Exploring Variation and Predictors of Residential Fine Particulate Matter Infiltration
Abstract
:1. Introduction
2. Experimental Section
2.1. Data Collection
2.2. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Acknowledgments
References
- Pope, C. Epidemiology of Fine Particulate Air Pollution and Human Health: Biologic Mechanisms and Who’s at Risk? Environ. Health Perspect 2000, 108, 713–723. [Google Scholar]
- Peters, A; Dockery, DW; Muller, JE; Mittleman, MA. Increased Particulate Air Pollution and the Triggering of Myocardial Infarction. Circulation 2001, 103, 2810–2815. [Google Scholar]
- McCreanor, J; Cullinan, P; Nieuwenhuijsen, MJ; Stewart-Evans, J; Malliarou, E; Jarup, L; Harrington, R; Svartengren, M; Han, IK; Ohman-Strickland, P; et al. Respiratory Effects of Exposure to Diesel Traffic in Persons with Asthma. N. Engl. J. Med 2007, 357, 2348–2358. [Google Scholar]
- Shy, CM; Kleinbaum, DG; Morgenstern, H. The Effect of Misclassification of Exposure Status in Epidemiological Studies of Air Pollution Health Effects. Bull. N. Y. Acad. Med 1978, 54, 1155–1165. [Google Scholar]
- Navidi, W; Lurmann, F. Measurement Error in Air Pollution Exposure Assessment. J. Expo. Anal. Environ. Epidemiol 1995, 5, 111–124. [Google Scholar]
- Nethery, E; Leckie, SE; Teschke, K; Brauer, M. From Measures to Models: An Evaluation of Air Pollution Exposure Assessment for Epidemiologic Studies of Pregnant Women. Occup. Environ. Med 2008, 65, 579–586. [Google Scholar]
- Spengler, JD; Treitman, RD; Tosteson, TD; Mage, DT; Soczek, ML. Personal Exposures to Respirable Particulates and Implications for Air Pollution Epidemiology. Environ. Sci. Technol 1985, 19, 700–707. [Google Scholar]
- Leech, JA; Wilby, K; McMullen, E; Laporte, K. The Canadian Human Activity Pattern Survey: Report of Methods and Population Surveyed. Chronic Dis. Can 1996, 17, 118–123. [Google Scholar]
- Wilson, WE; Brauer, M. Estimation of Ambient and Non-Ambient Components of Particulate Matter Exposure from a Personal Monitoring Panel Study. J. Expo. Sci. Env. Epid 2006, 16, 264–274. [Google Scholar]
- Klepeis, NE; Nelson, WC; Ott, WR; Robinson, JP; Tsang, AM; Switzer, P; Behar, JV; Hern, SC; Engelmann, WH. The National Human Activity Pattern Survey (NHAPS): A Resource for Assessing Exposure to Environmental Pollutants. J. Expo. Anal. Environ. Epidemiol 2001, 11, 231–252. [Google Scholar]
- Allen, R; Larson, T; Sheppard, L; Wallace, L; Liu, LJS. Use of Real-Time Light Scattering Data to Estimate the Contribution of Infiltrated and Indoor-Generated Particles to Indoor Air. Environ. Sci. Technol 2003, 37, 3484–3492. [Google Scholar]
- Meng, QY; Turpin, BJ; Polidori, A; Lee, JH; Weisel, C; Morandi, M; Colome, S; Stock, T; Winer, A; Zhang, J. PM2.5 of Ambient Origin: Estimates and Exposure Errors Relevant to PM Epidemiology. Environ. Sci. Technol 2005, 39, 5105–5112. [Google Scholar]
- Long, CM; Suh, HH; Catalano, PJ; Koutrakis, P. Using Time-and Size-Resolved Particulate Data to Quantify Indoor Penetration and Deposition Behavior. Environ. Sci. Technol 2001, 35, 2089–2099. [Google Scholar]
- Schwarze, P; Ovrevik, J; Lag, M; Refsnes, M; Nafstad, P; Hetland, R; Dybing, E. Particulate Matter Properties and Health Effects: Consistency of Epidemiological and Toxicological Studies. Hum. Exp. Toxicol 2006, 25, 559–579. [Google Scholar]
- Smit, L; Heederik, D; Doekes, G; Blom, C; van Zweden, I; Wouters, I. Exposure-Response Analysis of Allergy and Respiratory Symptoms in Endotoxin-Exposed Adults. Eur. Respir. J 2008, 31, 1241–1248. [Google Scholar]
- Mitchell, CS; Zhang, JJ; Sigsgaard, T; Jantunen, M; Lioy, PJ; Samson, R; Karol, MH. Current State of the Science: Health Effects and Indoor Environmental Quality. Environ. Health Perspect 2007, 115, 958–964. [Google Scholar]
- Koenig, JQ; Mar, TF; Allen, RW; Jansen, K; Lumley, T; Sullivan, JH; Trenga, CA; Larson, TV; Liu, LJS. Pulmonary Effects of Indoor-and Outdoor-Generated Particles in Children with Asthma. Environ. Health Perspect 2005, 113, 499–503. [Google Scholar]
- Ebelt, ST; Wilson, WE; Brauer, M. Exposure to Ambient and Nonambient Components of Particulate Matter: A Comparison of Health Effects. Epidemiology 2005, 16, 396–405. [Google Scholar]
- Allen, RW. Changes in Lung Function and Airway Inflammation among Asthmatic Children Residing in a Woodsmoke-Impacted Urban Area. Inhal. Toxicol 2008, 20, 423–433. [Google Scholar]
- Rothman, KJ; Greenland, S; Lash, TL. Modern Epidemiology; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2008. [Google Scholar]
- Hystad, PU; Setton, EM; Allen, RW; Keller, PC; Brauer, M. Modeling Residential Fine Particulate Matter Infiltration for Exposure Assessment. J. Expo. Sci. Env. Epid 2008, 19, 570–579. [Google Scholar]
- Mielck, A; Reitmeir, P; Wjst, M. Severity of Childhood Asthma by Socioeconomic Status. Int. J. Epidemiol 1996, 25, 388–393. [Google Scholar]
- Wilson, WE; Mage, DT; Grant, LD. Estimating Separately Personal Exposure to Ambient and Nonambient Particulate Matter for Epidemiology and Risk Assessment: Why and How. J. Air Waste Manage. Assoc 2000, 50, 1167–1183. [Google Scholar]
- Dockery, DW; Spengler, JD. Indoor-Outdoor Relationships of Respirable Sulfates and Particles. Atmos. Environ. (1967) 1981, 15, 335–343. [Google Scholar]
- Suh, HH; Spengler, JD; Koutrakis, P. Personal Exposures to Acid Aerosols and Ammonia. Environ. Sci. Technol 1992, 26, 2507–2517. [Google Scholar]
- Leaderer, B; Naeher, L; Jankun, T; Balenger, K; Holford, T; Toth, C; Sullivan, J; Wolfson, J; Koutrakis, P. Indoor, Outdoor, and Regional Summer and Winter Concentrations of PM10, PM2.5, SO42−, H+, NH4+, NO3−, NH3, and Nitrous Acid in Homes with and without Kerosene Space Heaters. Environ. Health Perspect 1999, 107, 223–231. [Google Scholar]
- Wallace, L; Williams, R. Use of Personal-Indoor-Outdoor Sulfur Concentrations to Estimate the Infiltration Factor and Outdoor Exposure Factor for Individual Homes and Persons. Environ. Sci. Technol 2005, 39, 1707–1714. [Google Scholar]
- Molnár, P; Johannesson, S; Boman, J; Barregård, L; Sällsten, G. Personal Exposures and Indoor, Residential Outdoor, and Urban Background Levels of Fine Particle Trace Elements in the General Population. J. Environ. Monitor 2006, 8, 543–551. [Google Scholar]
- Ozkaynak, H; Xue, J; Spengler, J; Wallace, L; Pellizzari, E; Jenkins, P. Personal Exposure to Airborne Particles and Metals: Results from the Particle TEAM Study in Riverside, California. J. Expo. Anal. Environ. Epidemiol 1996, 6, 57–78. [Google Scholar]
- Lachenmyer, C; Hidy, G. Urban Measurements of Outdoor-Indoor PM2.5 Concentrations and Personal Exposure in the Deep South. Part I. Pilot Study of Mass Concentrations for Nonsmoking Subjects. Aerosol Sci. Tech 2000, 32, 34–51. [Google Scholar]
- Williams, R; Suggs, J; Rea, A; Sheldon, L; Rodes, C; Thornburg, J. The Research Triangle Park Particulate Matter Panel Study: Modeling Ambient Source Contribution to Personal and Residential PM Mass Concentrations. Atmos. Environ 2003, 37, 5365–5378. [Google Scholar]
- Sarnat, JA; Long, CM; Koutrakis, P; Coull, BA; Schwartz, J; Suh, HH. Using Sulfur as a Tracer of Outdoor Fine Particulate Matter. Environ. Sci. Technol 2002, 36, 5305–5314. [Google Scholar]
- Martuzevicius, D; Grinshpun, SA; Reponen, T; Górny, RL; Shukla, R; Lockey, J; Hu, S; McDonald, R; Biswas, P; Kliucininkas, L. Spatial and Temporal Variations of PM2.5 Concentration and Composition Throughout an Urban Area with High Freeway density—The Greater Cincinnati Study. Atmos. Environ 2004, 38, 1091–1105. [Google Scholar]
- Franklin, M; Zeka, A; Schwartz, J. Association between PM2.5 and all-Cause and Specific-Cause Mortality in 27 US Communities. J. Expo. Sci. Env. Epid 2006, 17, 279–287. [Google Scholar]
- Janssen, NAH; Schwartz, J; Zanobetti, A; Suh, HH. Air Conditioning and Source-Specific Particles as Modifiers of the Effect of PM10 on Hospital Admissions for Heart and Lung Disease. Environ. Health Perspect 2002, 110, 43–49. [Google Scholar]
- Dell, SD; Foty, RG; Gilbert, NL; Jerret, M; To, T; Walter, SD; Stieb, DM. Asthma and Allergic Disease Prevalence in a Diverse Sample of Toronto School Children: Results from the Toronto Child Health Evaluation Questionnaire (T-CHEQ) Study. Can. Respir. J 2010, 17, e1–6. [Google Scholar]
- Hänninen, O; Lebret, E; Ilacqua, V; Katsouyanni, K; Künzli, N; Srám, R; Jantunen, M. Infiltration of Ambient PM2.5 and Levels of Indoor Generated Non-ETS PM2.5 in Residences of Four European Cities. Atmos. Environ 2004, 38, 6411–6423. [Google Scholar]
- Sarnat, SE; Coull, BA; Ruiz, PA; Koutrakis, P; Suh, HH. The Influences of Ambient Particle Composition and Size on Particle Infiltration in Los Angeles, CA, Residences. J. Air Waste Manag. Assoc 2006, 56, 186–196. [Google Scholar]
- Human Exposure and Atmospheric Sciences Division. Monitoring PM2.5 in Ambient Air Using Designated Reference or Class 1 Equivalent Methods, Quality Assurance Guidance Document 2.12. Available online: http://www.epa.gov/ttnamti1/files/ambient/pm25/qa/m212covd.pdf (accessed on 1 July 2010).
- Environment Canada. Canadian Daily Climate Data. 2008. Available online: http://www.climate.weatheroffice.gc.ca/climateData/canada_e.html (accessed on 1 November 2009).
- Dietz, RN; Goodrich, RW; Cote, EA; Wieser, RF. Detailed Description and Performance of a Passive Perfluorocarbon Tracer System for Building Ventilation and Air Exchange Measurements. In Measured Air Leakage of Buildings: A Symposium; American Society for Testing and Materials: Ann Arbor, MI, USA, 1986; p. 203. [Google Scholar]
- Wallace, L; Emmerich, S; Howard-Reed, C. Continuous Measurements of Air Change Rates in an Occupied House for 1 Year: The Effect of Temperature, Wind, Fans, and Windows. J. Expo. Anal. Environ. Epidemiol 2002, 12, 296–306. [Google Scholar]
- MPAC. PropertyLine. 2008. Available online: http://www.mpac.ca/pages_english/products_services/propertyline.asp (accessed on 1 November 2009).
- The Canadian Real Estate Association. MLS Statistics. Available online: http://www.crea.ca/public/news_stats/statistics.htm (accessed on 1 July 2010).
- Evans, G; Peers, A; Sabaliauskas, K. Particle Dose Estimation from Frying in Residential Settings. Indoor Air 2008, 18, 499–510. [Google Scholar]
- Environment Canada. Canadian Climate Normals or Averages 1971–2000. Available online: http://www.climate.weatheroffice.gc.ca/climate_normals/index_e.html (accessed on 1 May 2010).
- Meng, Q; Spector, D; Colome, S; Turpin, B. Determinants of Indoor and Personal Exposure to PM2.5 of Indoor and Outdoor Origin during the RIOPA Study. Atmos. Environ 2009, 43, 5750–5758. [Google Scholar]
- Howard-Reed, C; Wallace, LA; Ott, WR. The Effect of Opening Windows on Air Change Rates in Two Homes. J. Air Waste Manag. Assoc 2002, 52, 147–159. [Google Scholar]
- Long, CM; Sarnat, JA. Indoor-Outdoor Relationships and Infiltration Behavior of Elemental Components of Outdoor PM 2.5 for Boston-Area Homes. Aerosol Sci. Tech 2004, 38, 91–104. [Google Scholar]
- Medina-Ramon, M; Zanobetti, A; Schwartz, J. The Effect of Ozone and PM10 on Hospital Admissions for Pneumonia and Chronic Obstructive Pulmonary Disease: A National Multicity Study. Am. J. Epidemiol 2006, 163, 579–588. [Google Scholar]
- Levy, J; Hammitt, J; Spengler, J. Estimating the Mortality Impacts of Particulate Matter: What Can Be Learned from Between-Study Variability? Environ. Health Perspect 2000, 108, 109–117. [Google Scholar]
- Bell, ML; Ebisu, K; Peng, RD; Dominici, F. Adverse Health Effects of Particulate Air Pollution: Modification by Air Conditioning. Epidemiology 2009, 20, 682–686. [Google Scholar]
- Allen, RW; Davies, H; Cohen, MA; Mallach, G; Kaufman, JD; Adar, SD. The Spatial Relationship between Traffic-Generated Air Pollution and Noise in 2 US Cities. Environ. Res 2009, 109, 334–342. [Google Scholar]
Measurement Characteristics | Total N | Mean (standard deviation) |
---|---|---|
Finf | 46 | 0.52 ± 0.21 |
PM2.5 indoors | 46 | 8.17 ± 5.18 μg/m3 |
PM2.5 outdoors | 46 | 9.72 ± 3.90 μg/m3 |
Sulphur indoors | 46 | 0.46 ± 0.31 μg/m3 |
Sulphur outdoors | 46 | 0.76 ± 0.36 μg/m3 |
Air exchange | 35 | 0.22 ± 0.15/h |
Indoor temperature | 46 | 22.0 ± 2.1 °C |
Indoor relative humidity | 46 | 52.0 ± 7.5 % |
Outdoor temperature | 46 | 14.6 ± 6.2 °C |
Outdoor relative humidity | 46 | 72.6 ±7.7% |
Household Characteristics | Median (quartile range) | |
Number of people in the home | 44 | 4 (4–5) |
Year home built (MPAC) | 44 | 1948 (1925–1967) |
Market value of home (MPAC) | 44 | $437,000 ($330,000–558,000) |
Distance to expressway (GIS) | 46 | 1.85 km (1.3–2.6 km) |
Frequency (percentage) | ||
Forced air heating (MPAC) | 46 | 33 (72%) |
Have air conditioner (central or window unit) | 46 | 44 (96%) |
Have central air conditioner | 46 | 39 (85%) |
Use air conditioning > 30 days/year | 46 | 24 (52%) |
Wood burning fireplace | 46 | 20 (43%) |
Air cleaning filter on furnace | 45 | 34 (76%) |
Premium air cleaning filter on furnace | 46 | 16 (36%) |
Dog or cat in the home | 46 | 17 (37%) |
Storm windows | 46 | 10 (22%) |
Independent Variable | N | Regression Coefficient | p-value | Standard Error | R2 |
---|---|---|---|---|---|
Ln of Air exchange | 35 | 0.139 | 0.003 | 0.043 | 0.24 |
Absolute temperature difference between indoors and outdoors (°C) | 46 | −0.003 | 0.699 | 0.007 | 0.00 |
Number of people in the home | 44 | 0.003 | 0.933 | 0.037 | 0.00 |
Year home built | 44 | −0.003 | 0.011 | 0.001 | 0.14 |
Market value of home ($100,000) | 44 | −0.002 | 0.849 | 0.012 | 0.00 |
Distance to expressway (km) | 46 | 0.023 | 0.381 | 0.026 | 0.02 |
Use air conditioning >30 days/year | 46 | −0.201 | 0.001 | 0.056 | 0.23 |
Forced air heating (0/1) | 46 | −0.130 | 0.078 | 0.072 | 0.07 |
Wood burning fireplace (0/1) | 46 | 0.120 | 0.056 | 0.061 | 0.08 |
Air cleaning filter on furnace (0/1) | 45 | −0.097 | 0.198 | 0.074 | 0.04 |
Premium filter on furnace (0/1) | 45 | 0.083 | 0.218 | 0.067 | 0.04 |
Dog or cat in the home (0/1) | 46 | 0.029 | 0.656 | 0.066 | 0.00 |
Storm windows (0/1) | 46 | 0.121 | 0.113 | 0.075 | 0.06 |
Independent Variables | Model Na | Regression Coefficient | Standard Error | P-value | Adjusted Model R2 |
---|---|---|---|---|---|
Including air exchange as potential predictor | |||||
1 Intercept Ln of air exchange Use air conditioning > 30 d/yr Forced air heating (0/1) | 35 | 0.870 0.114 −0.144 −0.103 | 0.082 0.039 0.055 0.058 | <0.0001 0.01 0.01 0.08 | 38% |
Excluding air exchange as potential predictor | |||||
2 Intercept Use air conditioning > 30 d/yr Forced air heating (0/1) | 35 | 0.698 −0.179 −0.107 | 0.062 0.060 0.064 | <0.0001 0.01 0.10 | 23% |
3 Intercept Use air conditioning > 30 d/yr Forced air heating (0/1) | 46 | 0.708 −0.193 −0.120 | 0.057 0.054 0.060 | <0.0001 0.00 0.05 | 26% |
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Clark, N.A.; Allen, R.W.; Hystad, P.; Wallace, L.; Dell, S.D.; Foty, R.; Dabek-Zlotorzynska, E.; Evans, G.; Wheeler, A.J. Exploring Variation and Predictors of Residential Fine Particulate Matter Infiltration. Int. J. Environ. Res. Public Health 2010, 7, 3211-3224. https://doi.org/10.3390/ijerph7083211
Clark NA, Allen RW, Hystad P, Wallace L, Dell SD, Foty R, Dabek-Zlotorzynska E, Evans G, Wheeler AJ. Exploring Variation and Predictors of Residential Fine Particulate Matter Infiltration. International Journal of Environmental Research and Public Health. 2010; 7(8):3211-3224. https://doi.org/10.3390/ijerph7083211
Chicago/Turabian StyleClark, Nina A., Ryan W. Allen, Perry Hystad, Lance Wallace, Sharon D. Dell, Richard Foty, Ewa Dabek-Zlotorzynska, Greg Evans, and Amanda J. Wheeler. 2010. "Exploring Variation and Predictors of Residential Fine Particulate Matter Infiltration" International Journal of Environmental Research and Public Health 7, no. 8: 3211-3224. https://doi.org/10.3390/ijerph7083211
APA StyleClark, N. A., Allen, R. W., Hystad, P., Wallace, L., Dell, S. D., Foty, R., Dabek-Zlotorzynska, E., Evans, G., & Wheeler, A. J. (2010). Exploring Variation and Predictors of Residential Fine Particulate Matter Infiltration. International Journal of Environmental Research and Public Health, 7(8), 3211-3224. https://doi.org/10.3390/ijerph7083211