Brain, Metabolic, and RPE Responses during a Free-Pace Marathon: A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant
2.2. Experimental Design: RABIT® Test and the Marathon Race
2.2.1. Pre-Race Protocol
2.2.2. Marathon Race and Environmental Conditions
2.3. Experimental Measurements
2.3.1. Cardiorespiratory Factors and Speed
2.3.2. The Rate of Perception of Exertion (RPE) Scale
2.3.3. Electroencephalography (EEG) Measurements
2.4. Statistical Analysis
3. Results
3.1. Performance (Pacing) and Cardiorespiratory Responses
3.2. EEG Responses and RPE during the Marathon
4. Discussion
5. Conclusions and Study’s Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vitti, A.; Nikolaidis, P.T.; Villiger, E.; Onywera, V.; Knechtle, B. The “New York City Marathon”: Participation and performance trends of 1.2M runners during half-century. Res Sports Med. 2020, 28, 121–137. [Google Scholar] [CrossRef] [PubMed]
- Run Repeat. Available online: https://runrepeat.com/state-of-running (accessed on 24 January 2024).
- Stevinson, C.D.; Biddle, S.J. Cognitive orientations in marathon running and “hitting the wall”. Br. J. Sports Med. 1998, 32, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Latta, S. Hitting the wall: If you understand the scientific reasons behind “the wall”, you should be able to avoid it. Marathon Beyond 2003, 7, 61–72. [Google Scholar]
- Buman, M.P.; Brewer, B.W.; Cornelius, A.E.; Van Raalte, J.L.; Petitpas, A.J. Hitting the wall in the marathon: Phenomenological characteristics and associations with expectancy, gender, and running history. Psychol. Sport Exerc. 2008, 9, 177–190. [Google Scholar] [CrossRef]
- Berndsen, J.; Lawlor, A.; Smyth, B. Exploring the Wall in Marathon Running. J. Sport. Anal. 2020, 6, 173–186. [Google Scholar] [CrossRef]
- Smyth, B. How Recreational Marathon Runners Hit the Wall: A Large-Scale Data Analysis of Late-Race Pacing Collapse in the Marathon. PLoS ONE 2021, 16, e0251513. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Locksley, R. Fuel Utilization in Marathons-Implications for Performance. West. J. Med. 1980, 133, 493–502. [Google Scholar] [PubMed] [PubMed Central]
- Rapoport, B.I. Metabolic factors limiting performance in marathon runners. PLoS Comput. Biol. 2010, 6, e1000960. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bosch, A.N.; Dennis, S.C.; Noakes, T.D. Influence of carbohydrate loading on fuel substrate turnover and oxidation during prolonged exercise. J. Appl. Physiol. 1993, 74, 1921–1927. [Google Scholar] [CrossRef] [PubMed]
- Smyth, B. Fast Starters and Slow Finishers: A Large-Scale Data Analysis of Pacing at the Beginning and End of the Marathon for Recreational Runners. J. Sport. Anal. 2018, 4, 229–242. [Google Scholar] [CrossRef]
- Billat, V.L.; Palacin, F.; Correa, M.; Pycke, J.R. Pacing Strategy Affects the Sub-Elite Marathoner’s Cardiac Drift and Performance. Front. Psychol. 2020, 10, 3026. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fan, W.; Waizenegger, W.; Lin, C.S.; Sorrentino, V.; He, M.X.; Wall, C.E.; Li, H.; Liddle, C.; Yu, R.T.; Atkins, A.R.; et al. PPARδ Promotes Running Endurance by Preserving Glucose. Cell Metab. 2017, 25, 1186–1193.e3. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Coyle, E. Physiological Regulation of Marathon Performance. Sports Med. 2007, 37, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Maron, M.B.; Horvath, S.M.; Wilkerson, J.E.; Gliner, J.A. Oxygen uptake measurements during competitive marathon running. J. Appl. Physiol. 1976, 40, 836–838. [Google Scholar] [CrossRef]
- Noakes, T.D. The central governor model of exercise regulation applied to the marathon. Sports Med. 2007, 37, 374–377. [Google Scholar] [CrossRef] [PubMed]
- Schuler, J.; Brunner, S. The rewarding effect of flow experience on performance in a marathon race. Psychol. Sport Exerc. 2009, 10, 168–174. [Google Scholar] [CrossRef]
- Raglin, J. The Psychology of the Marathoner. Sports Med. 2007, 37, 404–407. [Google Scholar] [CrossRef]
- Morgan, W.; Pollock, M. Psychologic characterization of the elite distance runner. Ann. N. Y. Acad. Sci. 1977, 301, 382–403. [Google Scholar] [CrossRef]
- Billat, V.; Poinsard, L.; Palacin, F.; Pycke, R.J.; Maron, M. Oxygen Uptake Measurements and Rate of Perceived Exertion During a Marathon. Int. J. Environ. Res. Public Health 2022, 19, 5760. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Noakes, T.D.; St Clair Gibson, A.; Lambert, E.V. From catastrophe to complexity: A novel model of integrative central neural regulation of effort and fatigue during exercise in humans: Summary and conclusions. Br. J. Sports Med. 2005, 39, 120–124. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Landers, D.M.; Petruzzello, S.J.; Salazar, W.; Crews, D.J.; Kubitz, K.A.; Gannon, T.L.; Han, M. The influence of electrocortical biofeedback on performance in pre-elite archers. Med. Sci. Sports Exerc. 1991, 23, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Babiloni, C.; Del Percio, C.; Iacoboni, M.; Infarinato, F.; Lizio, R.; Marzano, N.; Crespi, G.; Dassù, F.; Pirritano, M.; Gallamini, M.; et al. Golf putt outcomes are predicted by sensorimotor cerebral EEG rhythms. J. Physiol. 2008, 586, 131–139. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Doppelmayr, M.; Finkenzeller, T.; Sauseng, P. Frontal midline theta in the pre-shot phase of rifle shooting: Differences between experts and novices. Neuropsychologia 2008, 46, 1463–1467. [Google Scholar] [CrossRef] [PubMed]
- Park, J.L.; Fairweather, M.M.; Donaldson, D.I. Making the case for mobile cognition: EEG and sports performance. Neurosci. Biobehav. Rev. 2015, 52, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, M.; Kato, A.; Fujita, N.; Hirata, M.; Tanaka, H.; Kihara, T.; Ninomiya, H.; Hirabuki, N.; Nakamura, H.; Robinson, S.E.; et al. Movement-related desynchronization of the cerebral cortex studied with spatially filtered magnetoencephalography. Neuroimage 2000, 12, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Jurkiewicz, M.T.; Gaetz, W.C.; Bostan, A.C.; Cheyne, D. Post-movement beta rebound is generated in motor cortex: Evidence from neuromagnetic recordings. Neuroimage 2006, 32, 1281–1289. [Google Scholar] [CrossRef] [PubMed]
- Waldert, S.; Preissl, H.; Demandt, E.; Braun, C.; Birbaumer, N.; Aertsen, A.; Mehring, C. Hand movement direction decoded from MEG and EEG. J. Neurosci. 2008, 28, 1000–1008. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schneider, S.; Askew, C.D.; Diehl, J.; Mierau, A.; Kleinert, J.; Abel, T.; Carnahan, H.; Strüder, H.K. EEG activity and mood in health orientated runners after different exercise intensities. Physiol. Behav. 2009, 96, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Gwin, J.; Gramann, K.; Makeig, S.; Ferris, D. Electrocortical activity is coupled to gait cycle phase during treadmill walking. Neuroimage 2011, 54, 289–1296. [Google Scholar] [CrossRef] [PubMed]
- Klimesch, W.; Doppelmayr, M.; Schimke, H.; Pachinger, T. Alpha frequency, reaction time, and the speed of processing information. J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 1996, 13, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Klimesch, W.; Sauseng, P.; Hanslmayr, S. EEG alpha oscillations: The inhibition-timing hypothesis. Brain Res. Rev. 2007, 53, 63–88. [Google Scholar] [CrossRef] [PubMed]
- Gola, M.; Magnuski, M.; Szumska, I.; Wrobel, A. EEG beta band activity is related to attention and attentional deficits in the visual performance of elderly subjects. Int. J. Psychophysiol. 2013, 89, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Abhang, P.A.; Gawali, B.W.; Mehrotra, S.C. Introduction to EEG-and Speech-Based Emotion Recognition, 1st ed.; Academic Press: Cambridge, MA, USA, 2016; ISBN 978-0128044902. [Google Scholar]
- Kropotov, J.D. Beta and gamma rhythms. In Functional Neuromarkers for Psychiatry: Applications for Diagnosis and Treatment, 1st ed.; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2016; pp. 107–119. ISBN 978-0124105133. [Google Scholar]
- Nielsen, B.; Hyldig, T.; Bidstrup, F.; Gonzalez-Alonso, J.; Christoffersen, G.R. Brain activity and fatigue during prolonged exercise in the heat. Pflugers Arch. 2001, 442, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, B.; Nybo, L. Cerebral changes during exercise in the heat. Sports Med. 2003, 33, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Brummer, V.; Schneider, S.; Abel, T.; Vogt, T.; Struder, H.K. Brain cortical activity is influenced by exercise mode and intensity. Med. Sci. Sports Exerc. 2011, 43, 1863–1872. [Google Scholar] [CrossRef] [PubMed]
- Mahler, D.A.; Loke, J. The Physiology of Marathon Running. Phys. Sportsmed. 1985, 13, 84–97. [Google Scholar] [CrossRef] [PubMed]
- Sjödin, B.; Svedenhag, J. Applied physiology of marathon running. Sports Med. 1985, 2, 83–99. [Google Scholar] [CrossRef]
- David, L.; Costill, D.L. A comparison of two middle aged ultramarathon runners, research quarterly. Am. Assoc. Health Phys. Educ. 1970, 41, 135–139. [Google Scholar] [PubMed]
- Jones, A.M.; Kirby, B.S.; Clark, I.E.; Rice, H.M.; Fulkerson, E.; Wylie, L.J.; Wilkerson, D.P.; Vanhatalo, A.; Wilkins, B.W. Physiological demands of running at 2-hour marathon race pace. J. Appl. Physiol. 2021, 130, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Joyner, J.R.; Hunter, S.K.; Lucia, A.; Jones, A.M. Physiology and fast marathons. J. Appl. Physiol. 2020, 128, 1065–1068. [Google Scholar] [CrossRef] [PubMed]
- Molinari, C.A.; Palacin, F.; Poinsard, L.; Billat, V. Determination of submaximal and maximal training zones from a 3-stage, variable-duration, perceptually regulated track test. Int. J. Sport. Physiol. Perform. 2020, 15, 853–861. [Google Scholar] [CrossRef] [PubMed]
- Giovanelli, N.; Scaini, S.; Billat, V.; Lazzer, S. A new field to estimate the aerobic and anaerobic thresholds and maximum parameters. Eur. J. Sport. Sci. 2020, 20, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Borg, G. Borg’s Perceived Exertion and Pain Scales; Human Kinetics: Champaing, IL, USA, 1998; p. 104. [Google Scholar]
- Péronnet, F.; Massicotte, D. Table of nonprotein respiratory quotient: An update. Can. J. Sport Sci. 1991, 16, 23–29. [Google Scholar] [PubMed]
- Pycke, J.R.; Billat, V. Marathon performance depends on pacing oscillations between non symmetric extreme values. Int. J. Environ. Res. Public Health 2022, 19, 2463. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lalo, E.; Gilbertson, T.; Doyle, L.; Di Lazzaro, V.; Cioni, B.; Brown, P. Phasic increases in cortical beta activity are associated with alterations in sensory processing in the human. Exp. Brain Res. 2007, 177, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Baumeister, J.; Barthel, T.; Geiss, K.R.; Weiss, M. Influence of phosphatidylserine on cognitive performance and cortical activity after induced stress. Nutr. Neurosci. 2008, 11, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Joyner, M.J. Modeling: Optimal marathon performance on the basis of physiological factors. J. Appl. Physiol. 1991, 70, 683–687. [Google Scholar] [CrossRef] [PubMed]
- Coyle, E.F. Fluid and fuel intake during exercise. J. Sports Sci. 2004, 22, 39–55. [Google Scholar] [CrossRef] [PubMed]
- Jeukendrup, A.E.; Jentjens, R. Oxidation of carbohydrate feedings during prolonged exercise: Current thoughts, guidelines and directions for future research. Sports Med. 2000, 29, 407–424. [Google Scholar] [CrossRef] [PubMed]
- Palacin, F.; Poinsard, L.; Pycke, J.R.; Billat, V. A Pilot Study Using Entropy for Optimizing Self-Pacing during a Marathon. Entropy 2023, 25, 1119. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
km Interval | Speed (km/h) | Rf (1/min) | E (L/min) | O2 (mL/min/kg) | RER | |
---|---|---|---|---|---|---|
0–5 | Mean ± SD | 14.9 ± 0.3 | 40.8 ± 4.3 | 84.5 ± 6.7 | 47.1 ± 2.2 | 0.95 ± 0.03 |
Peak | 16.1 | 47.8 | 95.5 | 53.0 | 1.00 | |
5–10 | Mean ± SD | 14.8 ± 0.2 | 48.1 ± 3.8 | 92.3 ± 3.0 | 47.0 ± 1.0 | 1.01 ± 0.02 |
Peak | 15.9 | 58.3 | 100.3 | 50.3 | 1.06 | |
10–15 | Mean ± SD | 14.6 ± 0.5 | 56.3 ± 3.2 | 96.9 ± 3.8 | 45.2 ± 1.3 | 1.05 ± 0.02 |
Peak | 15.8 | 60.0 | 104.7 | 47.6 | 1.10 | |
15–20 | Mean ± SD | 14.3 ± 0.2 | 58.8 ± 1.2 | 96.6 ± 2.0 | 45.1 ± 1.1 | 1.03 ± 0.01 |
Peak | 14.8 | 61.9 | 100.5 | 48.7 | 1.06 | |
20–25 | Mean ± SD | 14.5 ± 4.5 | 57.3 ± 4.0 | 95.1 ± 7.0 | 46.9 ± 2.5 | 0.99 ± 0.03 |
Peak | 16.6 | 64.7 | 105.1 | 49.8 | 1.04 | |
25–30 | Mean ± SD | 13.7 ± 2.4 | 62.1 ± 3.6 | 93.2 ± 7.8 | 45.5 ± 2.8 | 0.98 ± 0.02 |
Peak | 14.9 | 71.5 | 101.4 | 48.7 | 1.02 | |
30–35 | Mean ± SD | 12.4 ± 0.6 | 62.0 ± 5.9 | 81.9 ± 10.3 | 42.2 ± 4.8 | 0.92 ± 0.03 |
Peak | 13.8 | 70.7 | 92.1 | 48.6 | 0.97 | |
35–40 | Mean ± SD | 11.1 ± 2.5 | 58.9 ± 3.8 | 74.1 ± 6.1 | 42.1 ± 3.4 | 0.86 ± 0.02 |
Peak | 13.4 | 64.4 | 80.5 | 47.1 | 0.90 | |
40–42 | Mean ± SD | 11.0 ± 0.4 | 58.8 ± 2.2 | 69.0 ± 6.4 | 40.4 ± 3.1 | 0.83 ± 0.02 |
Peak | 11.9 | 63.5 | 77.3 | 46.3 | 0.86 |
km Interval | Alpha PSD (V2) | Beta PSD (V2) | Alpha/Beta Ratio | RPE | |
---|---|---|---|---|---|
0–5 | Mean ± SD | 4.7 ± 2.2 | 3.1 ± 0.7 | 1.6 ± 0.9 | 8 ± 0.0 |
Peak | 16.2 | 6.3 | 7.2 | ||
5–10 | Mean ± SD | 8.5 ± 4.3 | 3.4 ± 0.9 | 2.5 ± 1.2 | 10 ± 0.08 |
Peak | 29.3 | 8.6 | 7.9 | ||
10–15 | Mean ± SD | 18.2 ± 8.9 | 4.3 ± 1.3 | 4.3 ± 2.0 | 10 ± 0.0 |
Peak | 44.4 | 9.8 | 12.6 | ||
15–20 | Mean ± SD | 5.5 ± 2.3 | 2.9 ± 0.8 | 2.0 ± 1.0 | 12 ± 0.06 |
Peak | 16.1 | 7.2 | 7.6 | ||
20–25 | Mean ± SD | 5.2 ± 2.1 | 3.3 ± 1.2 | 1.6 ± 0.7 | 13 ± 0.05 |
Peak | 13.6 | 10.1 | 5.9 | ||
25–30 | Mean ± SD | 3.9 ± 1.7 | 2.5 ± 0.8 | 1.7 ± 0.8 | 15 ± 0.05 |
Peak | 13.8 | 5.9 | 5.2 | ||
30–35 | Mean ± SD | 3.1 ± 1.4 | 2.1 ± 0.6 | 1.5 ± 0.8 | 17 ± 0.05 |
Peak | 9.7 | 6.1 | 8.9 | ||
35–40 | Mean ± SD | 17 ± 0.0 | |||
Peak | |||||
40–42 | Mean ± SD | 19 ± 0.07 | |||
Peak |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palacin, F.; Poinsard, L.; Mattei, J.; Berthomier, C.; Billat, V. Brain, Metabolic, and RPE Responses during a Free-Pace Marathon: A Preliminary Study. Int. J. Environ. Res. Public Health 2024, 21, 1024. https://doi.org/10.3390/ijerph21081024
Palacin F, Poinsard L, Mattei J, Berthomier C, Billat V. Brain, Metabolic, and RPE Responses during a Free-Pace Marathon: A Preliminary Study. International Journal of Environmental Research and Public Health. 2024; 21(8):1024. https://doi.org/10.3390/ijerph21081024
Chicago/Turabian StylePalacin, Florent, Luc Poinsard, Julien Mattei, Christian Berthomier, and Véronique Billat. 2024. "Brain, Metabolic, and RPE Responses during a Free-Pace Marathon: A Preliminary Study" International Journal of Environmental Research and Public Health 21, no. 8: 1024. https://doi.org/10.3390/ijerph21081024
APA StylePalacin, F., Poinsard, L., Mattei, J., Berthomier, C., & Billat, V. (2024). Brain, Metabolic, and RPE Responses during a Free-Pace Marathon: A Preliminary Study. International Journal of Environmental Research and Public Health, 21(8), 1024. https://doi.org/10.3390/ijerph21081024