Alcoholism and Alternative Splicing of Candidate Genes
Abstract
:1. Introduction
2. Ethanol-Associated Genes
2.1. The D2 Dopamine Receptor
2.2. The N-Methyl-d-aspartate (NMDA) Receptor NR1 Subunit
2.3. The GABAA Receptor γ2 Subunit
2.4. N-Type and L-type Voltage-gated Ca2+ Channels
2.5. Large-Conductance Calcium- and Voltage-Activated Potassium Channels (BK)
2.6. Neurexin-3
3. Concluding Remarks
References and Notes
- McGue, M. Phenotyping alcoholism. Alcohol Clin. Exp. Res 1999, 23, 757–758. [Google Scholar]
- Crabbe, JC; Phillips, TJ; Harris, RA; Arends, MA; Koob, GF. Alcohol-related genes: contributions from studies with genetically engineered mice. Addict. Biol 2006, 11, 195–269. [Google Scholar]
- Mayfield, RD; Harris, RA; Schuckit, MA. Genetic factors influencing alcohol dependence. Br. J. Pharmacol 2008, 154, 275–287. [Google Scholar]
- Gelernter, J; Kranzler, HR. Genetics of alcohol dependence. Hum. Genet 2009, 126, 91–99. [Google Scholar]
- Kalsi, G; Prescott, CA; Kendler, KS; Riley, BP. Unraveling the molecular mechanisms of alcohol dependence. Trends Genet 2009, 25, 49–55. [Google Scholar]
- Mulligan, MK; Ponomarev, I; Hitzemann, R; Belknap, JK; Tabakoff, B; Harris, RA; Crabbe, JC; Blednov, YA; Grahame, NJ; Phillips, TJ; Finn, DA; Hoffman, PL; Iyer, VR; Koob, GF; Bergeson, SE. Toward understanding the genetics of alcohol drinking through transcriptome meta-analysis. Proc. Natl. Acad. Sci. U.S.A 2006, 103, 6368–6373. [Google Scholar]
- Hodgkinson, CA; Yuan, Q; Xu, K; Shen, PH; Heinz, E; Lobos, EA; Binder, EB; Cubells, J; Ehlers, CL; Gelernter, J; Mann, J; Riley, B; Roy, A; Tabakoff, B; Todd, RD; Zhou, Z; Goldman, D. Addictions biology: haplotype-based analysis for 130 candidate genes on a single array. Alcohol Alcohol 2008, 43, 505–515. [Google Scholar]
- Liu, J; Lewohl, JM; Harris, RA; Iyer, VR; Dodd, PR; Randall, PK; Mayfield, RD. Patterns of gene expression in the frontal cortex discriminate alcoholic from nonalcoholic individuals. Neuropsychopharmacology 2006, 31, 1574–1582. [Google Scholar]
- Kerns, RT; Ravindranathan, A; Hassan, S; Cage, MP; York, T; Sikela, JM; Williams, RW; Miles, MF. Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. J. Neurosci 2005, 25, 2255–2266. [Google Scholar]
- Tupala, E; Tiihonen, J. Dopamine and alcoholism: neurobiological basis of ethanol abuse. Prog. Neuropsychopharmacol. Biol. Psychiatry 2004, 28, 1221–1247. [Google Scholar]
- Di Chiara, G; Bassareo, V. Reward system and addiction: what dopamine does and doesn't do. Curr. Opin. Pharmacol 2007, 7, 69–76. [Google Scholar]
- Yim, HJ; Schallert, T; Randall, PK; Gonzales, RA. Comparison of local and systemic ethanol effects on extracellular dopamine concentration in rat nucleus accumbens by microdialysis. Alcohol Clin. Exp. Res 1998, 22, 367–374. [Google Scholar]
- Tupala, E; Tiihonen, J. Dopamine and alcoholism: neurobiological basis of ethanol abuse. Prog. Neuropsychopharmacol. Biol. Psychiatry 2004, 28, 1221–1247. [Google Scholar]
- McBride, WJ; Chernet, E; Dyr, W; Lumeng, L; Li, TK. Densities of dopamine D2 receptors are reduced in CNS regions of alcohol-preferring P rats. Alcohol 1993, 10, 387–390. [Google Scholar]
- Thanos, PK; Taintor, NB; Rivera, SN; Umegaki, H; Ikari, H; Roth, G; Ingram, DK; Hitzemann, R; Fowler, JS; Gatley, SJ; Wang, GJ; Volkow, ND. DRD2 gene transfer into the nucleus accumbens core of the alcohol preferring and nonpreferring rats attenuates alcohol drinking. Alcohol Clin. Exp. Res 2004, 28, 720–728. [Google Scholar]
- Hietala, J; West, C; Syvalahti, E; Nagren, K; Lehikoinen, P; Sonninen, P; Ruotsalainen, U. Striatal D2 dopamine receptor binding characteristics in vivo in patients with alcohol dependence. Psychopharmacology (Berl) 1994, 116, 285–290. [Google Scholar]
- Volkow, ND; Wang, GJ; Fowler, JS; Logan, J; Hitzemann, R; Ding, YS; Pappas, N; Shea, C; Piscani, K. Decreases in dopamine receptors but not in dopamine transporters in alcoholics. Alcohol Clin. Exp. Res 1996, 20, 1594–1598. [Google Scholar]
- Volkow, ND; Wang, GJ; Begleiter, H; Porjesz, B; Fowler, JS; Telang, F; Wong, C; Ma, Y; Logan, J; Goldstein, R; Alexoff, D; Thanos, PK. High levels of dopamine D2 receptors in unaffected members of alcoholic families: possible protective factors. Arch. Gen. Psychiatry 2006, 63, 999–1008. [Google Scholar]
- Blum, K; Noble, EP; Sheridan, PJ; Montgomery, A; Ritchie, T; Jagadeeswaran, P; Nogami, H; Briggs, AH; Cohn, JB. Allelic association of human dopamine D2 receptor gene in alcoholism. JAMA 1990, 263, 2055–2060. [Google Scholar]
- Parsian, A; Todd, RD; Devor, EJ; O'Malley, KL; Suarez, BK; Reich, T; Cloninger, CR. Alcoholism and alleles of the human D2 dopamine receptor locus. Studies of association and linkage. Arch. Gen. Psychiatry 1991, 48, 655–663. [Google Scholar]
- Noble, EP. The D2 dopamine receptor gene: a review of association studies in alcoholism and phenotypes. Alcohol 1998, 16, 33–45. [Google Scholar]
- Sasabe, T; Furukawa, A; Matsusita, S; Higuchi, S; Ishiura, S. Association analysis of the dopamine receptor D2 (DRD2) SNP rs1076560 in alcoholic patients. Neurosci. Lett 2007, 412, 139–142. [Google Scholar]
- Smith, L; Watson, M; Gates, S; Ball, D; Foxcroft, D. Meta-analysis of the association of the Taq1A polymorphism with the risk of alcohol dependency: a HuGE gene-disease association review. Am. J. Epidemiol 2008, 167, 125–138. [Google Scholar]
- Dal Toso, R; Sommer, B; Ewert, M; Herb, A; Pritchett, DB; Bach, A; Shivers, BD; Seeburg, PH. The dopamine D2 receptor: two molecular forms generated by alternative splicing. EMBO J 1989, 8, 4025–4034. [Google Scholar]
- Neve, KA; Neve, RL; Fidel, S; Janowsky, A; Higgins, GA. Increased abundance of alternatively spliced forms of D2 dopamine receptor mRNA after denervation. Proc. Natl. Acad. Sci. U.S.A 1991, 88, 2802–2806. [Google Scholar]
- Khan, ZU; Mrzljak, L; Gutierrez, A; de la Calle, A; Goldman-Rakic, PS. Prominence of the dopamine D2 short isoform in dopaminergic pathways. Proc. Natl. Acad. Sci. U.S.A 1998, 95, 7731–7736. [Google Scholar]
- Usiello, A; Baik, JH; Roug Pont, F; Picetti, R; Dierich, A; LeMeur, M; Piazza, PV; Borrelli, E. Distinct functions of the two isoforms of dopamine D2 receptors. Nature 2000, 408, 199–203. [Google Scholar]
- Vile, JM; D’Souza, UM; Strange, PG. [3H]nemonapride and [3H]spiperone label equivalent numbers of D2 and D3 dopamine receptors in a range of tissues and under different conditions. J. Neurochem 1995, 64, 940–943. [Google Scholar]
- Wang, Y; Xu, R; Sasaoka, T; Tonegawa, S; Kung, MP; Sankoorikal, EB. Dopamine D2 long receptor-deficient mice display alterations in striatum-dependent functions. J. Neurosci 2000, 20, 8305–8314. [Google Scholar]
- Senogles, SE. The D2 dopamine receptor isoforms signal through distinct Gi alpha proteins to inhibit adenylyl cyclase. A study with site-directed mutant Gi alpha proteins. J. Biol. Chem 1994, 269, 23120–23127. [Google Scholar]
- Senogles, SE; Heimert, TL; Odife, ER; Quasney, MW. A region of the third intracellular loop of the short form of the D2 dopamine receptor dictates Gi coupling specificity. J. Biol. Chem 2004, 279, 1601–1606. [Google Scholar]
- Guiramand, J; Montmayeur, JP; Ceraline, J; Bhatia, M; Borrelli, E. Alternative splicing of the dopamine D2 receptor directs specificity of coupling to G-proteins. J. Biol. Chem 1995, 270, 7354–7358. [Google Scholar]
- Lindgren, N; Usiello, A; Goiny, M; Haycock, J; Erbs, E; Greengard, P; Hokfelt, T; Borrelli, E; Fisone, G. Distinct roles of dopamine D2L and D2S receptor isoforms in the regulation of protein phosphorylation at presynaptic and postsynaptic sites. Proc. Natl. Acad. Sci. U.S.A 2003, 100, 4305–4309. [Google Scholar]
- Prou, D; Gu, WJ; Le Crom, S; Vincent, JD; Salamero, J; Vernier, P. Intracellular retention of the two isoforms of the D(2) dopamine receptor promotes endoplasmic reticulum disruption. J. Cell Sci 2001, 114, 3517–3527. [Google Scholar]
- Cho, DI; Beom, S; Van Tol, HH; Caron, MG; Kim, KM. Characterization of the desensitization properties of five dopamine receptor subtypes and alternatively spliced variants of dopamine D2 and D4 receptors. Biochem. Biophys. Res. Commun 2006, 350, 634–640. [Google Scholar]
- Centonze, D; Usiello, A; Gubellini, P; Pisani, A; Borrelli, E; Bernardi, G; Calabresi, P. Dopamine D2 receptor-mediated inhibition of dopaminergic neurons in mice lacking D2L receptors. Neuropsychopharmacology 2002, 27, 723–726. [Google Scholar]
- Xu, R; Hranilovic, D; Fetsko, LA; Bucan, M; Wang, Y. Dopamine D2S and D2L receptors may differentially contribute to the actions of antipsychotic and psychotic agents in mice. Mol. Psychiatry 2002, 7, 1075–1082. [Google Scholar]
- Hranilovic, D; Bucan, M; Wang, Y. Emotional response in dopamine D2L receptor-deficient mice. Behav. Brain Res 2008, 195, 246–250. [Google Scholar]
- Oomizu, S; Boyadjieva, N; Sarkar, DK. Ethanol and estradiol modulate alternative splicing of dopamine D2 receptor messenger RNA and abolish the inhibitory action of bromocriptine on prolactin release from the pituitary gland. Alcohol Clin. Exp. Res 2003, 27, 975–980. [Google Scholar]
- Zhang, Y; Bertolino, A; Fazio, L; Blasi, G; Rampino, A; Romano, R; Lee, ML; Xiao, T; Papp, A; Wang, D; Sadee, W. Polymorphisms in human dopamine D2 receptor gene affect gene expression, splicing, and neuronal activity during working memory. Proc. Natl. Acad. Sci. U.S.A 2007, 104, 20552–20557. [Google Scholar]
- Davis, KM; Wu, JY. Role of glutamatergic and GABAergic systems in alcoholism. J. Biomed. Sci 2001, 8, 7–19. [Google Scholar]
- Grant, KA; Lovinger, DM. Cellular and behavioral neurobiology of alcohol: receptor-mediated neuronal processes. Clin. Neurosci 1995, 3, 155–164. [Google Scholar]
- Wirkner, K; Poelchen, W; Koles, L; Mlberg, K; Scheibler, P; Allgaier, C; Illes, P. Ethanol-induced inhibition of NMDA receptor channels. Neurochem. Int 1999, 35, 153–162. [Google Scholar]
- Ronald, KM; Mirshahi, T; Woodward, JJ. Ethanol inhibition of N-methyl-D-aspartate receptors is reduced by site-directed mutagenesis of a transmembrane domain phenylalanine residue. J. Biol. Chem 2001, 276, 44729–44735. [Google Scholar]
- Follesa, P; Ticku, MK. NMDA receptor upregulation: molecular studies in cultured mouse cortical neurons after chronic antagonist exposure. J. Neurosci 1996, 16, 2172–2178. [Google Scholar]
- Hu, XJ; Follesa, P; Ticku, MK. Chronic ethanol treatment produces a selective upregulation of the NMDA receptor subunit gene expression in mammalian cultured cortical neurons. Brain Res. Mol. Brain Res 1996, 36, 211–218. [Google Scholar]
- Hu, XJ; Ticku, MK. Functional characterization of a kindling-like model of ethanol withdrawal in cortical cultured neurons after chronic intermittent ethanol exposure. Brain Res 1997, 767, 228–234. [Google Scholar]
- Trevisan, L; Fitzgerald, LW; Brose, N; Gasic, GP; Heinemann, SF; Duman, RS; Nestler, EJ. Chronic ingestion of ethanol up-regulates NMDAR1 receptor subunit immunoreactivity in rat hippocampus. J. Neurochem 1994, 62, 1635–1638. [Google Scholar]
- Freund, G; Anderson, KJ. Glutamate receptors in the frontal cortex of alcoholics. Alcohol Clin. Exp. Res 1996, 20, 1165–1172. [Google Scholar]
- Freund, G; Anderson, KJ. Glutamate receptors in the cingulate cortex, hippocampus, and cerebellar vermis of alcoholics. Alcohol Clin. Exp. Res 1999, 23, 1–6. [Google Scholar]
- Krystal, JH; Petrakis, IL; Mason, G; Trevisan, L; D’Souza, DC. N-methyl-D-aspartate glutamate receptors and alcoholism: reward, dependence, treatment, and vulnerability. Pharmacol. Ther 2003, 99, 79–94. [Google Scholar]
- Dunah, AW; Yasuda, RP; Luo, J; Wang, Y; Prybylowski, KL; Wolfe, BB. Biochemical studies of the structure and function of the N-methyl-D-aspartate subtype of glutamate receptors. Mol. Neurobiol 1999, 19, 151–179. [Google Scholar]
- Ciabarra, AM; Sullivan, JM; Gahn, LG; Pecht, G; Heinemann, S; Sevarino, KA. Cloning and characterization of chi-1: a developmentally regulated member of a novel class of the ionotropic glutamate receptor family. J. Neurosci 1995, 15, 6498–6508. [Google Scholar]
- Nishi, M; Hinds, H; Lu, HP; Kawata, M; Hayashi, Y. Motoneuron-specific expression of NR3B, a novel NMDA-type glutamate receptor subunit that works in a dominant-negative manner. J Neurosci 2001, 21, RC185. [Google Scholar]
- Standley, S; Roche, KW; McCallum, J; Sans, N; Wenthold, RJ. PDZ domain suppression of an ER retention signal in NMDA receptor NR1 splice variants. Neuron 2000, 28, 887–898. [Google Scholar]
- Dingledine, R; Borges, K; Bowie, D; Traynelis, SF. The glutamate receptor ion channels. Pharmacol. Rev 1999, 51, 7–61. [Google Scholar]
- Laurie, DJ; Putzke, J; Zieglgansberger, W; Seeburg, PH; Tolle, TR. The distribution of splice variants of the NMDAR1 subunit mRNA in adult rat brain. Brain Res. Mol. Brain Res 1995, 32, 94–108. [Google Scholar]
- Durand, GM; Gregor, P; Zheng, X; Bennett, MV; Uhl, GR; Zukin, RS. Cloning of an apparent splice variant of the rat N-methyl-D-aspartate receptor NMDAR1 with altered sensitivity to polyamines and activators of protein kinase C. Proc. Natl. Acad. Sci. U.S.A 1992, 89, 9359–9363. [Google Scholar]
- Traynelis, SF; Hartley, M; Heinemann, SF. Control of proton sensitivity of the NMDA receptor by RNA splicing and polyamines. Science 1995, 268, 873–876. [Google Scholar]
- Traynelis, SF; Burgess, MF; Zheng, F; Lyuboslavsky, P; Powers, JL. Control of voltage-independent zinc inhibition of NMDA receptors by the NR1 subunit. J. Neurosci 1998, 18, 6163–6175. [Google Scholar]
- Vicini, S; Wang, JF; Li, JH; Zhu, WJ; Wang, YH; Luo, JH; Wolfe, BB; Grayson, DR. Functional and pharmacological differences between recombinant N-methyl-D-aspartate receptors. J. Neurophysiol 1998, 79, 555–566. [Google Scholar]
- Rumbaugh, G; Prybylowski, K; Wang, JF; Vicini, S. Exon 5 and spermine regulate deactivation of NMDA receptor subtypes. J. Neurophysiol 2000, 83, 1300–1306. [Google Scholar]
- Ehlers, MD; Zhang, S; Bernhadt, JP; Huganir, RL. Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit. Cell 1996, 84, 745–755. [Google Scholar]
- Rycroft, BK; Gibb, AJ. Regulation of single NMDA receptor channel activity by alpha-actinin and calmodulin in rat hippocampal granule cells. J Physiol 2004, 557, 795–808. [Google Scholar]
- Ataman, ZA; Gakhar, L; Sorensen, BR; Hell, JW; Shea, MA. The NMDA receptor NR1 C1 region bound to calmodulin: structural insights into functional differences between homologous domains. Structure 2007, 15, 1603–1617. [Google Scholar]
- Ehlers, MD; Tingley, WG; Huganir, RL. Regulated subcellular distribution of the NR1 subunit of the NMDA receptor. Science 1995, 269, 1734–1737. [Google Scholar]
- Zheng, X; Zhang, L; Wang, AP; Bennett, MV; Zukin, RS. Protein kinase C potentiation of N-methyl-D-aspartate receptor activity is not mediated by phosphorylation of N-methyl-D-aspartate receptor subunits. Proc. Natl. Acad. Sci. U.S.A 1999, 96, 15262–15267. [Google Scholar]
- Lan, JY; Skeberdis, VA; Jover, T; Grooms, SY; Lin, Y; Araneda, RC; Zheng, X; Bennett, MV; Zukin, RS. Protein kinase C modulates NMDA receptor trafficking and gating. Nat. Neurosci 2001, 4, 382–390. [Google Scholar]
- Koltchine, V; Anantharam, V; Wilson, A; Bayley, H; Treistman, SN. Homomeric assemblies of NMDAR1 splice variants are sensitive to ethanol. Neurosci. Lett 1993, 152, 13–16. [Google Scholar]
- Jin, C; Woodward, JJ. Effects of 8 different NR1 splice variants on the ethanol inhibition of recombinant NMDA receptors. Alcohol Clin. Exp. Res 2006, 30, 673–679. [Google Scholar]
- Winkler, A; Mahal, B; Kiianmaa, K; Zieglgansberger, W; Spanagel, R. Effects of chronic alcohol consumption on the expression of different NR1 splice variants in the brain of AA and ANA lines of rats. Brain. Res. Mol. Brain Res 1999, 72, 166–175. [Google Scholar]
- Hardy, PA; Chen, W; Wilce, PA. Chronic ethanol exposure and withdrawal influence NMDA receptor subunit and splice variant mRNA expression in the rat cerebral cortex. Brain Res 1999, 819, 33–39. [Google Scholar]
- Kumari, M. Differential effects of chronic ethanol treatment on N-methyl-D-aspartate R1 splice variants in fetal cortical neurons. J. Biol. Chem 2001, 276, 29764–29771. [Google Scholar]
- Nagy, J; Kolok, S; Dezso, P; Boros, A; Szombathelyi, Z. Differential alterations in the expression of NMDA receptor subunits following chronic ethanol treatment in primary cultures of rat cortical and hippocampal neurones. Neurochem. Int 2003, 42, 35–43. [Google Scholar]
- Honse, Y; Nixon, KM; Browning, MD; Leslie, SW. Cell surface expression of NR1 splice variants and NR2 subunits is modified by prenatal ethanol exposure. Neuroscience 2003, 122, 689–698. [Google Scholar]
- Zhou, FC; Anthony, B; Dunn, KW; Lindquist, WB; Xu, ZC; Deng, P. Chronic alcohol drinking alters neuronal dendritic spines in the brain reward center nucleus accumbens. Brain Res 2007, 1134, 148–161. [Google Scholar]
- Raeder, H; Holter, SM; Hartmann, AM; Spanagel, R; Moller, HJ; Rujescu, D. Expression of N-methyl-d-aspartate (NMDA) receptor subunits and splice variants in an animal model of long-term voluntary alcohol self-administration. Drug Alcohol Depend 2008, 96, 16–21. [Google Scholar]
- Lobo, IA; Harris, RA. GABA(A) receptors and alcohol. Pharmacol Biochem Behav 2008, 90, 90–94. [Google Scholar]
- Morrow, AL; Montpied, P; Lingford-Hughes, A; Paul, SM. Chronic ethanol and pentobarbital administration in the rat: effects on GABAA receptor function and expression in brain. Alcohol 1990, 7, 237–244. [Google Scholar]
- Wan, FJ; Berton, F; Madamba, SG; Francesconi, W; Siggins, GR. Low ethanol concentrations enhance GABAergic inhibitory postsynaptic potentials in hippocampal pyramidal neurons only after block of GABAB receptors. Proc. Natl. Acad. Sci. U.S.A 1996, 93, 5049–5054. [Google Scholar]
- Kumar, S; Porcu, P; Werner, DF; Matthews, DB; Diaz-Granados, JL; Helfand, RS; Morrow, AL. The role of GABA(A) receptors in the acute and chronic effects of ethanol: a decade of progress. Psychopharmacology (Berl) 2009, 205, 529–564. [Google Scholar]
- Mihic, SJ; Ye, Q; Wick, MJ; Koltchine, VV; Krasowski, MD; Finn, SE; Mascia, MP; Valenzuela, CF; Hanson, KK; Greenblatt, EP; Harris, RA; Harrison, NL. Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors. Nature 1997, 389, 385–389. [Google Scholar]
- Mascia, MP; Trudell, JR; Harris, RA. Specific binding sites for alcohols and anesthetics on ligand-gated ion channels. Proc. Natl. Acad. Sci. U.S.A 2000, 97, 9305–9310. [Google Scholar]
- Jung, S; Harris, RA. Sites in TM2 and 3 are critical for alcohol-induced conformational changes in GABA receptors. J. Neurochem 2006, 96, 885–892. [Google Scholar]
- Gallegos, RA; Lee, RS; Criado, JR; Henriksen, SJ; Steffensen, SC. Adaptive responses of gamma-aminobutyric acid neurons in the ventral tegmental area to chronic ethanol. J. Pharmacol. Exp. Ther 1999, 291, 1045–1053. [Google Scholar]
- Xiao, C; Ye, JH. Ethanol dually modulates GABAergic synaptic transmission onto dopaminergic neurons in ventral tegmental area: role of mu-opioid receptors. Neuroscience 2008, 153, 240–248. [Google Scholar]
- Margolis, EB; Fields, HL; Hjelmstad, GO; Mitchell, JM. Delta-opioid receptor expression in the ventral tegmental area protects against elevated alcohol consumption. J. Neurosci 2008, 28, 12672–12681. [Google Scholar]
- Michels, G; Moss, SJ. GABAA receptors: properties and trafficking. Crit. Rev. Biochem. Mol. Biol 2007, 42, 3–14. [Google Scholar]
- Boyle, AE; Segal, R; Smith, BR; Amit, Z. Bidirectional effects of GABAergic agonists and antagonists on maintenance of voluntary ethanol intake in rats. Pharmacol. Biochem. Behav 1993, 46, 179–182. [Google Scholar]
- Nowak, KL; McBride, WJ; Lumeng, L; Li, TK; Murphy, JM. Blocking GABA(A) receptors in the anterior ventral tegmental area attenuates ethanol intake of the alcohol-preferring P rat. Psychopharmacology (Berl) 1998, 139, 108–116. [Google Scholar]
- Tomkins, DM; Fletcher, PJ. Evidence that GABA(A) but not GABA(B) receptor activation in the dorsal raphe nucleus modulates ethanol intake in Wistar rats. Behav. Pharmacol 1996, 7, 85–93. [Google Scholar]
- Tian, H; Chen, HJ; Cross, TH; Edenberg, HJ. Alternative splicing and promoter use in the human GABRA2 gene. Brain Res. Mol. Brain Res 2005, 137, 174–183. [Google Scholar]
- Enoch, MA. The role of GABA(A) receptors in the development of alcoholism. Pharmacol. Biochem. Behav 2008, 90, 95–104. [Google Scholar]
- Edenberg, HJ; Dick, DM; Xuei, X; Tian, H; Almasy, L; Bauer, LO; Crowe, RR; Goate, A; Hesselbrock, V; Jones, K; Kwon, J; Li, TK; Nurnberger, JI, Jr; O'Connor, SJ; Reich, T; Rice, J; Schuckit, MA; Porjesz, B; Foroud, T; Begleiter, H. Variations in GABRA2, encoding the alpha 2 subunit of the GABA(A) receptor, are associated with alcohol dependence and with brain oscillations. Am. J. Hum. Genet 2004, 74, 705–714. [Google Scholar]
- Petrie, J; Sapp, DW; Tyndale, RF; Park, MK; Fanselow, M; Olsen, RW. Altered gabaa receptor subunit and splice variant expression in rats treated with chronic intermittent ethanol. Alcohol Clin. Exp. Res 2001, 25, 819–828. [Google Scholar]
- Krishek, BJ; Xie, X; Blackstone, C; Huganir, RL; Moss, SJ; Smart, TG. Regulation of GABAA receptor function by protein kinase C phosphorylation. Neuron 1994, 12, 1081–1095. [Google Scholar]
- Wafford, KA; Burnett, DM; Leidenheimer, NJ; Burt, DR; Wang, JB; Kofuji, P; Dunwiddie, TV; Harris, RA; Sikela, JM. Ethanol sensitivity of the GABAA receptor expressed in Xenopus oocytes requires 8 amino acids contained in the gamma 2L subunit. Neuron 1991, 7, 27–33. [Google Scholar]
- Benkwitz, C; Banks, MI; Pearce, RA. Influence of GABAA receptor gamma2 splice variants on receptor kinetics and isoflurane modulation. Anesthesiology 2004, 101, 924–936. [Google Scholar]
- Homanics, GE; Harrison, NL; Quinlan, JJ; Krasowski, MD; Rick, CE; de Blas, AL; Mehta, AK; Kist, F; Mihalek, RM; Aul, JJ; Firestone, LL. Normal electrophysiological and behavioral responses to ethanol in mice lacking the long splice variant of the gamma2 subunit of the gamma-aminobutyrate type A receptor. Neuropharmacology 1999, 38, 253–265. [Google Scholar]
- Meier, J; Grantyn, R. Preferential accumulation of GABAA receptor gamma 2L, not gamma 2S, cytoplasmic loops at rat spinal cord inhibitory synapses. J. Physiol 2004, 559, 355–365. [Google Scholar]
- Roberts, AA; Kellogg, CK. Synchronous postnatal increase in alpha1 and gamma2L GABA(A) receptor mRNAs and high affinity zolpidem binding across three regions of rat brain. Brain Res. Dev. Brain Res 2000, 119, 21–32. [Google Scholar]
- Solem, M; McMahon, T; Messing, RO. Protein kinase A regulates regulates inhibition of N- and P/Q-type calcium channels by ethanol in PC12 cells. J. Pharmacol. Exp. Ther 1997, 282, 1487–1495. [Google Scholar]
- McMahon, T; Andersen, R; Metten, P; Crabbe, JC; Messing, RO. Protein kinase C epsilon mediates up-regulation of N-type calcium channels by ethanol. Mol. Pharmacol 2000, 57, 53–58. [Google Scholar]
- Newton, PM; Orr, CJ; Wallace, MJ; Kim, C; Shin, HS; Messing, RO. Deletion of N-type calcium channels alters ethanol reward and reduces ethanol consumption in mice. J. Neurosci 2004, 24, 9862–9869. [Google Scholar]
- Newton, PM; Zeng, L; Wang, V; Connolly, J; Wallace, MJ; Kim, C; Shin, HS; Belardetti, F; Snutch, TP; Messing, RO. A Blocker of N- and T-type Voltage-Gated Calcium Channels Attenuates Ethanol-Induced Intoxication, Place Preference, Self-Administration, and Reinstatement. J. Neurosci 2008, 28, 11712–11719. [Google Scholar]
- Lin, Z; Harris, C; Lipscombe, D. The molecular identity of Ca channel alpha 1-subunits expressed in rat sympathetic neurons. J. Mol. Neurosci 1996, 7, 257–267. [Google Scholar]
- Lin, Z; Haus, S; Edgerton, J; Lipscombe, D. Identification of functionally distinct isoforms of the N-type Ca2+ channel in rat sympathetic ganglia and brain. Neuron 1997, 18, 153–166. [Google Scholar]
- Newton, PM; Tully, K; McMahon, T; Connolly, J; Dadgar, J; Treistman, SN; Messing, RO. Chronic ethanol exposure induces an N-type calcium channel splice variant with altered channel kinetics. FEBS Lett 2005, 579, 671–676. [Google Scholar]
- Wang, X; Wang, G; Lemos, JR; Treistman, SN. Ethanol directly modulates gating of a dihydropyridine-sensitive Ca2+ channel in neurohypophysial terminals. J. Neurosci 1994, 14, 5453–5460. [Google Scholar]
- Grant, AJ; Koski, G; Treistman, SN. Effect of chronic ethanol on calcium currents and calcium uptake in undifferentiated PC12 cells. Brain Res 1993, 600, 280–284. [Google Scholar]
- Little, HJ; Dolin, SJ; Halsey, MJ. Calcium channel antagonists decrease the ethanol withdrawal syndrome. Life Sci 1986, 39, 2059–2065. [Google Scholar]
- Rezvani, AH; Janowsky, DS. Decreased alcohol consumption by verapamil in alcohol preferring rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 1990, 14, 623–631. [Google Scholar]
- Snutch, TP; Tomlinson, WJ; Leonard, JP; Gilbert, MM. Distinct calcium channels are generated by alternative splicing and are differentially expressed in the mammalian CNS. Neuron 1991, 7, 45–57. [Google Scholar]
- Walter, HJ; McMahon, T; Dadgar, J; Wang, D; Messing, RO. Ethanol regulates calcium channel subunits by protein kinase C delta -dependent and -independent mechanisms. J. Biol. Chem 2000, 275, 25717–25722. [Google Scholar]
- Sah, P; Faber, ES. Channels underlying neuronal calcium-activated potassium currents. Prog. Neurobiol 2002, 66, 345–353. [Google Scholar]
- Cui, J; Yang, H; Lee, US. Molecular mechanisms of BK channel activation. Cell Mol. Life Sci 2009, 66, 852–875. [Google Scholar]
- Dopico, AM; Lemos, JR; Treistman, SN. Ethanol increases the activity of large conductance, Ca(2+)-activated K+ channels in isolated neurohypophysial terminals. Mol. Pharmacol 1996, 49, 40–48. [Google Scholar]
- Pietrzykowski, AZ; Martin, GE; Puig, SI; Knott, TK; Lemos, JR; Treistman, SN. Alcohol tolerance in large-conductance, calcium-activated potassium channels of CNS terminals is intrinsic and includes two components: decreased ethanol potentiation and decreased channel density. J. Neurosci 2004, 24, 8322–8332. [Google Scholar]
- Jakab, M; Weiger, TM; Hermann, A. Ethanol activates maxi Ca2+-activated K+ channels of clonal pituitary (GH3) cells. J. Membr. Biol 1997, 157, 237–245. [Google Scholar]
- Gruss, M; Henrich, M; Konig, P; Hempelmann, G; Vogel, W; Scholz, A. Ethanol reduces excitability in a subgroup of primary sensory neurons by activation of BK(Ca) channels. Eur. J. Neurosci 2001, 14, 1246–1256. [Google Scholar]
- Dopico, AM. Ethanol sensitivity of BK(Ca) channels from arterial smooth muscle does not require the presence of the beta 1-subunit. Am. J. Physiol. Cell Physiol 2003, 284, C1468–1480. [Google Scholar]
- Walters, FS; Covarrubias, M; Ellingson, JS. Potent inhibition of the aortic smooth muscle maxi-K channel by clinical doses of ethanol. Am. J. Physiol. Cell Physiol 2000, 279, C1107–1115. [Google Scholar]
- Martin, G; Puig, S; Pietrzykowski, A; Zadek, P; Emery, P; Treistman, S. Somatic localization of a specific large-conductance calcium-activated potassium channel subtype controls compartmentalized ethanol sensitivity in the nucleus accumbens. J. Neurosci 2004, 24, 6563–6572. [Google Scholar]
- Liu, J; Asuncion-Chin, M; Liu, P; Dopico, AM. CaM kinase II phosphorylation of slo Thr107 regulates activity and ethanol responses of BK channels. Nat. Neurosci 2006, 9, 41–49. [Google Scholar]
- Crowley, JJ; Treistman, SN; Dopico, AM. Cholesterol antagonizes ethanol potentiation of human brain BKCa channels reconstituted into phospholipid bilayers. Mol. Pharmacol 2003, 64, 365–372. [Google Scholar]
- Crowley, JJ; Treistman, SN; Dopico, AM. Distinct structural features of phospholipids differentially determine ethanol sensitivity and basal function of BK channels. Mol. Pharmacol 2005, 68, 4–10. [Google Scholar]
- Yuan, C; O'Connell, RJ; Wilson, A; Pietrzykowski, AZ; Treistman, SN. Acute alcohol tolerance is intrinsic to the BKCa protein, but is modulated by the lipid environment. J. Biol. Chem 2008, 283, 5090–5098. [Google Scholar]
- Martin, GE; Hendrickson, LM; Penta, KL; Friesen, RM; Pietrzykowski, AZ; Tapper, AR; Treistman, SN. Identification of a BK channel auxiliary protein controlling molecular and behavioral tolerance to alcohol. Proc. Natl. Acad. Sci. U.S.A 2008, 105, 17543–17548. [Google Scholar]
- Pietrzykowski, AZ; Friesen, RM; Martin, GE; Puig, SI; Nowak, CL; Wynne, PM; Siegelmann, HT; Treistman, SN. Posttranscriptional regulation of BK channel splice variant stability by miR-9 underlies neuroadaptation to alcohol. Neuron 2008, 59, 274–287. [Google Scholar]
- Charness, ME; Safran, RM; Perides, G. Ethanol inhibits neural cell-cell adhesion. J. Biol. Chem 1994, 269, 9304–9309. [Google Scholar]
- Bearer, CF; Swick, AR; O'Riordan, MA; Cheng, G. Ethanol inhibits L1-mediated neurite outgrowth in postnatal rat cerebellar granule cells. J. Biol. Chem 1999, 274, 13264–13270. [Google Scholar]
- Arevalo, E; Shanmugasundararaj, S; Wilkemeyer, MF; Dou, X; Chen, S; Charness, ME; Miller, KW. An alcohol binding site on the neural cell adhesion molecule L1. Proc. Natl. Acad. Sci. U.S.A 2008, 105, 371–375. [Google Scholar]
- Yeaney, NK; He, M; Tang, N; Malouf, AT; O'Riordan, MA; Lemmon, V; Bearer, CF. Ethanol inhibits L1 cell adhesion molecule tyrosine phosphorylation and dephosphorylation and activation of pp60(src). J. Neurochem 2009, 110, 779–790. [Google Scholar]
- Craig, AM; Kang, Y. Neurexin-neuroligin signaling in synapse development. Curr. Opin. Neurobiol 2007, 17, 43–52. [Google Scholar]
- Graf, ER; Zhang, X; Jin, SX; Linhoff, MW; Craig, AM. Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 2004, 119, 1013–1026. [Google Scholar]
- Missler, M; Zhang, W; Rohlmann, A; Kattenstroth, G; Hammer, RE; Gottmann, K; Shof, TC. Alpha-neurexins couple Ca2+ channels to synaptic vesicle exocytosis. Nature 2003, 423, 939–948. [Google Scholar]
- Zhang, W; Rohlmann, A; Sargsyan, V; Aramuni, G; Hammer, RE; Shof, TC; Missler, M. Extracellular domains of alpha-neurexins participate in regulating synaptic transmission by selectively affecting N- and P/Q-type Ca2+ channels. J. Neurosci 2005, 25, 4330–4342. [Google Scholar]
- Dudanova, I; Sedej, S; Ahmad, M; Masius, H; Sargsyan, V; Zhang, W; Riedel, D; Angenstein, F; Schild, D; Rupnik, M; Missler, M. Important contribution of alpha-neurexins to Ca2+-triggered exocytosis of secretory granules. J. Neurosci 2006, 26, 10599–10613. [Google Scholar]
- Bierut, LJ; Madden, PA; Breslau, N; Johnson, EO; Hatsukami, D; Pomerleau, OF; Swan, GE; Rutter, J; Bertelsen, S; Fox, L; Fugman, D; Goate, AM; Hinrichs, AL; Konvicka, K; Martin, NG; Montgomery, GW; Saccone, NL; Saccone, SF; Wang, JC; Chase, GA; Rice, JP; Ballinger, DG. Novel genes identified in a high-density genome wide association study for nicotine dependence. Hum. Mol. Genet 2007, 16, 24–35. [Google Scholar]
- Nussbaum, J; Xu, Q; Payne, TJ; Ma, JZ; Huang, W; Gelernter, J; Li, MD. Significant association of the neurexin-1 gene (NRXN1) with nicotine dependence in European- and African-American smokers. Hum. Mol. Genet 2008, 17, 1569–1577. [Google Scholar]
- Lachman, HM; Fann, CS; Bartzis, M; Evgrafov, OV; Rosenthal, RN; Nunes, EV; Miner, C; Santana, M; Gaffney, J; Riddick, A; Hsu, CL; Knowles, JA. Genomewide suggestive linkage of opioid dependence to chromosome 14q. Hum. Mol. Genet 2007, 16, 1327–1334. [Google Scholar]
- Liu, QR; Drgon, T; Walther, D; Johnson, C; Poleskaya, O; Hess, J; Uhl, GR. Pooled association genome scanning: validation and use to identify addiction vulnerability loci in two samples. Proc. Natl. Acad. Sci. U.S.A 2005, 102, 11864–11869. [Google Scholar]
- Kelai, S; Maussion, G; Noble, F; Boni, C; Ramoz, N; Moalic, JM; Peuchmaur, M; Gorwood, P; Simonneau, M. Nrxn3 upregulation in the globus pallidus of mice developing cocaine addiction. Neuroreport 2008, 19, 751–755. [Google Scholar]
- Lein, ES; Hawrylycz, MJ; Ao, N; Ayres, M; Bensinger, A; Bernard, A; Boe, AF; Boguski, MS; Brockway, KS; Byrnes, EJ; Chen, L; Chen, TM; Chin, MC; Chong, J; Crook, BE; Czaplinska, A; Dang, CN; Datta, S; Dee, NR; Desaki, AL; Desta, T; Diep, E; Dolbeare, TA; Donelan, MJ; Dong, HW; Dougherty, JG; Duncan, BJ; Ebbert, AJ; Eichele, G; Estin, LK; Faber, C; Facer, BA; Fields, R; Fischer, SR; Fliss, TP; Frensley, C; Gates, SN; Glattfelder, KJ; Halverson, KR; Hart, MR; Hohmann, JG; Howell, MP; Jeung, DP; Johnson, RA; Karr, PT; Kawal, R; Kidney, JM; Knapik, RH; Kuan, CL; Lake, JH; Laramee, AR; Larsen, KD; Lau, C; Lemon, TA; Liang, AJ; Liu, Y; Luong, LT; Michaels, J; Morgan, JJ; Morgan, RJ; Mortrud, MT; Mosqueda, NF; Ng, LL; Ng, R; Orta, GJ; Overly, CC; Pak, TH; Parry, SE; Pathak, SD; Pearson, OC; Puchalski, RB; Riley, ZL; Rockett, HR; Rowland, SA; Royall, JJ; Ruiz, MJ; Sarno, NR; Schaffnit, K; Shapovalova, NV; Sivisay, T; Slaughterbeck, CR; Smith, SC; Smith, KA; Smith, BI; Sodt, AJ; Stewart, NN; Stumpf, KR; Sunkin, SM; Sutram, M; Tam, A; Teemer, CD; Thaller, C; Thompson, CL; Varnam, LR; Visel, A; Whitlock, RM; Wohnoutka, PE; Wolkey, CK; Wong, VY; Wood, M; et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 2007, 445, 168–176. [Google Scholar]
- Chih, B; Gollan, L; Scheiffele, P. Alternative splicing controls selective trans-synaptic interactions of the neuroligin-neurexin complex. Neuron 2006, 51, 171–178. [Google Scholar]
- Boucard, AA; Chubykin, AA; Comoletti, D; Taylor, P; Shof, TC. A splice code for trans-synaptic cell adhesion mediated by binding of neuroligin 1 to alpha- and beta-neurexins. Neuron 2005, 48, 229–236. [Google Scholar]
- Hishimoto, A; Liu, QR; Drgon, T; Pletnikova, O; Walther, D; Zhu, XG; Troncoso, JC; Uhl, GR. Neurexin 3 polymorphisms are associated with alcohol dependence and altered expression of specific isoforms. Hum. Mol. Genet 2007, 16, 2880–2891. [Google Scholar]
- Albano, E. Alcohol, oxidative stress and free radical damage. Proc. Nutr. Soc 2006, 65, 278–290. [Google Scholar]
- Biamonti, G; Caceres, JF. Cellular stress and RNA splicing. Trends Biochem. Sci 2009, 34, 146–153. [Google Scholar]
- Castle, JC; Zhang, C; Shah, JK; Kulkarni, AV; Kalsotra, A; Cooper, TA; Johnson, JM. Expression of 24,426 human alternative splicing events and predicted cis regulation in 48 tissues and cell lines. Nat. Genet 2008, 40, 1416–1425. [Google Scholar]
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Sasabe, T.; Ishiura, S. Alcoholism and Alternative Splicing of Candidate Genes. Int. J. Environ. Res. Public Health 2010, 7, 1448-1466. https://doi.org/10.3390/ijerph7041448
Sasabe T, Ishiura S. Alcoholism and Alternative Splicing of Candidate Genes. International Journal of Environmental Research and Public Health. 2010; 7(4):1448-1466. https://doi.org/10.3390/ijerph7041448
Chicago/Turabian StyleSasabe, Toshikazu, and Shoichi Ishiura. 2010. "Alcoholism and Alternative Splicing of Candidate Genes" International Journal of Environmental Research and Public Health 7, no. 4: 1448-1466. https://doi.org/10.3390/ijerph7041448
APA StyleSasabe, T., & Ishiura, S. (2010). Alcoholism and Alternative Splicing of Candidate Genes. International Journal of Environmental Research and Public Health, 7(4), 1448-1466. https://doi.org/10.3390/ijerph7041448