Dietary Minerals and Incident Cardiovascular Outcomes among Never-Smokers in a Danish Case–Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Acute Myocardial Infarction (AMI) Cases
2.3. Stroke Cases
2.4. Heart Failure (HF) Cases
2.5. Food Frequency Questionnaire (FFQ)
2.6. Combined Dietary Intake Score
2.7. Urinary Minerals, Creatinine, and Cotinine
2.8. Covariates
2.9. Statistical Analysis
2.10. Sensitivity Analyses
3. Results
3.1. Main Analysis
3.2. Secondary Analyses
3.3. Sensitivity Analyses
4. Discussion
4.1. Essential Minerals (Ca, Mg, K) and Cardiovascular Events
4.2. Dietary Intake and Urinary Levels of Minerals and Essential Minerals
4.3. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Cardiovascular Diseases. 2022. Available online: https://www.who.int/health-topics/cardiovascular-diseases (accessed on 21 July 2022).
- CDC. Heart Disease Facts. Centers for Disease Control and Prevention. 2022. Available online: https://www.cdc.gov/heartdisease/facts.htm (accessed on 16 June 2022).
- American Heart Association. What Is a Heart Attack? 2022. Available online: https://www.heart.org/en/health-topics/heart-attack/about-heart-attacks (accessed on 27 September 2023).
- Mechanic, O.J.; Gavin, M.; Grossman, S.A. Acute Myocardial Infarction. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: http://www.ncbi.nlm.nih.gov/books/NBK459269/ (accessed on 27 September 2023).
- Feigin, V.L.; Stark, B.A.; Johnson, C.O.; Roth, G.A.; Bisignano, C.; Abady, G.G.; Abbasifard, M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abedi, V.; et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795–820. [Google Scholar] [CrossRef]
- Lippi, G.; Sanchis-Gomar, F. Global epidemiology and future trends of heart failure. AME Med. J. 2020, 5. [Google Scholar] [CrossRef]
- Bozkurt, B.; Ahmad, T.; Alexander, K.M.; Baker, W.L.; Bosak, K.; Breathett, K.; Fonarow, G.C.; Heidenreich, P.; Ho, J.E.; Hsich, E.; et al. Heart Failure Epidemiology and Outcomes Statistics: A Report of the Heart Failure Society of America. J. Card. Fail. 2023, 29, 1412–1451. [Google Scholar] [CrossRef]
- Aburto, N.J.; Hanson, S.; Gutierrez, H.; Hooper, L.; Elliott, P.; Cappuccio, F.P. Effect of increased potassium intake on cardiovascular risk factors and disease: Systematic review and meta-analyses. BMJ 2013, 346, f1378. [Google Scholar] [CrossRef]
- Chowdhury, R.; Ramond, A.; O’keeffe, L.M.; Shahzad, S.; Kunutsor, S.K.; Muka, T.; Gregson, J.; Willeit, P.; Warnakula, S.; Khan, H.; et al. Environmental toxic metal contaminants and risk of cardiovascular disease: Systematic review and meta-analysis. BMJ 2018, 362, k3310. [Google Scholar] [CrossRef]
- Lamas, G.A.; Navas-Acien, A.; Mark, D.B.; Lee, K.L. Heavy Metals, Cardiovascular Disease, and the Unexpected Benefits of Chelation Therapy. J. Am. Coll. Cardiol. 2016, 67, 2411–2418. [Google Scholar] [CrossRef] [PubMed]
- Tangvoraphonkchai, K.; Davenport, A. Magnesium and Cardiovascular Disease. Adv. Chronic Kidney Dis. 2018, 25, 251–260. [Google Scholar] [CrossRef]
- Tellez-Plaza, M.; Guallar, E.; Navas-Acien, A. Environmental metals and cardiovascular disease. BMJ 2018, 362, k3435. [Google Scholar] [CrossRef] [PubMed]
- Gröber, U.; Schmidt, J.; Kisters, K. Magnesium in Prevention and Therapy. Nutrients 2015, 7, 8199–8226. [Google Scholar] [CrossRef]
- Rosique-Esteban, N.; Guasch-Ferré, M.; Hernández-Alonso, P.; Salas-Salvadó, J. Dietary Magnesium and Cardiovascular Disease: A Review with Emphasis in Epidemiological Studies. Nutrients 2018, 10, 168. [Google Scholar] [CrossRef]
- Kolte, D.; Vijayaraghavan, K.; Khera, S.; Sica, D.A.; Frishman, W.H. Role of magnesium in cardiovascular diseases. Cardiol. Rev. 2014, 22, 182–192. [Google Scholar] [CrossRef] [PubMed]
- National Institutes of Health. Potassium. 2022. Available online: https://ods.od.nih.gov/factsheets/Potassium-HealthProfessional/ (accessed on 16 June 2022).
- Chung, M.; Tang, A.M.; Fu, Z.; Wang, D.D.; Newberry, S.J. Calcium Intake and Cardiovascular Disease Risk: An Updated Systematic Review and Meta-analysis. Ann. Intern. Med. 2016, 165, 856–866. [Google Scholar] [CrossRef]
- Reid, I.R.; Birstow, S.M.; Bolland, M.J. Calcium and Cardiovascular Disease. Endocrinol. Metab. 2017, 32, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Tian, D.-Y.; Tian, J.; Shi, C.-H.; Song, B.; Wu, J.; Ji, Y.; Wang, R.-H.; Mao, C.-Y.; Sun, S.-L.; Xu, Y.-M. Calcium intake and the risk of stroke: An updated meta-analysis of prospective studies. Asia Pac. J. Clin. Nutr. 2015, 24, 245–252. [Google Scholar] [PubMed]
- Lewis, J.R.; Radavelli-Bagatini, S.; Rejnmark, L.; Chen, J.S.; Simpson, J.M.; Lappe, J.M.; Mosekilde, L.; Prentice, R.L.; Prince, R.L. The Effects of Calcium Supplementation on Verified Coronary Heart Disease Hospitalization and Death in Postmenopausal Women: A Collaborative Meta-Analysis of Randomized Controlled Trials. J. Bone Miner. Res. 2015, 30, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Shechter, M. Magnesium and cardiovascular system. Magnes. Res. 2010, 23, 60–72. [Google Scholar] [PubMed]
- Fang, X.; Wang, K.; Han, D.; He, X.; Wei, J.; Zhao, L.; Imam, M.U.; Ping, Z.; Li, Y.; Xu, Y.; et al. Dietary magnesium intake and the risk of cardiovascular disease, type 2 diabetes, and all-cause mortality: A dose-response meta-analysis of prospective cohort studies. BMC Med. 2016, 14, 210. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; White, A.J.; Niehoff, N.M.; O’Brien, K.M.; Sandler, D.P. Airborne metals exposure and risk of hypertension in the Sister Study. Environ. Res. 2020, 191, 110144. [Google Scholar] [CrossRef] [PubMed]
- Bolland, M.J.; Grey, A.; Avenell, A.; Gamble, G.D.; Reid, I.R. Calcium supplements with or without vitamin D and risk of cardiovascular events: Reanalysis of the Women’s Health Initiative limited access dataset and meta-analysis. BMJ 2011, 342, d2040. [Google Scholar] [CrossRef]
- Bolland, M.J.; Avenell, A.; Baron, J.A.; Grey, A.; MacLennan, G.S.; Gamble, G.D.; Reid, I.R. Effect of calcium supplements on risk of myocardial infarction and cardiovascular events: Meta-analysis. BMJ 2010, 341, c3691. [Google Scholar] [CrossRef]
- Bolland, M.J.; Barber, P.A.; Doughty, R.N.; Mason, B.; Horne, A.; Ames, R.; Gamble, G.D.; Grey, A.; Reid, I.R. Vascular events in healthy older women receiving calcium supplementation: Randomised controlled trial. BMJ 2008, 336, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Mao, P.-J.; Zhang, C.; Tang, L.; Xian, Y.-Q.; Li, Y.-S.; Wang, W.-D.; Zhu, X.-H.; Qiu, H.-L.; He, J.; Zhou, Y.-H. Effect of calcium or vitamin D supplementation on vascular outcomes: A meta-analysis of randomized controlled trials. Int. J. Cardiol. 2013, 169, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Martín, S.; González-Bermejo, D.; Rodríguez-Miguel, A.; Barreira, D.; García-Lledó, A.; Gil, M.; de Abajo, F.J. Risk of Myocardial Infarction Among New Users of Calcium Supplements Alone or Combined With Vitamin D: A Population-Based Case-Control Study. Clin. Pharmacol. Ther. 2020, 107, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Adebamowo, S.N.; Spiegelman, D.; Willett, W.C.; Rexrode, K.M. Association between intakes of magnesium, potassium, and calcium and risk of stroke: 2 cohorts of US women and updated meta-analyses. Am. J. Clin. Nutr. 2015, 101, 1269–1277. [Google Scholar] [CrossRef] [PubMed]
- Adebamowo, S.N.; Spiegelman, D.; Flint, A.J.; Willett, W.C.; Rexrode, K.M. Intakes of magnesium, potassium, and calcium and the risk of stroke among men. Int. J. Stroke 2015, 10, 1093–1100. [Google Scholar] [CrossRef] [PubMed]
- Eliasson, M.; Hägg, E.; Lundblad, D.; Karlsson, R.; Bucht, E. Influence of smoking and snuff use on electrolytes, adrenal and calcium regulating hormones. Acta Endocrinol. 1993, 128, 35–40. [Google Scholar] [CrossRef]
- Pedersen, L.R.; Frestad, D.; Michelsen, M.M.; Mygind, N.D.; Rasmusen, H.; Suhrs, H.E.; Prescott, E. Risk Factors for Myocardial Infarction in Women and Men: A Review of the Current Literature. Curr. Pharm. Des. 2016, 22, 3835–3852. [Google Scholar] [CrossRef]
- Ambrose, J.A.; Barua, R.S. The pathophysiology of cigarette smoking and cardiovascular disease: An update. J. Am. Coll. Cardiol. 2004, 43, 1731–1737. [Google Scholar] [CrossRef]
- Tjønneland, A.; Olsen, A.; Boll, K.; Stripp, C.; Christensen, J.; Engholm, G.; Overvad, K. Study design, exposure variables, and socioeconomic determinants of participation in Diet, Cancer and Health: A population-based prospective cohort study of 57,053 men and women in Denmark. Scand. J. Public Health 2007, 35, 432–441. [Google Scholar] [CrossRef]
- Poulsen, A.H.; Sears, C.G.; Harrington, J.; Howe, C.J.; James, K.A.; Roswall, N.; Overvad, K.; Tjønneland, A.; Wellenius, G.A.; Meliker, J.; et al. Urinary cadmium and stroke—A case-cohort study in Danish never-smokers. Environ. Res. 2021, 200, 111394. [Google Scholar] [CrossRef]
- Sears, C.G.; Eliot, M.; Raaschou-Nielsen, O.; Poulsen, A.H.; Harrington, J.M.; Howe, C.J.; James, K.A.; Roswall, N.; Overvad, K.; Tjønneland, A.; et al. Urinary Cadmium and Incident Heart Failure: A Case-Cohort Analysis Among Never-Smokers in Denmark. Epidemiology 2022, 33, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Sears, C.G.; Poulsen, A.H.; Eliot, M.; Howe, C.J.; James, K.A.; Harrington, J.M.; Roswall, N.; Overvad, K.; Tjønneland, A.; Raaschou-Nielsen, O.; et al. Urine cadmium and acute myocardial infarction among never smokers in the Danish Diet, Cancer and Health cohort. Environ. Int. 2021, 150, 106428. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Schmidt, S.A.J.; Sandegaard, J.L.; Ehrenstein, V.; Pedersen, L.; Sørensen, H.T. The Danish National Patient Registry: A review of content, data quality, and research potential. Clin. Epidemiol. 2015, 7, 449–490. [Google Scholar] [CrossRef]
- Lauritsen, J. FoodCalc. 2021. Available online: https://github.com/jesperldk/FoodCalc (accessed on 19 July 2022).
- Bräuner, E.V.; Nordsborg, R.B.; Andersen, Z.J.; Tjønneland, A.; Loft, S.; Raaschou-Nielsen, O. Long-term exposure to low-level arsenic in drinking water and diabetes incidence: A prospective study of the diet, cancer and health cohort. Environ. Health Perspect. 2014, 122, 1059–1065. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, K.T.; Halkjær, J.; Sørensen, M.; Meliker, J.R.; McElroy, J.A.; Tjønneland, A.; Raaschou-Nielsen, O. Dietary Cadmium Intake and Risk of Breast, Endometrial and Ovarian Cancer in Danish Postmenopausal Women: A Prospective Cohort Study. PLoS ONE 2014, 9, e100815. [Google Scholar] [CrossRef]
- Raaschou-Nielsen, O.; Andersen, Z.J.; Jensen, S.S.; Ketzel, M.; Sørensen, M.; Hansen, J.; Loft, S.; Tjønneland, A.; Overvad, K. Traffic air pollution and mortality from cardiovascular disease and all causes: A Danish cohort study. Environ. Health 2012, 11, 60. [Google Scholar] [CrossRef] [PubMed]
- Kirkegaard, H.; Johnsen, N.F.; Christensen, J.; Frederiksen, K.; Overvad, K.; Tjønneland, A. Association of adherence to lifestyle recommendations and risk of colorectal cancer: A prospective Danish cohort study. BMJ 2010, 341, c5504. [Google Scholar] [CrossRef] [PubMed]
- Nordic Council of Ministers (Ed.) Nordic Nutritin Recommendations 2004: Integrating Nutrition and Physical Activity, 4th ed.; Nordic Council of Ministers: Copenhagen, Denmark, 2006; 435p. [Google Scholar]
- WHO Consultation on Obesity. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation; World Health Organization: Geneva, Switzerland, 1999; Available online: https://apps.who.int/iris/handle/10665/42330 (accessed on 30 June 2022).
- World Cancer Research Fund; American Institute for Cancer Research. Diet, Nutrition, Physical Activity and Cancer: A Global Perpective. 2018. Available online: https://www.wcrf.org/wp-content/uploads/2021/02/Summary-of-Third-Expert-Report-2018.pdf (accessed on 18 November 2023).
- Glade, M.J. Food, nutrition, and the prevention of cancer: A global perspective. American Institute for Cancer Research/World Cancer Research Fund, American Institute for Cancer Research, 1997. Nutrition 1999, 15, 523–526. [Google Scholar] [PubMed]
- Barlow, W.E.; Ichikawa, L.; Rosner, D.; Izumi, S. Analysis of case-cohort designs. J. Clin. Epidemiol. 1999, 52, 1165–1172. [Google Scholar] [CrossRef]
- Therneau, T.M.; Li, H. Computing the Cox Model for Case Cohort Designs. Lifetime Data Anal. 1999, 5, 99–112. [Google Scholar] [CrossRef]
- Thiébaut, A.C.M.; Bénichou, J. Choice of time-scale in Cox’s model analysis of epidemiologic cohort data: A simulation study. Stat. Med. 2004, 23, 3803–3820. [Google Scholar] [CrossRef] [PubMed]
- Cologne, J.; Preston, D.L.; Imai, K.; Misumi, M.; Yoshida, K.; Hayashi, T.; Nakachi, K. Conventional case–cohort design and analysis for studies of interaction. Int. J. Epidemiol. 2012, 41, 1174–1186. [Google Scholar] [CrossRef] [PubMed]
- Hicks, K.A.; Tcheng, J.E.; Bozkurt, B.; Chaitman, B.R.; Cutlip, D.E.; Farb, A.; Fonarow, G.C.; Jacobs, J.P.; Jaff, M.R.; Lichtman, J.H.; et al. 2014 ACC/AHA Key Data Elements and Definitions for Cardiovascular Endpoint Events in Clinical Trials: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Data Standards (Writing Committee to Develop Cardiovascular Endpoints Data Standards). J. Am. Coll. Cardiol. 2015, 66, 403–469. [Google Scholar] [PubMed]
- Domingo-Relloso, A.; Grau-Perez, M.; Briongos-Figuero, L.; Gomez-Ariza, J.L.; Garcia-Barrera, T.; Dueñas-Laita, A.; Bobb, J.F.; Chaves, F.J.; Kioumourtzoglou, M.-A.; Navas-Acien, A.; et al. The association of urine metals and metal mixtures with cardiovascular incidence in an adult population from Spain: The Hortega Follow-Up Study. Int. J. Epidemiol. 2019, 48, 1839. [Google Scholar] [CrossRef] [PubMed]
- Ascherio, A.; Rimm, E.B.; Hernán, M.A.; Giovannucci, E.L.; Kawachi, I.; Stampfer, M.J.; Willett, W.C. Intake of potassium, magnesium, calcium, and fiber and risk of stroke among US men. Circulation 1998, 98, 1198–1204. [Google Scholar] [CrossRef] [PubMed]
- Umesawa, M.; Iso, H.; Ishihara, J.; Saito, I.; Kokubo, Y.; Inoue, M.; Tsugane, S.; JPHC Study Group. Dietary calcium intake and risks of stroke, its subtypes, and coronary heart disease in Japanese: The JPHC Study Cohort I. Stroke 2008, 39, 2449–2456. [Google Scholar] [CrossRef] [PubMed]
- Iso, H.; Stampfer, M.J.; Manson, J.E.; Rexrode, K.; Hennekens, C.H.; Colditz, G.A.; Speizer, F.E.; Willett, W.C. Prospective study of calcium, potassium, and magnesium intake and risk of stroke in women. Stroke 1999, 30, 1772–1779. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Kaaks, R.; Linseisen, J.; Rohrmann, S. Associations of dietary calcium intake and calcium supplementation with myocardial infarction and stroke risk and overall cardiovascular mortality in the Heidelberg cohort of the European Prospective Investigation into Cancer and Nutrition study (EPIC-Heidelberg). Heart 2012, 98, 920–925. [Google Scholar] [PubMed]
- Abbott, R.D.; Curb, J.D.; Rodriguez, B.L.; Sharp, D.S.; Burchfiel, C.M.; Yano, K. Effect of dietary calcium and milk consumption on risk of thromboembolic stroke in older middle-aged men. The Honolulu Heart Program. Stroke 1996, 27, 813–818. [Google Scholar] [CrossRef]
- Fang, X.; Liang, C.; Li, M.; Montgomery, S.; Fall, K.; Aaseth, J.; Cao, Y. Dose-response relationship between dietary magnesium intake and cardiovascular mortality: A systematic review and dose-based meta-regression analysis of prospective studies. J. Trace Elem. Med. Biol. 2016, 38, 64–73. [Google Scholar] [CrossRef]
- Xu, T.; Sun, Y.; Xu, T.; Zhang, Y. Magnesium intake and cardiovascular disease mortality: A meta-analysis of prospective cohort studies. Int. J. Cardiol. 2013, 167, 3044–3047. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Cogswell, M.E.; Gillespie, C.; Fang, J.; Loustalot, F.; Dai, S.; Carriquiry, A.L.; Kuklina, E.V.; Hong, Y.; Merritt, R.; et al. Association between usual sodium and potassium intake and blood pressure and hypertension among U.S. adults: NHANES 2005–2010. PLoS ONE 2013, 8, e75289. [Google Scholar] [CrossRef] [PubMed]
- Duke, M. Thiazide-induced hypokalemia. Association with acute myocardial infarction and ventricular fibrillation. JAMA 1978, 239, 43–45. [Google Scholar] [CrossRef] [PubMed]
- Friedensohn, A.; Faibel, H.E.; Bairey, O.; Goldbourt, U.; Schlesinger, Z. Malignant arrhythmias in relation to values of serum potassium in patients with acute myocardial infarction. Int. J. Cardiol. 1991, 32, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Kafka, H.; Langevin, L.; Armstrong, P.W. Serum Magnesium and Potassium in Acute Myocardial Infarction: Influence on Ventricular Arrhythmias. Arch. Intern. Med. 1987, 147, 465–469. [Google Scholar] [CrossRef] [PubMed]
- Madias, J.E.; Shah, B.; Chintalapally, G.; Chalavarya, G.; Madias, N.E. Admission Serum Potassium in Patients With Acute Myocardial Infarction: Its Correlates and Value as a Determinant of In-Hospital Outcome. Chest 2000, 118, 904–913. [Google Scholar] [CrossRef] [PubMed]
- Nordrehaug, J.E.; Johannessen, K.A.; von der Lippe, G. Serum potassium concentration as a risk factor of ventricular arrhythmias early in acute myocardial infarction. Circulation 1985, 71, 645–649. [Google Scholar] [CrossRef] [PubMed]
- Solomon, R.J.; Cole, A.G. Importance of potassium in patients with acute myocardial infarction. Acta Med. Scand. Suppl. 1981, 209, 87–93. [Google Scholar] [CrossRef] [PubMed]
- D’Elia, L.; Barba, G.; Cappuccio, F.P.; Strazzullo, P. Potassium intake, stroke, and cardiovascular disease a meta-analysis of prospective studies. J. Am. Coll. Cardiol. 2011, 57, 1210–1219. [Google Scholar] [CrossRef]
- Douron, M. U-shaped dose-response curves: Implications for risk characterization of essential elements and other chemicals. J. Toxicol. Environ. Health A 2010, 73, 181–186. [Google Scholar] [CrossRef]
- Davis, J.M.; Svendsgaard, D.J. U-Shaped dose-response curves: Their occurrence and implications for risk assessment. J. Toxicol. Environ. Health 1990, 30, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Aggett, P.J. Toxicity due to excess and deficiency. J. Toxicol. Environ. Health A 2010, 73, 175–180. [Google Scholar] [CrossRef]
- Kong, S.H.; Kim, J.H.; Hong, A.R.; Cho, N.H.; Shin, C.S. Dietary calcium intake and risk of cardiovascular disease, stroke, and fracture in a population with low calcium intake. Am. J. Clin. Nutr. 2017, 106, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Vinceti, M.; Filippini, T.; Crippa, A.; de Sesmaisons, A.; Wise, L.A.; Orsini, N. Meta-Analysis of Potassium Intake and the Risk of Stroke. J. Am. Heart Assoc. 2016, 5, e004210. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Wu, M.; Ding, L.; Ji, H.; Zhao, J.; Li, X.; Li, Z.; Liu, S.; Jiang, H.; Shi, J.; et al. Potassium status and the risk of type 2 diabetes, cardiovascular diseases, and mortality: A meta-analysis of prospective observational studies. Crit. Rev. Food Sci. Nutr. 2023, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, H.; Ouyang, Y.; Liu, J.; Zhao, G.; Bao, W.; Yan, M. Dietary calcium intake and mortality risk from cardiovascular disease and all causes: A meta-analysis of prospective cohort studies. BMC Med. 2014, 12, 158. [Google Scholar] [CrossRef] [PubMed]
- Heilberg, I.P. Calcium Excretion—Renal Handling of Calcium. In Encyclopedia of Endocrine Diseases; Academic Press: Cambridge, MA, USA, 2004; Available online: https://www.sciencedirect.com/topics/immunology-and-microbiology/calcium-excretion (accessed on 16 June 2022).
- National Institutes of Health. Magnesium Overview for Health Professionals. 2022. Available online: https://ods.od.nih.gov/factsheets/Magnesium-HealthProfessional/ (accessed on 16 June 2022).
- National Institutes of Health. Calcium, Office of Dietary Supplements. 2022. Available online: https://ods.od.nih.gov/factsheets/Calcium-HealthProfessional/ (accessed on 12 June 2022).
- Block, G.; Woods, M.; Potosky, A.; Clifford, C. Validation of a self-administered diet history questionnaire using multiple diet records. J. Clin. Epidemiol. 1990, 43, 1327–1335. [Google Scholar] [CrossRef] [PubMed]
- Sauvageot, N.; Alkerwi, A.; Albert, A.; Guillaume, M. Use of food frequency questionnaire to assess relationships between dietary habits and cardiovascular risk factors in NESCAV study: Validation with biomarkers. Nutr. J. 2013, 12, 143. [Google Scholar] [CrossRef] [PubMed]
- Cade, J.; Thompson, R.; Burley, V.; Warm, D. Development, validation and utilisation of food-frequency questionnaires—A review. Public Health Nutr. 2002, 5, 567–587. [Google Scholar] [CrossRef]
- Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium. Dietary Reference Intakes for Calcium and Vitamin D; Ross, A.C., Taylor, C.L., Yaktine, A.L., Del Valle, H.B., Eds.; The National Academies Collection: Reports funded by National Institutes of Health; National Academies Press (US): Washington, DC, USA, 2011. Available online: http://www.ncbi.nlm.nih.gov/books/NBK56070/ (accessed on 30 June 2022).
- Jahnen-Dechent, W.; Ketteler, M. Magnesium basics. Clin. Kidney J. 2012, 5 (Suppl. 1), i3–i14. [Google Scholar] [CrossRef]
- Gibson, R.S. Principles of Nutritional Assessment; Oxford University Press: Oxford, UK, 2005; 930p. [Google Scholar]
- Levene, D.L. The absorption of potassium chloride—Liquid vs. tablet. Can. Med. Assoc. J. 1973, 108, 1480. [Google Scholar] [PubMed]
- Stone, M.S.; Martyn, L.; Weaver, C.M. Potassium Intake, Bioavailability, Hypertension, and Glucose Control. Nutrients 2016, 8, 444. [Google Scholar] [CrossRef] [PubMed]
- Joensen, A.M.; Jensen, M.K.; Overvad, K.; Dethlefsen, C.; Schmidt, E.; Rasmussen, L.; Tjønneland, A.; Johnsen, S. Predictive values of acute coronary syndrome discharge diagnoses differed in the Danish National Patient Registry. J. Clin. Epidemiol. 2008, 62, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Mard, S.; Nielsen, F.E. Positive predictive value and impact of misdiagnosis of a heart failure diagnosis in administrative registers among patients admitted to a University Hospital cardiac care unit. Clin. Epidemiol. 2010, 2, 235–239. [Google Scholar] [PubMed]
- Thygesen, S.K.; Christiansen, C.F.; Christensen, S.; Lash, T.L.; Sørensen, H.T. The predictive value of ICD-10 diagnostic coding used to assess Charlson comorbidity index conditions in the population-based Danish National Registry of Patients. BMC Med. Res. Methodol. 2011, 11, 83. [Google Scholar] [CrossRef]
- Rothman, K.J.; Greenland, S.; Lash, T.L. Modern Epidemiology; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2008; 776p. [Google Scholar]
- Cui, Q.; Xia, Y.; Wu, Q.; Chang, Q.; Niu, K.; Zhao, Y. A meta-analysis of the reproducibility of food frequency questionnaires in nutritional epidemiological studies. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 1–18. [Google Scholar] [CrossRef]
Baseline Characteristics | Subcohort (n = 1135) | Heart Failure Cases (n = 893) | AMI Cases (n = 776) | Stroke Cases (n = 502) | p-Value |
---|---|---|---|---|---|
Mean (SD) or % | Mean (SD) or % | Mean (SD) or % | Mean (SD) or % | ||
Age at enrolment (years) | 56.4 (4.3) | 58.2 (4.3) | 57.9 (4.2) | 58.0 (4.41) | <0.001 |
Gender | |||||
Female | 49.6 | 49.4 | 39.6 | 47.8 | <0.001 |
Male | 50.4 | 50.6 | 60.4 | 52.2 | |
Marital status | |||||
Married | 75.4 | 66.6 | 71.5 | 71.1 | 0.005 |
Divorced | 12.0 | 15.5 | 14.3 | 13.9 | |
Widowed | 5.0 | 7.7 | 6.6 | 5.6 | |
Unmarried | 6.9 | 9.6 | 6.4 | 8.0 | |
Unanswered | 0.8 | 0.4 | 1.2 | 1.4 | |
Employed | 81.2 | 74.1 | 76.0 | 71.7 | <0.001 |
Years in School | |||||
Low (≤7 years) | 28.3 | 36.4 | 32.5 | 34.9 | 0.004 |
Medium (8–10 years) | 45.8 | 43.9 | 47.6 | 41.6 | |
High (> 10 years) | 25.9 | 19.7 | 20.0 | 23.5 | |
BMI (kg/m3) | 26.4 (4.2) | 26.8 (5.1) | 27.4 (4.2) | 27.4 (4.6) | <0.001 |
Used Dietary Supplement | 72.7 | 66.5 | 65.7 | 67.3 | 0.003 |
Self-reported hypertension | 16.7 | 11.9 | 27.2 | 31.3 | <0.001 |
Urine Cotinine (µg/L) | 45.1 (112.6) | 37.0 (99.1) | 35.2 (90.3) | 32.8 (185.9) | 0.294 |
Lifestyle Factor Index (LFI) | |||||
0 | 0.0 | 0.0 | 0.0 | 0.0 | <0.001 |
1 | 1.2 | 1.3 | 1.7 | 1.6 | |
2 | 25.2 | 41.9 | 32.4 | 36.5 | |
3 | 69.1 | 53.6 | 61.3 | 57.6 | |
4 | 4.5 | 3.13 | 4.6 | 4.4 | |
Parity (Women) | |||||
0 | 12.6 | 14.1 | 10.4 | 13.8 | 0.840 |
1 | 11.7 | 11.1 | 12.7 | 12.1 | |
2 | 47.6 | 43.3 | 47.2 | 46.7 | |
3+ | 28.1 | 31.5 | 29.6 | 27.5 | |
Post-menopausal Status (Women) | 81.9 | 92.1 | 90.6 | 90.0 | 0.001 |
Subcohort (n = 1135) | Heart Failure Cases (n = 893) | AMI Cases (n = 776) | Stroke Cases (n = 502) | |||||
---|---|---|---|---|---|---|---|---|
Median (SD) | IQR (Q1, Q3) | Median (SD) | IQR (Q1, Q3) | Median (SD) | IQR (Q1, Q3) | Median (SD) | IQR (Q1, Q3) | |
Combined Dietary Intake (CDI) score (points) * | ||||||||
7.2 (1.14) | (5.0, 10.0) | 7.0 (1.12) | (5.0, 10.0) | 8.0 (3.0) | (5.0, 10.0) | 7.50 (3.0) | (5.0, 10.0) | |
Dietary Intake (mg/d) | ||||||||
Ca | 1068.7 (447.9) | (802.2, 1377.7) | 1136.80 (461.87) | (798.80, 1397.80) | 1063.1 (467.7) | (792.9, 1391.7) | 1008.8 (462.2) | (782.0, 1340.3) |
Mg | 375.6 (94.4) | (318.9, 439.7) | 383.70 (98.03) | (316.70, 440.50) | 375.6 (96.9) | (318.0, 443.0) | 382.1 (104.3) | (308.3, 438.2) |
K | 3894.0 (1003.1) | (3266.0, 4543.0) | 3986.50 (1059.07) | (3253.20, 4583.30) | 3904 (1044.8) | (3282.4, 4598.4) | 3839.0 (1129.0) | (3191.0, 4620.0) |
Urinary Biomarkers (mg/g creatinine) | ||||||||
Ca | 120.4 (156.0) | (73.8, 196.1) | 116.1 (150.4) | (70.7, 189.5) | 117.5 (159.0) | (70.7, 191.0) | 149.6 (152.5) | (66.5, 173.3) |
Mg | 65.4 (68.1) | (44.9, 96.8) | 64.4 (73.0) | (44.2, 95.3) | 63.3 (67.9) | (43.9, 94.4) | 80.4 (82.9) | (41.5, 87.9) |
K | 2244.5 (1751.3 | (1563.1, 3240.0) | 2236.8 (1847.5) | (1561.8, 3209.8) | 2210.6 (1701.8) | (1539.5, 3213.2) | 2633.0 (1676.3) | (1560.9, 3170.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fruh, V.; Babalola, T.; Sears, C.; Wellenius, G.A.; Webster, T.F.; Mann, K.K.; Harrington, J.; Tjønneland, A.; Raaschou-Nielsen, O.; Claus Henn, B.; et al. Dietary Minerals and Incident Cardiovascular Outcomes among Never-Smokers in a Danish Case–Cohort Study. Int. J. Environ. Res. Public Health 2024, 21, 932. https://doi.org/10.3390/ijerph21070932
Fruh V, Babalola T, Sears C, Wellenius GA, Webster TF, Mann KK, Harrington J, Tjønneland A, Raaschou-Nielsen O, Claus Henn B, et al. Dietary Minerals and Incident Cardiovascular Outcomes among Never-Smokers in a Danish Case–Cohort Study. International Journal of Environmental Research and Public Health. 2024; 21(7):932. https://doi.org/10.3390/ijerph21070932
Chicago/Turabian StyleFruh, Victoria, Tesleem Babalola, Clara Sears, Gregory A. Wellenius, Thomas F. Webster, Koren K. Mann, James Harrington, Anne Tjønneland, Ole Raaschou-Nielsen, Birgit Claus Henn, and et al. 2024. "Dietary Minerals and Incident Cardiovascular Outcomes among Never-Smokers in a Danish Case–Cohort Study" International Journal of Environmental Research and Public Health 21, no. 7: 932. https://doi.org/10.3390/ijerph21070932
APA StyleFruh, V., Babalola, T., Sears, C., Wellenius, G. A., Webster, T. F., Mann, K. K., Harrington, J., Tjønneland, A., Raaschou-Nielsen, O., Claus Henn, B., & Meliker, J. R. (2024). Dietary Minerals and Incident Cardiovascular Outcomes among Never-Smokers in a Danish Case–Cohort Study. International Journal of Environmental Research and Public Health, 21(7), 932. https://doi.org/10.3390/ijerph21070932