Climate Change and Vector-borne Diseases: An Economic Impact Analysis of Malaria in Africa
Abstract
:1. Introduction
2. Malaria and Its Link to Climate: An Overview
3. Model Specifications
4. Model Estimation
5. Data
- Data on the country specific gini inequality index and area in square kilometers per country (used to compute the population density) are obtained from the CIA World Factbook [41].
- Per capita expenditures on health were obtained from the WHO report [14].
- Data on the number of hospital beds per 1,000 people were obtained from the Organization for Economic Cooperation and Development [42].
6. Empirical Model Specifications
7. Results and Their Interpretation
8. Effects of Climate to Date and Projections
- the consequences of recent climate change on the observed malaria cases to date and
- the effects of projected climate change in 2080 to 2099 to cases that would be observed under those conditions.
9. Estimated Cost of Treatment for Future Cases
10. Conclusions and Discussion
References
- IPCC. Climate Change 2001 Impacts, Adaptations and Vulnerability Contribution of Working Group 2 to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK and New York, NY, USA, 2001; pp. 1–970. [Google Scholar]
- Githeko, A; Lindsay, S; Confalonieri, U; Partz, J. Climate change and vector borne diseases: A regional analysis. Bull. World Health Organ 2000, 78, 1136–1147. [Google Scholar]
- World Malaria Report; World Health Organization: Geneva, Switzerland, 2009; pp. 1–33.
- Goodman, AC; Coleman, P; Mills, A. Changing the first line drug for malaria treatment: Cost-effectiveness analysis with high uncertainty inter-temporal trade-offs. Health Econ 2001, 10, 731–749. [Google Scholar]
- Malaria and HIV Interaction and Their Implication for Public Health Policy; World Health Organization: Geneva, Switzerland, 2004; pp. 1–122.
- IPCC. Climate Change 2007 Impacts, Adaptations and Vulnerability Contribution of Working Group 2 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK and New York, NY, USA, 2007; pp. 1–976. [Google Scholar]
- Zhou, G; Noboru, M; Githeko, A; Yan, G. Association between climate variability and malaria epidemic in the east African highlands. Proc. Natl. Acad. Sci. USA 2003, 101, 2375–2380. [Google Scholar]
- Wandiga, S; Opondo, M; Olago, D; Githeko, A; Githui, F; Marshall, M; Downs, T; Opere, A; Oludhe, C; Ouma, G; Yanda, P; Kangalawe, R; Kabumbuli, R; Kathuri, J; Apindi, E; Olaka, L; Ogallo, L; Mugambi, P; Sigalla, R; Nanyunja, R; Baguma, T; Achola, P. Vulnerability to epidemic malaria in the highlands of lake Victoria basin: the role of climate change/variability, hydrology and socio-economic factors. Climatic Change 2010, 99, 473–497. [Google Scholar]
- Hay, S; Cox, J; Rogers, D; Randolph, S; Stern, D; Shanks, D; Myers, M; Snow, R. Climate Change and the Resurgence of Malaria in East Africa Highlands. Nature 2002, 415, 905–909. [Google Scholar]
- Pascual, M; Ahumada, J; Chaves, L; Bouma, M. Malaria Resurgence in the East African Highlands: Temperature Trends Revisited. Proc. Natl. Acad. Sci. USA 2006, 103, 5829–5834. [Google Scholar]
- Parham, P; Michael, E. Modeling Climate Change and Malaria Transmission. Adv. Exp. Med. Biol 2010, 673, 184–199. [Google Scholar]
- MARA/ARMA. Towards an Atlas of Malaria Risk in Africa; Albany Print Ltd; Durban, South Africa, 1998; pp. 1–31. [Google Scholar]
- Mutabingwa, TK. Artemisinin-based combination therapies (acts): Best hope for malaria treatment but inacassible to the needy. Acta Trop 2005, 95, 305–315. [Google Scholar]
- World Malaria Report; World Health Organization: Geneva, Switzerland, 2008; pp. 1–56.
- Goodman, AC; Colman, P; Mills, A. Economic Analysis of Malaria Control in Sub-Saharan Africa; World Health Organization: Geneva, Switzerland, 2000; pp. 1–182. [Google Scholar]
- van Lieshout, M; Kovats, RS; Livermore, MTJ; Martens, P. Climate change and malaria: Analysis of the SRES climate and socio-economic scenarios. Global Environ. Chang 2004, 14, 87–99. [Google Scholar]
- Tanser, FC; Charp, B; Le Sueur, D. Potential Effect of Climate Change on Malaria Transmission in Africa. Lancet 2003, 632, 1792–1798. [Google Scholar]
- Thomas, CJ; Davies, G; Dunn, C. Mixed picture for changes in stable malaria distribution with future climate in Africa. Trends Parasitol 2004, 20, 216–220. [Google Scholar]
- Githeko, A. Malaria, Climate Change and Possible Impacts on Populations in Africa. In International Studies in Population HIV Resurgent Infections and Population Change in Africa; Carael, M, Glynn, JR, Eds.; Springer: New York, NY, USA, 2008; pp. 67–77. [Google Scholar]
- Hay, S; Omundo, J; Craig, M; Snow, R. Earth observation, geographic information systems and plasmodium falciparum malaria in Sub-Saharan Africa. Adv. Parasitol 2000, 47, 173–215. [Google Scholar]
- IPCC. Climate Change 2007 The Physical Science Basis Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK and New York, NY, USA, 2007; pp. 1–996. [Google Scholar]
- Ebi, K; Hartman, J; Chan, N; McConnell, J; Schlesinger, M; Weyany, J. Climate suitability for stable malaria transmission in Zimbabwe under different climate change scenarios. Climatic Change 2005, 73, 375–393. [Google Scholar]
- Thomson, MC; Mason, SJ; Phindela, T; Connor, SJ. Use of Rainfall and sea surface temperature monitoring for malaria early warning in Botswana. Am. J. Trop. Med. Hyg 2005, 73, 214–221. [Google Scholar]
- Ndiaye, O; Le Hesran, J-Y; Etard, J-F; Diallo, A; Simondon, F; Ward, M; Robert, V. Variations Climatiques Et Mortalité Attribuée Au Paludisme Dans La Zone De Niakhar, Sénégal De 1984 À 1996. Santé 2001, 11, 25–33. [Google Scholar]
- Jaenisch, T; Patz, J. Assessment of association between climate and infectious diseases. Global Change Hum. Health 2002, 3, 67–72. [Google Scholar]
- Hastie, T; Tibshirani, R. Generalized Additive Models; Chapman & Hall: Boca Raton, FL, USA, 1990; pp. 221–269. [Google Scholar]
- Hastie, T; Tibshirani, R. Varying-coefficients models. J. Roy. Stat. Soc. B 1993, 55, 757–796. [Google Scholar]
- Li, Q; Racine, JS. Nonparametric Econometrics: Theory and Practice; Princeton University Press: Princeton, NJ, USA, 2007; pp. 221–348. [Google Scholar]
- Pagan, A; Ullah, A. Nonparametric Econometrics; Cambridge University Press: New York, NY, USA, 1999; pp. 121–190. [Google Scholar]
- Yatchew, A. Semiparametric Regression for the Applied Econometrician; Cambridge University Press: Cambridge, UK, 2003; pp. 1–197. [Google Scholar]
- Tseng, W; Chen, C; Chang, C; Chu, Y. Estimating the economic impacts of climate change on infectious diseases: A case study on Dengue Fever in Taiwan. Climatic Change 2009, 92, 123–140. [Google Scholar]
- Robinson, PM. Root-N consistent semiparametric regression. Econometrica 1988, 56, 931–954. [Google Scholar]
- Cameron, A; Trivedi, P. Microeconometrics: Methods and Application; Cambridge University Press: Cambridge, UK and New York, NY, USA, 2006; pp. 1–1034. [Google Scholar]
- Baltagi, B. Econometric Analysis of Panel Data; Jon Wiley: Chicheker, UK, 2008; pp. 13–34. [Google Scholar]
- Hausman, J. Specification tests in econometrics. Econometrica 1978, 46, 1251–1271. [Google Scholar]
- Hausman, J; Taylor, W. Panel data and unobserved individual effects. Econometrica 1981, 49, 1377–1398. [Google Scholar]
- Ullah, A; Mundra, K. Semiparametric Panel Data Estimation: An Application to Immigrants’ Homelink Effect on US Producer Trade Flows. In Handbook of Applied Econometrics and Statistical Inference; Ullah, A, Alan, T, Wanand, K, Chaturvedi, A, Eds.; Marcel Dekker: New York, NY, USA, 2002. [Google Scholar]
- Mitchell, TD; Carter, TR; Jones, PD; Hulme, M; New, M. A Comprehensive Set of High-Resolution Grids of Monthly Climate for Europe and the Globe: The Observed Record (1901–2000) and 16 Scenarios (2001–2100); Tyndall Centre for Climate Change Research: Norwich, UK, 2003; pp. 1–25. [Google Scholar]
- Mitchell, TD; Hulme, M; New, M. Climate data for political areas. Area 2002, 34, 109–112. [Google Scholar]
- WDI. Countries’ Information, 2010. Available online: http://www.nationmaster.com/graph/peo_pop-people-population&date=1995 (accessed on 19 October 2010).
- CIA. The World Factbook. Central Intelligence Agency 2010. Available online: https://www.cia.gov/library/publications/the-world-factbook/ (accessed on 19 October 2010).
- OECD. Hospital Beds by Country. Organisation for Economic Cooperation and Development 2010; Available online: http://www.nationmaster.com/index.php (accessed on 19 October 2010).
- Wood, SN. Generalized Additive Models: An Introduction with R; Chapman & Hall: Boca Raton, FL, USA, 2006; pp. 12–132. [Google Scholar]
- IPCC. Climate Change 2001 Impacts, Adaptations and Vulnerability Contribution of Working Group 2 to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK and New York, NY, USA, 2001; pp. 1–1005. [Google Scholar]
- Sources and Prices of Selected Products for the Prevention, Diagnosis and Treatment of Malaria; World Health Organization: Geneva, Switzerland, 2004; pp. 1–66.
- Ayieko, P; Akumu, A; Griffiths, U; English, M. The Economic burden of inpatient paediatric care in Kenya: Household and provider costs for treatment of pneumonia, malaria and meningitis. Cost Eff. Resour. Alloc 2009, 7, 1–13. [Google Scholar]
- Faye, O; N’dir, O; Gaye, O; Fall, M; Diallo, S; Billon, C. Charge en Soins et Couts Directs Liés a L’hospitalization Des Neuropaludismes De L’enfant Sénégalais. Etudes De 76 Cas a L’hopital Albert-Royer De Dakar En 1991–1992. Cahiers Santé 1995, 5, 315–318. [Google Scholar]
- Tol, R; Ebi, K; Yohe, G. Infectious disease, development, and climate change: A scenario analysis. Environ. Dev. Econ 2007, 12, 687–706. [Google Scholar]
Variable | Definition | Mean | Std. Dev. | Min. | Max. |
---|---|---|---|---|---|
CAPCASES | Malaria cases per 1,000 people. | 95.2 | 119.64 | 0.0 | 947.4 |
TEMP | Temperature (Degree Celsius) | 24.24 | 3.32 | 16.7 | 29.2 |
STDTEMP | Temperature standard deviation | 2.9 | 1.9 | 0.3 | 8.5 |
PRECIP | Precipitation (mm/m3) | 777.4 | 479.3 | 37 | 1,921.7 |
STDPRECIP | Precipitation standard deviation | 60.0 | 41.1 | 1.3 | 220.4 |
POP | Population (million) | 18.5 | 22.1 | 0.5 | 118.9 |
POPDENS | Population Density per km2 | 51.5 | 59.3 | 1.9 | 304.6 |
CAPGDP | Per capita GDP(US$/capita) | 671.4 | 809.5 | 110.3 | 3,764.2 |
GINI | Gini inequality index | 42.9 | 7.2 | 29.8 | 61 |
CAPEXP | Health expenditure ($/capita) | 93.7 | 119.4 | 14 | 579 |
CAPBED | Hospital beds per 1,000 people. | 1.2 | 0.9 | 0.1 | 4.8 |
Variables | Coefficients | Std. Dev. | T-Stats. | Other Stats. |
---|---|---|---|---|
CAPGDP | −0.0008 | 0.0004 | −1.86 ** | |
GINI | 0.3721 | 0.0821 | 4.53 * | |
POPDENS | 0.0001 | 0.0047 | 0.03 | |
CAPEXP | −0.0266 | 0.0056 | −4.71 * | |
CAPBED | 1.3648 | 0.4467 | 3.06 * | |
CONSTANT | 0.0321 | 0.0567 | 0.56 | |
Fisher-Stats (5,271) | 12.87 * | |||
R2 | 0.22 | |||
Hausman χ2 (5)-Stats (a) | 13.24 * |
Average annual cases per 1,000 people (1990–2000) | Cases Elasticity (%)
| Computed change in number of cases per 1,000 people under under observed climate change past 20 years | Equivalent percentage change per 1,000 people | ||
---|---|---|---|---|---|
to 1 º C change in Temp. | to 1% change in Precip. | ||||
Algeria | 0.01 | 155.25 | 2.38 | 0.00 | 0.33 |
Benin | 86.53 | 23.93 | −0.50 | −8.81 | −0.10 |
Botswana | 31.05 | 1.78 | −0.02 | 0.23 | 0.01 |
Burkina | 60.99 | 19.92 | −0.66 | −3.99 | −0.07 |
Burundi | 168.53 | 14.30 | 0.16 | 2.17 | 0.01 |
Central Afr. Rep. | 32.36 | −27.73 | 10.89 | 10.32 | 0.32 |
Chad | 45.14 | 0.87 | −0.15 | −0.12 | 0.00 |
Cote d'Ivoire | 55.56 | 183.91 | −13.69 | 8.25 | 0.15 |
Djibouti | 9.73 | 143.36 | 4.63 | 16.67 | 1.71 |
Egypt | 0.00 | 132.28 | 1.13 | 0.00 | 0.72 |
Ethiopia | 6.19 | −46.19 | −84.68 | −32.22 | −5.21 |
Ghana | 120.89 | 34.86 | −1.85 | −7.35 | −0.06 |
Guinea | 67.27 | −12.44 | −12.25 | −62.18 | −0.92 |
Malawi | 381.81 | 10.47 | −3.08 | 81.22 | 0.21 |
Mali | 27.40 | 11.59 | −0.01 | 0.64 | 0.02 |
Mauritania | 62.29 | 21.94 | 0.31 | 4.35 | 0.07 |
Morocco | 0.01 | 313.46 | 9.85 | 0.01 | 1.10 |
Niger | 96.78 | 14.84 | 0.23 | 7.38 | 0.08 |
Rwanda | 165.90 | 30.98 | −2.90 | 2.54 | 0.02 |
South Africa | 0.51 | 3.89 | 0.11 | 0.00 | 0.00 |
Sudan | 228.75 | 29.16 | −1.34 | −18.33 | −0.08 |
Togo | 112.28 | 8.37 | −0.23 | −4.43 | −0.04 |
Uganda | 92.24 | 4.39 | −0.32 | 2.23 | 0.02 |
Tanzania | 302.68 | 1.97 | 0.00 | 1.19 | 0.00 |
Zimbabwe | 98 | 12.65 | −0.53 | 2.68 | 0.03 |
Average annual cases per 1,000 people
| Cases Elasticity (%)
| Projected increase/decrease in cases per 1,000 people by the end of the Century (2080–2100) (a) | ||||
---|---|---|---|---|---|---|
(1990–2000) | to 1 ºC change in Temp. | to 1% change in Precip. | Scenario 1 | Scenario 2 | Scenario 3 | |
Algeria | 0.01 | 155.25 | 2.38 | 0.02 | 0.05 | 0.07 |
Benin | 86.53 | 23.93 | −0.50 | 41.17 | 67.48 | 90.42 |
Botswana | 31.05 | 1.78 | −0.02 | 1.14 | 1.91 | 2.61 |
Burkina | 60.99 | 19.92 | −0.66 | 25.49 | 39.28 | 50.66 |
Burundi | 168.53 | 14.30 | 0.16 | 42.55 | 79.01 | 110.41 |
Central Afr. Rep. | 32.36 | −27.73 | 10.89 | −47.88 | −22.56 | 14.23 |
Chad | 45.14 | 0.87 | −0.15 | 1.33 | 1.16 | 0.75 |
Cote d’Ivoire | 55.56 | 183.91 | −13.69 | 252.40 | 321.99 | 358.53 |
Djibouti | 9.73 | 143.36 | 4.63 | 23.77 | 47.80 | 71.26 |
Egypt | 0.00 | 132.28 | 1.13 | 0.01 | 0.01 | 0.01 |
Ethiopia | 6.19 | −46.19 | −84.68 | 10.57 | −45.82 | −143.26 |
Ghana | 120.89 | 34.86 | −1.85 | 96.03 | 134.58 | 162.20 |
Guinea | 67.27 | −12.44 | −12.25 | 59.12 | −44.10 | −171.21 |
Malawi | 381.81 | 10.47 | −3.08 | 217.00 | 182.96 | 121.42 |
Mali | 27.40 | 11.59 | −0.01 | 5.74 | 10.48 | 14.89 |
Mauritania | 62.29 | 21.94 | 0.31 | 22.84 | 45.49 | 67.35 |
Morocco | 0.01 | 313.46 | 9.85 | 0.04 | 0.10 | 0.16 |
Niger | 96.78 | 14.84 | 0.23 | 23.88 | 47.85 | 71.05 |
Rwanda | 165.90 | 30.98 | −2.90 | 106.97 | 130.78 | 100.65 |
RSA | 0.51 | 3.89 | 0.11 | 0.03 | 0.07 | 0.10 |
Sudan | 228.75 | 29.16 | −1.34 | 129.26 | 192.00 | 210.21 |
Togo | 112.28 | 8.37 | −0.23 | 19.25 | 30.49 | 40.00 |
Uganda | 92.24 | 4.39 | −0.32 | 8.17 | 10.88 | 10.00 |
Tanzania | 302.68 | 1.97 | 0.00 | 10.73 | 19.15 | 25.81 |
Zimbabwe | 97.53 | 12.65 | −0.53 | 29.66 | 0.00 | 4.84 |
Price($) | Test($) | Transport($) | Total($) | |
---|---|---|---|---|
Drug prices | ||||
Artesunate | 0.54 | 1.39 | 0.48 | 2.41 |
Artesunate-Mefloquine | 0.36 | 1.39 | 0.44 | 2.18 |
Artemether-Lumefantrine | 0.15 | 1.39 | 0.38 | 1.92 |
Artesunate-Amodiquine | 0.08 | 1.39 | 0.37 | 1.83 |
Mean outpatient cost | 2.08 | |||
Hospitalization treatment cost | ||||
Kenya | 64.00 | |||
Senegal | 70.00 | |||
Mean Inpatient cost | 67.00 |
Projected cases per 1,000 people under Scenario1 | Treatment costs per 1,000 people (in 2004 USD)
| Treatment costs (in percentage of 2000 health expenditure per 1,000 people)
| |||
---|---|---|---|---|---|
Outpatient(a) | Inpatient(b) | Outpatient (%) | Inpatient (%) | ||
Algeria | 0.02 | 0.05 | 1.63 | 0.0 | 0.0 |
Benin | 41.17 | 85.76 | 2,758.58 | 0.3 | 8.1 |
Botswana | 1.14 | 2.36 | 76.08 | 0.0 | 0.0 |
Burkina | 25.49 | 53.08 | 1,707.60 | 0.1 | 3.2 |
Burundi | 42.55 | 88.63 | 2,851.00 | 0.6 | 20.4 |
Central Afr. Rep. | −47.88 | −99.73 | −3,208.11 | −0.2 | −6.4 |
Chad | 1.33 | 2.78 | 89.33 | 0.0 | 0.2 |
Cote d'Ivoire | 252.40 | 525.71 | 16,911.11 | 0.7 | 21.4 |
Djibouti | 23.77 | 49.50 | 1,592.37 | 0.1 | 2.5 |
Egypt | 0.01 | 0.01 | 0.35 | 0.0 | 0.0 |
Ethiopia | 10.57 | 22.02 | 708.40 | 0.1 | 3.7 |
Ghana | 96.03 | 200.02 | 6,434.28 | 0.2 | 6.3 |
Guinea | 59.12 | 123.14 | 3,961.17 | 0.2 | 5.2 |
Malawi | 217.00 | 451.96 | 14,538.70 | 1.1 | 35.5 |
Mali | 5.74 | 11.95 | 384.31 | 0.0 | 1.2 |
Mauritania | 22.84 | 47.58 | 1,530.61 | 0.1 | 4.8 |
Morocco | 0.04 | 0.09 | 2.87 | 0.0 | 0.0 |
Niger | 23.88 | 49.73 | 1,599.67 | 0.2 | 6.4 |
Rwanda | 106.97 | 222.79 | 7,166.67 | 0.7 | 22.4 |
South Africa | 0.03 | 0.06 | 2.06 | 0.0 | 0.0 |
Sudan | 129.26 | 269.22 | 8,660.18 | 0.7 | 21.7 |
Togo | 19.25 | 40.10 | 1,289.89 | 0.1 | 2.6 |
Uganda | 8.17 | 17.03 | 547.69 | 0.0 | 0.7 |
Tanzania | 10.73 | 22.35 | 718.98 | 0.1 | 2.9 |
Zimbabwe | 29.66 | 61.78 | 1,987.38 | 0.0 | 1.2 |
© 2011 by the authors; licensee MDPI, Basel, Switzerland This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Egbendewe-Mondzozo, A.; Musumba, M.; McCarl, B.A.; Wu, X. Climate Change and Vector-borne Diseases: An Economic Impact Analysis of Malaria in Africa. Int. J. Environ. Res. Public Health 2011, 8, 913-930. https://doi.org/10.3390/ijerph8030913
Egbendewe-Mondzozo A, Musumba M, McCarl BA, Wu X. Climate Change and Vector-borne Diseases: An Economic Impact Analysis of Malaria in Africa. International Journal of Environmental Research and Public Health. 2011; 8(3):913-930. https://doi.org/10.3390/ijerph8030913
Chicago/Turabian StyleEgbendewe-Mondzozo, Aklesso, Mark Musumba, Bruce A. McCarl, and Ximing Wu. 2011. "Climate Change and Vector-borne Diseases: An Economic Impact Analysis of Malaria in Africa" International Journal of Environmental Research and Public Health 8, no. 3: 913-930. https://doi.org/10.3390/ijerph8030913
APA StyleEgbendewe-Mondzozo, A., Musumba, M., McCarl, B. A., & Wu, X. (2011). Climate Change and Vector-borne Diseases: An Economic Impact Analysis of Malaria in Africa. International Journal of Environmental Research and Public Health, 8(3), 913-930. https://doi.org/10.3390/ijerph8030913