Mapping Environmental Dimensions of Dengue Fever Transmission Risk in the Aburrá Valley, Colombia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Input Data
Dengue fever cases.
Environmental data.
2.2. The Maxent Algorithm
2.3. Model Testing Approach
Predictivity within a municipality.
Predictivity between municipalities.
2.4. Niche Characterization
3. Results
3.1. Predictivity within a Municipality
3.2. Predicting between Municipalities
3.3. Predicting DF Cases in Aburrá Valley
3.4. Niche Characteristics
4. Discussion
Acknowledgments
References
- The Arboviruses: Epidemiology and Ecology; Gubler, DJ; Monath, T (Eds.) CRC Press: Boca Raton, FL, USA, 1988; Volume 2, pp. 223–260.
- Kuno, G. Factors influencing the transmission of dengue viruses. In Dengue and Dengue Hemorrhagic Fever; Gubler, DJ, Kuno, G, Eds.; CAB International: London, UK, 1997; pp. 61–87. [Google Scholar]
- Bohra, A; Andrianasolo, H. Application of GIS in modeling of dengue risk based on sociocultural data: case of Jalore, Rajasthan, India. Dengue Bull 2001, 25, 92–102. [Google Scholar]
- Carbajo, AE; Schweigmann, N; Curto, SI; de Garin, A; Bejaran, R. Dengue transmission risk maps of Argentina. Trop. Med. Int. Health 2001, 6, 170–183. [Google Scholar]
- Deparis, X; Roche, C; Murgue, B; Chungue, E. Possible dengue sequential infection: dengue spread in a neighbourhood during the 1996/97 dengue-2 epidemic in French Polynesia. Trop. Med. Int. Health 1998, 3, 866–871. [Google Scholar]
- Kittayapong, P; Yoksan, S; Chansang, U; Chansang, C; Bhumiratana, A. Suppression of dengue transmission by application of integrated vector control strategies at sero-positive GIS-based foci. Am. J. Trop. Med. Hyg 2008, 78, 70–76. [Google Scholar]
- Koopman, JS; Prevots, DR; Vaca Marin, MA; Gomez Dantes, H; Zarate Aquino, ML; Longini, IM, Jr; Sepulveda Amor, J. Determinants and predictors of dengue infection in Mexico. Am. J. Epidemiol 1991, 133, 1168–1178. [Google Scholar]
- Morrison, AC; Getis, A; Santiago, M; Rigau-Perez, JG; Reiter, P. Exploratory space-time analysis of reported dengue cases during an outbreak in Florida, Puerto Rico, 1991–1992. Am. J. Trop. Med. Hyg 1998, 58, 287–298. [Google Scholar]
- Reiskind, MH; Baisley, KJ; Calampa, C; Sharp, TW; Watts, DM; Wilson, ML. Epidemiological and ecological characteristics of past dengue virus infection in Santa Clara, Peru. Trop. Med. Int. Health 2001, 6, 212–218. [Google Scholar]
- Rosa-Freitas, MG; Tsouris, P; Sibajev, A; Weimann, ETDS; Marques, AU; Ferreira, RL; Luitgards-Moura, JF. Exploratory temporal and spatial distribution analysis of dengue notifications in Boa Vista, Roraima, Brazilian Amazon, 1999–2001. Dengue Bull 2003, 27, 63–80. [Google Scholar]
- Rotela, C; Fouque, F; Lamfri, M; Sabatier, P; Introini, V; Zaidenberg, M; Scavuzzo, C. Space-time analysis of the dengue spreading dynamics in the 2004 Tartagal outbreak, northern Argentina. Acta Trop 2007, 103, 1–13. [Google Scholar]
- Siqueira-Junior, JB; Maciel, IJ; Barcellos, C; Souza, WV; Carvalho, MS; Nascimento, NE; Oliveira, RM; Morais-Neto, O; Martelli, CM. Spatial point analysis based on dengue surveys at household level in central Brazil. BMC Public Health 2008, 8, 361. [Google Scholar]
- Tran, A; Deparis, X; Dussart, P; Morvan, J; Rabarison, P; Remy, F; Polidori, L; Gardon, J. Dengue spatial and temporal patterns, French Guiana, 2001. Emerg. Infec. Dis 2004, 10, 615–621. [Google Scholar]
- Estallo, E; Lamfri, MA; Scavuzzo, CM; Ludueña, FF; Introini, MV; Zaidenberg, M; Almirón, W. Models for predicting Aedes aegypti larval indices based on satellite images and climatic variables. J. Am. Mosq. Control Assoc 2008, 24, 368–376. [Google Scholar]
- Ostfeld, RS; Glass, GE; Keesing, F. Spatial epidemiology: an emerging (or re-emerging) discipline. Trends Ecol. Evol 2005, 20, 328–336. [Google Scholar]
- de Wet, N; Ye, W; Hales, S; Warrick, R; Woodward, A; Weinstein, P. Use of a computer model to identify potential hotspots for dengue fever in New Zealand. New Zeal. Med. J 2001, 114, 420–422. [Google Scholar]
- Getis, A; Morrison, AC; Gray, K; Scott, TW. Characteristics of the spatial pattern of the dengue vector, Aedes aegypti, in Iquitos, Peru. Am. J. Trop. Med. Hyg 2003, 69, 494–505. [Google Scholar]
- Hales, S; de Wet, N; Maindonald, J; Woodward, A. Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet 2002, 360, 830–834. [Google Scholar]
- Peterson, AT. Ecological niche modelling and understanding the geography of disease transmission. Vet. Ital 2007, 43, 393–400. [Google Scholar]
- Dengue Haemorrhagic Fever: Diagnosis, Treatment, Prevention and Control, 2nd ed; World Health Organization: Geneva, Switzerland, 1997.
- Peterson, AT; Papeş, M; Soberón, J. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Model 2008, 213, 63–72. [Google Scholar]
- Umor, S; Mokhtar, M; Surip, N; Ahmad, A. Generating a dengue risk map (DRM) based on environmental factors using remote sensing and GIS technologies.
- Bodbyl-Roels, S; Peterson, AT; Xiao, X. Comparative analysis of performance of different MODIS data products in spatial predictive analyses of avian influenza case-occurrence distributions across the Middle East and northeastern Africa. To be submitted for publication.
- Tucker, CJ. Red and photographic infrared linear combinations for monitoring vegetation. Rem. Sens. Env 1979, 8, 127–150. [Google Scholar]
- Phillips, SJ; Anderson, RP; Schapire, RE. Maximum entropy modeling of species geographic distributions. Ecol. Model 2006, 190, 231–259. [Google Scholar]
- Peterson, AT; Papeş, M; Eaton, M. Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography 2007, 30, 550–560. [Google Scholar]
- Pearson, RG; Thuiller, W; Araújo, MB; Martinez-Meyer, E; Brotons, L; McClean, C; Miles, L; Segurado, P; Dawson, TP; Lees, DC. Model-based uncertainty in species range prediction. J. Biogeogr 2006, 33, 1704–1711. [Google Scholar]
- Anderson, RP; Gómez-Laverde, M; Peterson, AT. Geographical distributions of spiny pocket mice in South America: insights from predictive models. Global Ecol. Biogeogr 2002, 11, 131–141. [Google Scholar]
- Peterson, AT; Pereira, RS; Fonseca de Camargo-Neves, VL. Using epidemiological survey data to infer geographic distributions of leishmania vector species. Rev. Soc. Bras. Med. Trop 2004, 37, 10–14. [Google Scholar]
- Kouri, G; Pelegrino, JL; Guzmán, MG. Dengue and dengue haemorrhagic fever in the Americas. Rev. Panam. Infectol 2004, 6, 46–50. [Google Scholar]
- Ruiz, MO; Tedesco, C; McTighe, TJ; Austin, C; Kitron, U. Environmental and social determinants of human risk during a West Nile virus outbreak in the greater Chicago area, 2002. Int. J. Health Geogr 2004, 3, 8. [Google Scholar]
- Brownstein, JS; Rosen, H; Purdy, D; Miller, JR; Merlino, M; Mostashari, F; Fish, D. Spatial analysis of West Nile virus: rapid risk assessment of an introduced vector-borne zoonosis. Vector Borne Zoonotic Dis 2002, 2, 157–164. [Google Scholar]
- Eisen, RJ; Eisen, L. Spatial modeling of human risk of exposure to vector-borne pahogens based on epidemiological versus arthropod vector data. J. Med. Entomol 2008, 45, 181–192. [Google Scholar]
- Winters, AM; Bolling, BG; Beaty, BJ; Blair, CD; Eisen, RJ; Meyer, AM; Pape, WJ; Moore, CJ; Eisen, L. Combining mosquito vector and human disease data for improved assessment of spatial West Nile virus disease risk. Am. J. Trop. Med. Hyg 2008, 78, 654–665. [Google Scholar]
- Elliott, P; Wakefield, JC; Best, NG; Briggs, DJ. Spatial Epidemiology: Methods and Applications; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
Landsat bands | Band characteristics |
---|---|
1 (blue-green) | Useful for soil-vegetation differentiation. |
2 (green) | Differentiates green reflectance from healthy vegetation |
3 (red) | Detect chlorophyll absorption in vegetation |
4 (near-infrared) | Detect near-infrared reflectance peaks in healthy green vegetation, and water-land interfaces |
5 and 7 (mid-infrared) | Useful in characterizing vegetation and soil moisture. |
6.1 (far-infrared) | Designed to assist in thermal mapping, and for soil moisture and vegetation studies |
Commission error index | Omission error | Probability | ||
---|---|---|---|---|
Within municipality | ||||
B: 1→2 | no aspect, no slope, no band 6 | 0.57 | 0.89 | 9.33 × 10−15 |
B: 2→1 | no aspect, no slope, no elevation, no band 6 | 0.59 | 0.90 | 7.77 × 10−15 |
B→M | no aspect, no slope, no band 6 | 0.49 | 0.62 | 3.40 × 10−9 |
B→I | no aspect, no slope, no band 6 | 0.46 | 0.81 | 1.40 × 10−5 |
Between municipalities | ||||
BM→I | no aspect, no elevation | 0.63 | 0.56 | 1.64 × 10−3 |
MI→B | no aspect, no slope | 0.55 | 0.64 | 2.38 × 10−5 |
BI→M | Landsat only | 0.45 | 0.68 | 3.12 × 10−11 |
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Arboleda, S.; Jaramillo-O., N.; Peterson, A.T. Mapping Environmental Dimensions of Dengue Fever Transmission Risk in the Aburrá Valley, Colombia. Int. J. Environ. Res. Public Health 2009, 6, 3040-3055. https://doi.org/10.3390/ijerph6123040
Arboleda S, Jaramillo-O. N, Peterson AT. Mapping Environmental Dimensions of Dengue Fever Transmission Risk in the Aburrá Valley, Colombia. International Journal of Environmental Research and Public Health. 2009; 6(12):3040-3055. https://doi.org/10.3390/ijerph6123040
Chicago/Turabian StyleArboleda, Sair, Nicolas Jaramillo-O., and A. Townsend Peterson. 2009. "Mapping Environmental Dimensions of Dengue Fever Transmission Risk in the Aburrá Valley, Colombia" International Journal of Environmental Research and Public Health 6, no. 12: 3040-3055. https://doi.org/10.3390/ijerph6123040
APA StyleArboleda, S., Jaramillo-O., N., & Peterson, A. T. (2009). Mapping Environmental Dimensions of Dengue Fever Transmission Risk in the Aburrá Valley, Colombia. International Journal of Environmental Research and Public Health, 6(12), 3040-3055. https://doi.org/10.3390/ijerph6123040