Health Status and COVID-19 Epidemiology in an Inland Region of Portugal: A Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Study Design and Subjects
2.3. Laboratory Techniques
2.4. Statistical Analysis
3. Results
3.1. Characterization of the Sample
3.2. Disease Prevalence in the Study Population
3.3. COVID-19 Patients and Immunization
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Airhihenbuwa, C.O.; Tseng, T.S.; Sutton, V.D.; Price, L. Global Perspectives on Improving Chronic Disease Prevention and Management in Diverse Settings. Prev. Chronic Dis. 2021, 18, E33. [Google Scholar] [CrossRef] [PubMed]
- Partridge, L.; Deelen, J.; Slagboom, P.E. Facing up to the global challenges of ageing. Nature 2018, 561, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Instituto Nacional de Estatística. Available online: https://www.ine.pt/ngt_server/attachfileu.jsp?look_parentBoui=628511465&att_display=n&att_download=y (accessed on 2 April 2024).
- Vieira, R.J.; Sousa-Pinto, B.; Pereira, A.M.; Cordeiro, C.R.; Loureiro, C.C.; Regateiro, F.; Taborda-Barata, L.; Bousquet, J.; Fonseca, J. Asthma hospitalizations: A call for a national strategy to fight health inequities. Pulmonology 2023, 29, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Coelho, P.; Rodrigues, F.; Mateus, S. Excess weight and obesity in a region of the interior of Portugal. J. Hum. Sport Exerc. 2019, 14, S1169–S1823. [Google Scholar]
- Ordem dos Médicos. Estatísticas Nacionais. Available online: https://ordemdosmedicos.pt/wp-content/uploads/2023/01/ESTATISTICAS-por-DISTRITO_2022.pdf (accessed on 13 December 2023).
- Borges, I.J.; O’Mathúna, D.P.; von Groote, T.C.; Abdulazeem, H.M.; Weerasekara, I.; Marusic, A.; Puljak, L.; Civile, V.T.; Zakarija-Grkovic, I.; Pericic, T.P.; et al. Coronavirus disease (COVID-19) pandemic: An overview of systematic reviews. BMC Infect. Dis. 2021, 21, 525. [Google Scholar]
- Available online: https://www.who.int/europe/news-room/fact-sheets/item/post-covid-19-condition (accessed on 22 November 2023).
- Chen, L.; Zheng, S. Understand variability of COVID-19 through population and tissue variations in expression of SARS-CoV-2 host genes. Inf. Med. Unlocked 2020, 21, 100443. [Google Scholar] [CrossRef]
- Fajar, J.K.; Ilmawan, M.; Mamada, S.S.; Mutiawati, E.; Husnah, M.; Yusuf, H.; Nainu, F.; Sirinam, S.; Keam, S.; Ophinni, Y.; et al. Global prevalence of persistent neuromuscular symptoms and the possible pathomechanisms in COVID-19 recovered individuals: A systematic review and meta-analysis. Narra J. 2021, 1, e48. [Google Scholar] [CrossRef]
- Leong, D.P.; Loeb, M.; Mony, P.K.; Rangarajan, S.; Mushtaha, M.; Miller, M.S.; Dias, M. Risk factors for recognized and unrecognized SARS-CoV-2 infection: A seroepidemiologic analysis of the Prospective Urban Rural Epidemiology (PURE) study. Microbiol. Spectr. 2024, 12, e0149223. [Google Scholar] [CrossRef]
- Wei, C.; Yu, X.; Chen, Y. Can Patients with Asymptomatic/Mild Illness and Moderate Illness COVID-19 Have White Matter Damage? Int. J. Gen. Med. 2023, 16, 4585–4593. [Google Scholar] [CrossRef]
- Bailey, E.; Frishman, W.H. Mild-to-Moderate COVID-19 Infection and Myocarditis: A Review. Cardiol. Rev. 2023, 31, 173–175. [Google Scholar] [CrossRef]
- Theodore, D.A.; Branche, A.R.; Zhang, L. Clinical and Demographic Factors Associated With COVID-19, Severe COVID-19, and SARS-CoV-2 Infection in Adults: A Secondary Cross-Protocol Analysis of 4 Randomized Clinical Trials. JAMA Netw. Open 2023, 6, e2323349. [Google Scholar] [CrossRef] [PubMed]
- Andrew, C.; Mark, J.; Charlotte, W.G.; Bruce, G.; Harry, H.X.W.; Colin, S.; McKee, M.; Troeger, C.; Ong, K.L.; Checchi, F.; et al. Global, regional, and national estimates of the population at increased risk of severe COVID-19 due to underlying health conditions in 2020: A modelling study. Lancet Glob. Health 2020, 8, e1003-17. [Google Scholar]
- Available online: https://www.pordata.pt/censos/resultados/populacao-beira+baixa-538 (accessed on 10 January 2024).
- Huang, L.; Yao, Q.; Gu, X. 1-year outcomes in hospital survivors with COVID-19: A longitudinal cohort study. Lancet 2021, 398, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Wiertz, C.M.H.; Hemmen, B.; Sep, S.J.S. Life after COVID-19: The road from intensive care back to living—A prospective cohort study. BMJ Open 2022, 12, e062332. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, V.S. Europe’s obesity burden on the rise: WHO report. Lancet Diabetes Endocrinol. 2022, 10, 488. [Google Scholar] [CrossRef] [PubMed]
- Rosário, R.; Barros, R.; Padrão, P. Body Mass Index Categories and Attained Height in Portuguese Adults. Obes. Facts 2018, 11, 287–293. [Google Scholar] [CrossRef]
- Schetz, M.; DeJong, A.; Deane, A.M.; Druml, W.; Hemelaar, P.; Pelosi, P.; Pickkers, P.; Reintam-Blaser, A.; Roberts, J.; Sakr, Y.; et al. Obesity in the critically ill: A narrative review. Intensive Care Med. 2019, 45, 757–769. [Google Scholar] [CrossRef]
- Rugila, D.F.; Oliveira, J.M.; Machado, F.V.C.; Correia, N.S.; Puzzi, V.C.; Passos, N.F.P.; Freitas, P.D.; Pitta, F.; Carvalho, C.R.F.; Furlanetto, K.C. Fat mass to fat-free mass ratio and its associations with clinical characteristics in asthma. Heart Lung 2022, 56, 154–160. [Google Scholar] [CrossRef]
- Gallo, G.; Calvez, V.; Savoia, C. Hypertension and COVID-19: Current Evidence and Perspectives. High Blood Press. Cardiovasc. Prev. 2022, 29, 115–123. [Google Scholar] [CrossRef]
- Oliveira, G.M.M.; Mendes, M.; Dutra, Ó.P.; Achutti, A.; Fernandes, M.; Correia, V.A.; de Sena e Costa dos Santos Ferreira, M.B.; Coelho, A.S.; Soares, M.B.D.P.C.; de Brito Lima Évora, M.A.; et al. Recommendations for reducing tobacco consumption in the Portuguese-speaking countries. Rev. Port. Cardiol. (Engl. Ed.) 2019, 38, 233–244. [Google Scholar] [CrossRef]
- Available online: https://sicad.pt/PT/EstatisticaInvestigacao/EstudosConcluidos/Paginas/detalhe.aspx?itemId=183&lista=SICAD_ESTUDOS&bkUrl=/BK/EstatisticaInvestigacao/EstudosConcluidos (accessed on 12 December 2023).
- Available online: https://www.macrotrends.net/global-metrics/countries/PRT/portugal/smoking-rate-statistics (accessed on 2 April 2024).
- Huijts, T.; Gage Witvliet, M.; Balaj, M.; Andreas Eikemo, T. Assessing the long-term health impact of COVID-19: The importance of using self-reported health measures. Scand. J. Public Health 2023, 51, 645–647. [Google Scholar] [CrossRef] [PubMed]
- Pinto, S.; Coelho, P.; Azevedo, J.; Rodrigues, F.; Pires, J. Beira Baixa Blood Pressure Program—Municipality of Castelo Branco. Revista Port. De Hipertens. E Risco Cardiovasc. 2023, 91, 18–27. [Google Scholar]
- Fonseca, D.; Coelho, P.; Rodrigues, F. Programa da Pressão Arterial—Idanha a Nova. Rev. Port. De Hipertens. E Risco Cardiovasc. 2023, 95, 16–24. [Google Scholar]
- Aguiar, C.; Duarte, R.; Carvalho, D. New approach to diabetes care: From blood glucose to cardiovascular disease. Revista portuguesa de cardiologia. Rev. Port. De Cardiol. (Engl. Ed.) 2019, 38, 53–63. [Google Scholar] [CrossRef]
- Costa, J.; Borges, M.; Oliveira, E.; Gouveia, M.; Carneiro, A.V. Incidence and prevalence of hypercholesterolemia in Portugal: A systemic review. Port. J. Cardiol. Off. J. Port. Soc. Cardiol. 2003, 22, 683–702. [Google Scholar]
- Arriaga, M.; Francisco, R.; Nogueira, P.; Oliveira, J.; Silva, C.; Câmara, G.; Sørensen, K.; Dietscher, C.; Costa, A. Health Literacy in Portugal: Results of the Health Literacy Population Survey Project 2019-2021. Int. J. Environ. Res. Public Health 2022, 19, 4225. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.J.; Yuan, S.; Zi, H.; Gu, J.M.; Fang, C.; Zeng, X.T. Oxidative Stress Links Aging-Associated Cardiovascular Diseases and Prostatic Diseases. Oxid. Med. Cell. Longev. 2021, 2021, 5896136. [Google Scholar] [CrossRef] [PubMed]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef] [PubMed]
- Niemi, M.E.K.; Daly, M.J.; Ganna, A. The human genetic epidemiology of COVID-19. Nat. Rev. Genet. 2022, 23, 533–546. [Google Scholar] [CrossRef]
- Koelle, K.; Martin, M.A.; Antia, R.; Lopman, B.; Dean, N.E. The changing epidemiology of SARS-CoV-2. Science 2022, 375, 1116–1121. [Google Scholar] [CrossRef]
- Stachow, E.; Warden, S.; Cockcroft, K.; Schofield, S. Symptomatology of COVID-19, rhinovirus and undifferentiated viral infections in a static military population. BMJ Mil. Health 2021, 167, 290–291. [Google Scholar] [CrossRef] [PubMed]
- Aritonang, M.E.; Pandia, P.; Pradana, A.; Ashar, T. Factors associated with small airway obstruction in COVID-19 survivors: A cross-sectional study among health-care providers. Narra J. 2023, 3, e437. [Google Scholar] [CrossRef] [PubMed]
- Fournier, P.E.; Colson, P.; Levasseur, A.; Devaux, C.A.; Gautret, P.; Bedotto, M.; Delerce, J.; Brechard, L.; Pinault, L.; Lagier, J.C.; et al. Emergence and outcomes of the SARS-CoV-2 M‘arseille-4’ variant. Int. J. Infect. Dis. 2021, 106, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Xu, P.; Ye, Q. Analysis of COVID-19 vaccines: Types, thoughts, and application. J. Clin. Lab. Anal. 2021, 35, e23937. [Google Scholar] [CrossRef] [PubMed]
- Machado, B.; Antunes, L.; Caetano, C.; Pereira, J.F.; Nunes, B.; Patrício, P.; Morgado, M.L. The impact of vaccination on the evolution of COVID-19 in Portugal. Math. Biosci. Eng. 2022, 19, 936–952. [Google Scholar] [CrossRef] [PubMed]
- Castro-Dopico, X.; Ols, S.; Loré, K.; Karlsson Hedestam, G.B. Immunity to SARS-CoV-2 induced by infection or vaccination. J. Intern. Med. 2022, 291, 32–50. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Bernal, J.; Andrews, N.; Gower, C.; Robertson, C.; Stowe, J.; Tessier, E.; Simmons, R.; Cottrell, S.; Roberts, R.; O’Doherty, M.; et al. Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca vaccines on COVID-19 related symptoms, hospital admissions, and mortality in older adults in England: Test negative case-control study. BMJ 2021, 373, n1088. [Google Scholar] [CrossRef] [PubMed]
- Sen, P.; Gupta, L.; Lilleker, J.B.; Aggarwal, V.; Kardes, S.; Milchert, M.; Gheita, T.; Salim, B.; Velikova, T.; Gracia-Ramos, A.E.; et al. COVID-19 vaccination in autoimmune disease (COVAD) survey protocol. Rheumatol. Int. 2022, 42, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Apostolidis, S.A.; Kakara, M.; Painter, M.M.; Goel, R.R.; Mathew, D.; Lenzi, K.; Rezk, A.; Patterson, K.R.; Espinoza, D.A.; Kadri, J.C.; et al. Cellular and humoral immune responses following SARS-CoV-2 mRNA vaccination in patients with multiple sclerosis on anti-CD20 therapy. Nat. Med. 2021, 27, 1990–2001. [Google Scholar] [CrossRef]
- Mori, Y.; Tanaka, M.; Kozai, H.; Hotta, K.; Aoyama, Y.; Shigeno, Y.; Aoike, M.; Kawamura, H.; Tsurudome, M.; Ito, M. Antibody response of smokers to the COVID-19 vaccination: Evaluation based on cigarette dependence. Drug Discov. Ther. 2022, 16, 78–84. [Google Scholar] [CrossRef]
Variable | Frequency a | Mean b | |
---|---|---|---|
Age (years) | 48.95 [48.23–49.67] | ||
Sex | Male | 64.0% (994) | |
Female | 36.0% (558) | ||
Weight (kg) | 72.41 [71.66–73.18] | ||
Height (m) | 1.66 [1.65–166] | ||
BMI (m/kg2) | 26.28 [26.04–26.51] | ||
BMI Category | Underweight | 1.5% (24) | |
Normal | 41.3% (642) | ||
Overweight | 37.4% (581) | ||
Class 1 Obesity | 15.0% (233) | ||
Class 2 Obesity | 3.2% (50) | ||
Severe obesity (Class 3) | 1.5% (23) | ||
Systolic Arterial Blood Pressure (mmHg) | 126.01 [125.17–126.85] | ||
Diastolic Arterial Blood Pressure (mmHg) | 80.23 [79.73–80.73] | ||
Peripheral oxygen saturation (%) | 97.75 [97.71–97.80] | ||
Blood Type (N = 631) | 0 + | 31.7% (200) | |
0 − | 8.4% (53) | ||
A + | 41.5% (262) | ||
A − | 7.8% (49) | ||
B + | 5.2% (33) | ||
B − | 2.2% (14) | ||
AB + | 2.7% (17) | ||
AB − | 0.5% (3) | ||
Smoking status (N = 1501) | Current smoker | 18.9% (284) | |
Former smoker | 24.5% (368) | ||
Never smoker | 56.6% (849) | ||
SARS-CoV-2 Infection c | Yes | 32.6% (505) | |
No | 67.4% (1046) |
Area | Disease a | Absolute Frequency (n) | Relative Frequency (%) |
---|---|---|---|
Cardiovascular diseases | Arterial hypertension (N = 1553) | 298 | 19.2% |
Heart failure (N = 1522) | 15 | 1.0% | |
Arrhythmia (N = 1551) | 26 | 1.7% | |
Ischemic disorder (N = 1552) | 18 | 1.2% | |
Coronary artery disease (N = 1521) | 28 | 1.8% | |
Cerebrovascular disease (N = 1553) | 9 | 0.6% | |
Nephrology | Chronic Kidney Disease (N = 1523) | 16 | 1.0% |
Endocrinology | Dyslipidemia (N = 1553) | 196 | 12.6% |
Diabetes Mellitus (N = 1553) | 102 | 6.6% | |
Thyroid disorder (N = 1552) | 79 | 5.1% | |
Pulmonology | Pulmonary disease (N = 1552) | 104 | 6.7% |
Asthma (N = 1553) | 56 | 3.6% | |
Obstructive sleep apnea syndrome (N = 1553) | 15 | 1.% | |
Oncology | Oncological disease (N = 1547) | 26 | 1.7% |
Hematology | Hematological disease (N = 1553) | 17 | 1.1% |
Psychiatry | Psychiatric disease (N = 1553) | 9 | 0.6% |
Immuno-Allergology | Autoimmune disease (N = 1538) | 72 | 4.7% |
Allergies (N = 1493) | 45 | 3.0% |
Disease | Total | Under Treatment (n) | Under Treatment (%) | p-Value |
---|---|---|---|---|
Arterial Hypertension | 19.2% (298) | 264 | 88.6% (264/298) | 0.052 a |
Dyslipidemia | 12.6% (196) | 106 | 54.1% (106/196) |
Severity of the Infection | Absolute Frequency (n) | Relative Frequency (%) | Admitted to the ICU |
---|---|---|---|
Asymptomatic | 73 | 14.5% | 0 |
Mild | 354 | 70.1% | 0 |
Moderate | 71 | 14.1% | 0 |
Severe | 7 | 1.4% | 2 |
Severity of First Time Infected a | Severity of Second Time Infected a | p-Value | |
---|---|---|---|
Asymptomatic | 5 (31.25%) | 5 (31.25%) | 0.038 b |
Mild | 8 (50.0%) | 9 (56.25%) | |
Moderate | 2 (12.5%) | 2 (12.5%) | |
Severe | 1 (6.25%) | 0 (0%) | |
Total | 16 (100%) |
Comparison of Antibody Concentration (p-Value) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Vaccine | Frequency n (%) | Antibody Concentration (AU/mL) * | Pfizer | Moderna | AstraZeneca | Janssen | Pfizer/Moderna | Pfizer/AstraZeneca | Pfizer/Janssen | Moderna/AstraZeneca | Moderna/Janssen | CoronaVac |
Pfizer a | 964 (64.3) | 377.29 [365.11–389.48] | - | NS *** | p < 0.001 **** | p < 0.001 | NS | p = 0.006 | NS | p = 0.004 | NS | NS |
Moderna b | 171 (11.4) | 424.92 [403.08–446.75] | - | - | p < 0.001 | p < 0.001 | NS | NS | NS | NS | NS | NS |
AstraZeneca c | 100 (6.7) | 161.82 [118.25–205.38] | - | - | - | NS | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | NS |
Janssen d | 41 (2.7) | 233.30 [157.73–308.88] | - | - | - | - | p = 0.018 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | NS |
Pfizer/Moderna | 12 (0.8) | 462.29 [404.30–520.29] | - | - | - | - | - | NS | NS | NS | NS | NS |
Pfizer/AstraZeneca | 103 (6.9) | 455.19 [432.10–478.28] | - | - | - | - | - | - | NS | NS | NS | NS |
Pfizer/Janssen | 24 (1.60) | 462.01 [410.32–513.71] | - | - | - | - | - | - | - | NS | NS | NS |
Moderna/AstraZeneca | 61 (4.10) | 480.88 [458.18–503.58] | - | - | - | - | - | - | - | - | NS | NS |
Moderna/Janssen | 22 (1.50) | 463.42 [412.68–514.16] | - | - | - | - | - | - | - | - | - | NS |
CoronaVac e | 1 (0.10) | 470.50 ** | - | - | - | - | - | - | - | - | - | - |
Vaccine Technology | Antibody Concentration (AU/mL) a | Vs. Other Technology | Adjusted p-Value e |
---|---|---|---|
Viral vector vaccines | 182.75 [144.94–220.56] | Whole-virus vaccines | 1.000 |
Gene vaccines | <0.001 | ||
Mix c,d | <0.001 | ||
Whole-virus vaccines | 470.50 b | Gene vaccines | 1.000 |
Mix c,d | 1.000 | ||
Gene vaccines | 385.21 [374.40–396.01] | Mix c,d | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lindo, J.; Coelho, P.; Gavinhos, C.; Martins, M.; Liberal, J.; Ferreira, A.J.; Gonçalves, T.; Rodrigues, F. Health Status and COVID-19 Epidemiology in an Inland Region of Portugal: A Retrospective Study. Int. J. Environ. Res. Public Health 2024, 21, 1033. https://doi.org/10.3390/ijerph21081033
Lindo J, Coelho P, Gavinhos C, Martins M, Liberal J, Ferreira AJ, Gonçalves T, Rodrigues F. Health Status and COVID-19 Epidemiology in an Inland Region of Portugal: A Retrospective Study. International Journal of Environmental Research and Public Health. 2024; 21(8):1033. https://doi.org/10.3390/ijerph21081033
Chicago/Turabian StyleLindo, Jorge, Patrícia Coelho, Catarina Gavinhos, Manuel Martins, Joana Liberal, António Jorge Ferreira, Teresa Gonçalves, and Francisco Rodrigues. 2024. "Health Status and COVID-19 Epidemiology in an Inland Region of Portugal: A Retrospective Study" International Journal of Environmental Research and Public Health 21, no. 8: 1033. https://doi.org/10.3390/ijerph21081033
APA StyleLindo, J., Coelho, P., Gavinhos, C., Martins, M., Liberal, J., Ferreira, A. J., Gonçalves, T., & Rodrigues, F. (2024). Health Status and COVID-19 Epidemiology in an Inland Region of Portugal: A Retrospective Study. International Journal of Environmental Research and Public Health, 21(8), 1033. https://doi.org/10.3390/ijerph21081033