrossRef]
- Bø, K. Pelvic Floor Muscle Training in Treatment of Female Stress Urinary Incontinence, Pelvic Organ Prolapse and Sexual Dysfunction. World J. Urol. 2012, 30, 437–443. [Google Scholar] [CrossRef]
Category | Main Findings | Details |
---|---|---|
Bidirectional Relationship between Sarcopenia and PFDs | Sarcopenia’s Impact on PFDs | Sarcopenia contributes to the initiation of PFDs, exacerbates their severity, and complicates recovery efforts through mechanisms such as decreased muscle strength and reduced force-generating capacity in the PFM. Reduced muscle mass and quality increase the risk of SUI, UUI, and POP. Sarcopenia-associated muscle deterioration, including a decreased cross-sectional area and increased fibrosis of type II muscle fibers, are critical factors in these conditions. |
PFDs’ Impact on Sarcopenia | PFDs lead to reduced physical activity due to discomfort and a fear of incontinence, which accelerates sarcopenia progression. UI and FI contribute to declines in physical performance and muscle strength. The reduction in physical activity associated with PFDs inhibits the maintenance of muscle mass and quality, further exacerbating sarcopenia. | |
Mechanisms of Interaction | Muscle Deterioration | The age-related deterioration of the levator ani muscle group and sphincter muscles parallels sarcopenia. The decrease in the muscle cross-sectional area and increased fibrosis affect both the pelvic floor integrity and overall muscle function. |
Muscle Fiber Changes | A reduction in type II muscle fibers in PFM and skeletal muscles is a common pathway contributing to PFDs. | |
Neural Control | Decreased motor unit firing rates and increased motor unit action potential amplitudes in PFM mirror the changes seen in sarcopenia, contributing to PFDs. | |
Shared Risk Factors | Physical Inactivity | Physical inactivity leads to the deterioration of skeletal and PFM, contributing to a cyclical relationship between sarcopenia and PFDs. This cycle results in an increased risk of both conditions, which further discourages physical activity, exacerbating the progression of sarcopenia and PFDs. |
Nutritional Deficiencies | Deficiencies in protein, vitamin D, and minerals directly affect both skeletal muscle and pelvic floor integrity. | |
Metabolic Syndrome | Metabolic syndrome accelerates muscle degradation through insulin resistance and chronic inflammation, contributing to both sarcopenia and PFDs. Obesity-related pressures and altered adipokine profiles further weaken the PFM and connective tissues, increasing the risk of these conditions. | |
Menopausal Hormonal Changes | There are indications that estrogen deficiency during menopause may affect muscle protein synthesis, mitochondrial function, and inflammatory responses, contributing to sarcopenia. Estrogen depletion may weaken the pelvic tissue, increasing the susceptibility to PFDs such as UI and POP. However, much of the research is based on in vitro studies, highlighting the need for further clinical research to confirm these findings. |
Implication | Description |
---|---|
Integrated Screening and Management | Implement integrated screening protocols in clinical practice to concurrently address sarcopenia and PFDs, recognizing their bidirectional and cyclical relationships and any underlying conditions. |
Comprehensive, Interdisciplinary Care | Foster interdisciplinary collaboration among geriatricians, urogynecologists, physical therapists, nutritionists, and psychologists to provide holistic and comprehensive care plans that enhance patient outcomes by addressing the interconnectedness of skeletal muscle integrity, PFDs, and overall health. |
Tailored Rehabilitation Programs | Develop personalized rehabilitation programs that specifically address the unique needs of patients with sarcopenia and PFDs, ensuring comprehensive care that covers all aspects of both conditions. |
Resistance Training | Incorporate resistance training into rehabilitation programs to maintain muscle mass, muscle strength, and pelvic floor integrity. This includes specific safe and effective exercises for both conditions, such as those that enhance overall muscle strength while also targeting the pelvic floor muscles. Recommendations include progressive resistance training and the inclusion of pelvic floor muscle exercises to improve outcomes without exacerbating PFD symptoms. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grosman, Y.; Kalichman, L. Bidirectional Relationships between Sarcopenia and Pelvic Floor Disorders. Int. J. Environ. Res. Public Health 2024, 21, 879. https://doi.org/10.3390/ijerph21070879
Grosman Y, Kalichman L. Bidirectional Relationships between Sarcopenia and Pelvic Floor Disorders. International Journal of Environmental Research and Public Health. 2024; 21(7):879. https://doi.org/10.3390/ijerph21070879
Chicago/Turabian StyleGrosman, Yacov, and Leonid Kalichman. 2024. "Bidirectional Relationships between Sarcopenia and Pelvic Floor Disorders" International Journal of Environmental Research and Public Health 21, no. 7: 879. https://doi.org/10.3390/ijerph21070879
APA StyleGrosman, Y., & Kalichman, L. (2024). Bidirectional Relationships between Sarcopenia and Pelvic Floor Disorders. International Journal of Environmental Research and Public Health, 21(7), 879. https://doi.org/10.3390/ijerph21070879