Mineral Composition of Organically Grown Wheat Genotypes: Contribution to Daily Minerals Intake
Abstract
:1. Introduction
2. Material and Methods
2.1. Sample Collection and Preparation
2.2. Sample Drying and Digestion
2.3. Chemical Analysis
2.4. Statistical Analysis
3. Results
3.1. Genotypic Differences
3.2. Difference among Locations
3.3. Difference between Spring and Winter Wheat
3.4. Correlation of Yield and Plant Height with Mineral Concentration
3.5. Importance of Genotype Group and Location on Concentration of Different Minerals
4. Discussion
5. Conclusions
Supplementary Material
Supplementary Table 1 ijerph-07-03442-s001.xlsAcknowledgments
References
- Martinez-Ballesta, MC; Dominguez-Perles, R; Moreno, DA; Muries, B; Alcaraz-Lopez, C; Bastias, E; Garcia-Viguera, C; Carvajal, M. Minerals in plant food: effect of agricultural practices and role in human health. A review. Agron. Sustain. Dev 2009, 30, 295–309. [Google Scholar]
- Golden, MHN. The nature of nutritional deficiency in relation to growth failure and poverty. Acta Paediat. Scand 1991, 374, 95–110. [Google Scholar]
- Branca, F; Ferrari, M. Impact of micronutrient deficiencies on growth: The stunting syndrome. Ann. Nutr. Metab 2002, 46, 8–17. [Google Scholar]
- Galan, P; Preziosi, P; Durlach, V; Valeix, P; Ribas, L; Bouzid, D; Favier, A; Hercberg, S. Dietary magnesium intake in a French adult population. Magnes. Res 1997, 10, 321–328. [Google Scholar]
- Dikeman, E; Pomeranz, Y; Lai, FS. Minerals and protein contents in hard red winter-wheat. Cereal Chem 1982, 59, 139–142. [Google Scholar]
- Lopez, HW; Krespine, V; Lemaire, A; Coudray, C; Feillet-Coudray, C; Messager, A; Demigne, C; Remesy, C. Wheat variety has a major influence on mineral bioavailability; Studies in rats. J. Cereal Sci 2003, 37, 257–266. [Google Scholar]
- Toepfer, EW; Slover, HT; Hepburn, FN; Polansky, MM; Morris, ER; Eheart, JF; Quackenb, FW. Nutrient composition of selected wheats and wheat products. XI. summary. Cereal Chem 1972, 49, 173–186. [Google Scholar]
- Peterson, CJ; Johnson, VA; Mattern, PJ. Evaluation of variation in mineral element concentrations in wheat-flour and bran of different cultivars. Cereal Chem 1983, 60, 450–455. [Google Scholar]
- Peterson, CJ; Johnson, VA; Mattern, PJ. Influence of cultivar and environment on mineral and protein concentrations of wheat-flour, bran, and grain. Cereal Chem 1986, 63, 183–186. [Google Scholar]
- Davis, KR; Peters, LJ; Cain, RF; LeTourneau, D; McGinnis, J. Evaluation of the nutrient composition of wheat. III. Minerals. Cereal Food World 1984, 29, 246–248. [Google Scholar]
- Graham, R; Senadhira, D; Beebe, S; Iglesias, C; Monasterio, I. Breeding for micronutrient density in edible portions of staple food crops: Conventional approaches. Field Crop. Res 1999, 60, 57–80. [Google Scholar]
- Zhao, FJ; Su, YH; Dunham, SJ; Rakszegi, M; Bedo, Z; McGrath, SP; Shewry, PR. Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. J. Cereal Sci 2009, 49, 290–295. [Google Scholar]
- Bourn, D; Prescott, J. A comparison of the nutritional value, sensory qualities, and food safety of organically and conventionally produced foods. Crit. Rev. Food Sci. Nutr 2002, 42, 1–34. [Google Scholar]
- Ryan, M; Derrick, J; Dann, P. Grain mineral concentrations and yield of wheat grown under organic and conventional management. J. Sci. Food Agri 2004, 84, 207–216. [Google Scholar]
- Nitika; Darshan, P; Khetarpaul, N. Physico-chemical characteristics, nutrient composition and consumer acceptability of wheat varieties grown under organic and inorganic farming conditions. Int. J. Food Sci. Nutr 2008, 59, 224–245. [Google Scholar]
- Koivistoinen, P; Nissinen, H; Varo, P; Ahlstrom, A. Mineral element composition of cereal grains from different growing areas in Finland. Acta Agr. Scand 1974, 24, 327–334. [Google Scholar]
- Maeder, P; Hahn, D; Dubois, D; Gunst, L; Alfoeldi, T; Bergmann, H; Oehme, M; Amado, R; Schneider, H; Graf, U; Velimirov, A; Fliebbach, A; Niggli, U. Wheat quality in organic and conventional farming: Results of a 21 year field experiment. J. Sci. Food Agr 2007, 87, 1826–1835. [Google Scholar]
- Padel, S; Lampkin, N; Foster, C. Influence of policy support on the development of organic farming in the European Union. Int. Plan. Stud 1999, 4, 303–315. [Google Scholar]
- Lairon, D. Nutritional quality and safety of organic food. A review. Agron. Sustain. Dev 2009, 30, 33–41. [Google Scholar]
- Grausgruber, H; Scheiblauer, J; Schonlechner, R; Ruckenbauer, P; Berghofer, E. Variability in Chemical Composition and Biologically Active Constituents of Cereals. Genetic Variation for Plant Breeding; Proceedings of the 17th EUCARPIA General Congress, Tulln, Austria, 8–11 September 2004. 23–26.
- Hammer, K. Biodiversity of the genus Triticum. In Organic Plant Breeding and Biodiversity of Cultural Plants; Wiethaler, C, Oppermann, R, Wyss, E, Eds.; Reports on the International Conferences. Naturschutzbund Deutschland and Research Institute of Organic Agriculture; 2000; pp. 72–81. [Google Scholar]
- Tyler, G; Olsson, T. Conditions related to solubility of rare and minor elements in forest soils. J. Plant Nutr. Soil Sci 2002, 165, 594–601. [Google Scholar]
- Delin, S; Soderstrom, M. Performance of soil electrical conductivity and different methods for mapping soil data from a small dataset. Acta Agr. Scand. Sect. B—Soil Pl 2003, 52, 127–135. [Google Scholar]
- FAO (Food and Agriculture Organization). Food supply. Available online: http://faostat.fao.org/site/609/DesktopDefault.aspx?PageID=609. (accessed on 09 December 2005).
- DGE (German Nutrition Society), Referenzwerte fur die Nährstoffzufuhr, 1. Auflage; Hrs. DGE, ÖGE, SGE und SVE, 1st ed; Umschau/Braus: Frankfurt, Germany, 2001.
- Welch, RM; Graham, RD. Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot 2004, 55, 353–364. [Google Scholar]
- Hurrell, RF. Modifying the composition of plant foods for better human health. Crop Science: Progress and Prospects; Proceedings of the Third International Crop Science Congress, Hamburg, Germany, 17–22 August 2000; pp. 53–64.
- Monasterio, I; Graham, RD. Breeding for trace minerals in wheat. Food Nutr. Bull 2000, 21, 392–396. [Google Scholar]
- Murphy, KM; Campbell, KG; Lyon, SR; Jones, SS. Evidence of varietal adaptation to organic farming systems. Field Crop. Res 2007, 102, 172–177. [Google Scholar]
- van Bueren, ETL; Struik, PC; Tiemens-Hulscher, M; Jacobsen, E. Concepts of intrinsic value and integrity of plants in organic plant breeding and propagation. Crop Sci 2003, 43, 1922–1929. [Google Scholar]
- Fan, M; Zhao, F; Fairweather-Tait, SJ; Poulton, PR; Dunham, SJ; McGrath, SP. Evidence of decreasing mineral density in wheat grain over the last 160 years. J. Trace Elem. Med. Biol 2008, 22, 315–324. [Google Scholar]
- Garvin, DF; Welch, RM; Finley, JW. Historical shifts in the seed mineral micronutrient concentration of US hard red winter wheat germplasm. J. Sci. Food Agr 2006, 86, 2213–2220. [Google Scholar]
- McDonald, GK; Genc, Y; Graham, RD. A simple method to evaluate genetic variation in grain zinc concentration by correcting for differences in grain yield. Plant Soil 2008, 306, 49–55. [Google Scholar]
- McGrath, SP. The effects of increasing yields on the macroelement and microelement concentrations and off takes in the grain of winter-wheat. J. Sci. Food Agr 1985, 36, 1073–1083. [Google Scholar]
- Garnett, TP; Graham, RD. Distribution and remobilization of iron and copper in wheat. Ann. Bot 2005, 95, 817–826. [Google Scholar]
- Alkhatib, K; Paulsen, GM. Photosynthesis and productivity during high-temperature stress of wheat genotypes from major world regions. Crop Sci 1990, 30, 1127–1132. [Google Scholar]
- Dias, AS; Lidon, FC; Ramalho, JC. IV. Heat stress in Triticum: kinetics of Fe and Mn accumulation. Braz. J. Plant Physiol 2009, 21, 153–164. [Google Scholar]
- Bloom, AJ; Burger, M; Asensio, JSR; Cousins, AB. Carbon dioxide enrichment inhibits nitrate assimilation in wheat and arabidopsis. Science 2010, 328, 899–903. [Google Scholar]
- Murphy, K; Hoagland, L; Reeves, P; Jones, S. Effect of cultivar and soil characteristics on nutritional value in organic and conventional wheat. Proceedings of the 16th IFOAM Organic World Conference in Cooperation with the International Federation of Organic Agriculture Movements (IFOAM) and the Consorzio ModenaBio, Modena, Italy, 18–20 June 2008, pp. 614–617.
- Spiegel, H; Sager, M; Oberforster, M; Mechtler, K; Stueger, HP; Baumgarten, A. Nutritionally relevant elements in staple foods: Influence of arable site versus choice of variety. Environ. Geochem. Health 2009, 31, 549–560. [Google Scholar]
- Liu, ZH; Wang, HY; Wang, XE; Zhang, GP; Chen, PD; Liu, DJ. Phytase activity, phytate, iron, and zinc contents in wheat pearling fractions and their variation across production locations. J. Cereal Sci 2007, 45, 319–326. [Google Scholar]
- Kirchmann, H; Mattsson, L; Eriksson, J. Trace element concentration in wheat grain: Results from the Swedish long-term soil fertility experiments and national monitoring program. Environ. Geochem. Health 2009, 31, 561–571. [Google Scholar]
Location | pHa | Organic matter (%) | clay (%) | P-AL b (mg/100g) | K-Al b (mg/100g) | FYM | Organic since |
---|---|---|---|---|---|---|---|
Alnarp | 7.0–7.8 | 3 | 25 | 10.5 | 10.2 | Not applied | 1992 |
Bohuslän | 6.4–6.5 | 4 | 25 | 5.4 | 10.6 | Applied | 1995 |
Gotland | 7.0–7.5 | 3 | 10 | 9.6 | 18.2 | Applied | 1987 |
Uppsala | 6.0–6.2 | 5 | 50 | 9.9 | 46.2 | Applied | 1990 |
B | Cu | Se | Fe | Mg | Zn | Ca | Mn | Mo | P | S | K | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Selections | n = 32 | 1.59 c | 5.27 b | 0.18 a | 35.8 abc | 1,330 a | 41.6 b | 358 b | 23.7 a | 2.58 a | 4,670 a | 1,310 ab | 4,050 b |
Old cultivars | n = 191 | 1.90 bc | 5.10 b | 0.10 b | 39.4 a | 1,220 c | 38.1 bc | 390 a | 24.2 a | 1.53 b | 3,890 d | 1,260 bc | 3,980 b |
Primitive | n = 32 | 2.41 a | 5.75 a | 0.11 b | 32.2 c | 1,300 ab | 45.6 a | 383 ab | 17.6 c | 1.36 b | 4,540 a | 1,350 a | 4,670 a |
Spelt | n = 103 | 1.95 bc | 5.50 ab | 0.10 b | 38.0 ab | 1,280 abc | 39.2 bc | 327 c | 20.0 bc | 1.75 b | 4,280 b | 1,360 a | 4,150 b |
Landraces | n = 107 | 2.10 ab | 5.33 b | 0.09 b | 38.5 ab | 1,290 ab | 38.1 bc | 408 a | 22.7 ab | 1.66 b | 4,130 bc | 1,300 abc | 4,000 b |
Cultivars | n = 28 | 1.59 c | 4.49 c | 0.11 b | 33.3 bc | 1,240 bc | 36.2 c | 388 a | 23.3 ab | 2.23 a | 4,020 dc | 1,230 c | 4,070 b |
Alnarp | n = 278 | 1.84 b | 5.29 b | 0.15 a | 38.4 b | 1,300 a | 39.9 b | 382 b | 24.2 b | 2.19 a | 4,470 a | 1,320 b | 4,180 a |
Bohuslän | n = 29 | 1.45 c | 3.79 c | 0.03 c | 38.2 b | 1,190 b | 35.8 c | 330 c | 41.2 a | 1.33 b | 3,300 d | 988 c | 3,390 c |
Gotland | n = 141 | 2.33 a | 5.34 ab | 0.04 c | 33.1 c | 1,220 b | 36.2 c | 369 b | 17.0 c | 1.13 b | 3,800 b | 1,280 b | 4,070 a |
Uppsala | n = 45 | 1.79 b | 5.66 a | 0.08 b | 49.6 a | 1,210 b | 43.4 a | 411 a | 17.0 c | 0.71 c | 3,500 c | 1,420 a | 3,890 b |
Spring wheat a | n = 176 | 2.11 a | 5.62 a | 0.10 a | 47.5 a | 1280 a | 41.2 a | 420 a | 22.6 a | 1.32 b | 3870 b | 1430 a | 4160 a |
Winter wheat a | n = 317 | 1.86 b | 5.05 b | 0.10 a | 32.5 b | 1250 a | 37.7 b | 355 b | 22.5 a | 1.92 a | 4260 a | 1220 b | 3920 b |
Yield | Plant height | |
---|---|---|
Number of samples | n = 28 | n = 128 |
B | −0.05 | 0.04 |
Cu | −0.58 ** | 0.28 *** |
Se | −0.02 | 0.12 |
Fe | −0.50 ** | 0.08 |
Mg | −0.40 * | 0.14 * |
Zn | −0.66 *** | 0.10 |
Ca | −0.13 | −0.10 |
Mn | −0.26 | 0.04 |
Mo | 0.19 | −0.05 |
P | −0.53 ** | 0.19 ** |
S | −0.40 * | 0.12 |
K | −0.27 | −0.06 |
Groups | Selections | Old cultivars | Primitive | Spelt | Landraces | Cultivars |
---|---|---|---|---|---|---|
B | 0.20 | 0.69 | 2.35 | 1.41 | 0.96 | 0.62 |
Cu | 0.38 | 0.91 | 2.45 | 0.81 | 0.87 | 0.95 |
Se | 1.19 | 0.71 | 1.92 | 1.09 | 0.85 | 0.95 |
Fe | 0.16 | 1.70 | 0.51 | 0.40 | 0.80 | 0.33 |
Mg | 0.55 | 1.04 | 1.69 | 0.82 | 0.88 | 0.69 |
Zn | 0.71 | 1.00 | 1.49 | 0.94 | 0.79 | 1.20 |
Ca | 0.64 | 0.89 | 1.48 | 0.50 | 1.00 | 0.98 |
Mn | 0.30 | 1.21 | 0.69 | 0.69 | 1.08 | 0.73 |
Mo | 1.02 | 0.69 | 0.50 | 1.11 | 1.06 | 1.84 |
P | 0.24 | 0.81 | 1.28 | 0.91 | 0.90 | 1.10 |
S | 0.47 | 1.07 | 1.63 | 0.84 | 0.80 | 1.06 |
K | 0.53 | 0.81 | 1.63 | 0.75 | 1.00 | 1.27 |
Present study | Spiegel et al., 2009 [40] | Zhao et al., 2009 [12] | Kirchmann et al., 2009 [42] | Fan et al., 2008 [31] | Ryan et al., 2004 [14] | Graham et al., 1999 [11] | Recommended intake (mg/day) according to DGE 2001 [25] | Percentage of recommended intake from flour consumption 200 g/person/day | |
---|---|---|---|---|---|---|---|---|---|
B | 1.96 | 0.69 | n.a | n.a | n.a | 2.3 | 1 | 39 | |
Cu | 5.26 | 3.9 | n.a | 3.51 | 4 | 3.3 | n.a | 1.5 | 70 |
Se | 0.11 | n.a | 0.09 | 0.03 | n.a | n.a | n.a | 0.03–0.07 | 31–73 |
Fe | 37.9 | 31 | 38.2 | 30.3 | 30.4 | 18 | 37.2 | 10 | 76 |
Mg | 1,261 | 1,208 | n.a | n.a | 1,015 | 630 | 1,130 | 300–350 | 72–84 |
Zn | 38.9 | 23.9 | 21.4 | 27.3 | 27.4 | 25 | 35.0 | 10 | 78 |
Ca | 378 | 284 | n.a | n.a | n.a | 420 | 416 | 1,000 | 8 |
Mn | 22.5 | 36.9 | n.a | 33.3 | n.a | 41 | 44.7 | 5 | 90 |
Mo | 1.71 | 0.81 | n.a | 1.19 | n.a | n.a | n.a | 0.05–0.1 | >100 |
P | 4,124 | 3,293 | n.a | n.a | n.a | 2,800 | 3,380 | 700 | >100 |
S | 1,298 | n.a | n.a | n.a | n.a | 1,400 | 1,670 | 850–1,500 | 17–30 |
K | 4,075 | 3,289 | n.a | n.a | n.a | 4,000 | 3,600 | 2,000 | 41 |
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Hussain, A.; Larsson, H.; Kuktaite, R.; Johansson, E. Mineral Composition of Organically Grown Wheat Genotypes: Contribution to Daily Minerals Intake. Int. J. Environ. Res. Public Health 2010, 7, 3442-3456. https://doi.org/10.3390/ijerph7093442
Hussain A, Larsson H, Kuktaite R, Johansson E. Mineral Composition of Organically Grown Wheat Genotypes: Contribution to Daily Minerals Intake. International Journal of Environmental Research and Public Health. 2010; 7(9):3442-3456. https://doi.org/10.3390/ijerph7093442
Chicago/Turabian StyleHussain, Abrar, Hans Larsson, Ramune Kuktaite, and Eva Johansson. 2010. "Mineral Composition of Organically Grown Wheat Genotypes: Contribution to Daily Minerals Intake" International Journal of Environmental Research and Public Health 7, no. 9: 3442-3456. https://doi.org/10.3390/ijerph7093442
APA StyleHussain, A., Larsson, H., Kuktaite, R., & Johansson, E. (2010). Mineral Composition of Organically Grown Wheat Genotypes: Contribution to Daily Minerals Intake. International Journal of Environmental Research and Public Health, 7(9), 3442-3456. https://doi.org/10.3390/ijerph7093442