Release of Nitrogen and Phosphorus from Poultry Litter Amended with Acidified Biochar
Abstract
:1. Introduction
2. Experimental Section
2.1. Biochar Production and Acidification
2.2. Soil and Poultry Litter Sampling and Characterization
2.3. Incubation Experiment
2.4. Analysis of Samples
2.5. Calculations and Statistical Analysis
3. Results and Discussion
4. Conclusions
Acknowledgments
References and Notes
- Georgia Department of Agriculture. Georgia Poultry Facts; United States Department of Agriculture, National Agricultural Statistics Service, Georgia Field Office: Athens, GA, USA, 2009. Available online: http://www.nass.usda.gov/ga/ (accessed on 30 April 2010).
- Vervoort, RW; Radcliffe, DE; Cabrera, ML; Latimore, M, Jr. Nutrient losses in surface and subsurface flow from pasture applied poultry litter and composted poultry litter. Nutr. Cycl. Agroecosyst 1998, 50, 287–290. [Google Scholar]
- Endale, DM; Cabrera, ML; Steiner, JL; Radcliffe, DE; Vencill, WK; Schomberg, HH; Lohr, L. Impact of conservation tillage and nutrient management on soil water and yield of cotton fertilized with poultry litter or ammonium nitrate in the Georgia Piedmont. Soil Till. Res 2002, 66, 55–68. [Google Scholar]
- Brinson, S; Cabrera, M; Tyson, S. Ammonia volatilization from surface-applied, fresh and composted poultry litter. Plant Soil 1994, 167, 213–218. [Google Scholar]
- Cabrera, ML; Chiang, SC; Merka, WC; Thompson, SA; Pancorbo, OC. Nitrogen transformations in surface-applied poultry litter: Effect of litter physical characteristics. Soil Sci. Soc. Am. J 1993, 57, 1519–1525. [Google Scholar]
- Cabrera, ML; Chiang, SC. Water content effect on denitrification and ammonia volatilization in poultry litter. Soil Sci. Soc. Am. J 1994, 58, 811–816. [Google Scholar]
- Gay, SW; Knowlton, KF. Ammonia Emissions and Animal Agriculture; Virginia Cooperative Extension Biological Systems Engineering Publication: Blacksburg, VA, USA, 2005. [Google Scholar]
- Pearson, J; Stewart, GR. Transley review no. 56: The deposition of atmospheric ammonia and its effects on plants. New Phytol 1993, 125, 283–305. [Google Scholar]
- ApSimon, HM; Kruse, M; Bell, JNB. Ammonia emissions and their role in acid deposition. Atmos. Environ 1987, 21, 1939–1946. [Google Scholar]
- Van Breemen, N; van Dijk, HFG. Ecosystem effects of atmospheric deposition of nitrogen in the Netherlands. Environ. Pollut 1988, 54, 249–274. [Google Scholar]
- Kuykendall, HA; Cabrera, ML; Hoveland, CS; McCann, MA. Stocking method effects on nutrient runoff from pastures fertilized with broiler litter. J. Environ. Qual 1999, 28, 1886–1890. [Google Scholar]
- Lehmann, J; Gaunt, J; Rondon, M. Bio-char sequestration in terrestrial ecosystems—A review. Mitig. Adapt. Strateg. Glob. Change 2006, 11, 403–427. [Google Scholar]
- Onay, O. Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor. Fuel Process. Technol 2007, 88, 523–531. [Google Scholar]
- Encinar, JM; González, JF; González, J. Fixed-bed pyrolysis of Cynara cardunculus L. product yields and compositions. Fuel Process. Technol 2000, 68, 209–222. [Google Scholar]
- Demirbaş, A. Carbonization ranking of selected biomass for charcoal, liquid and gaseous products. Energ. Convers. Manag 2001, 42, 1229–1238. [Google Scholar]
- Demirbas, A. Effect of temperature on pyrolysis products from four nut shells. J. Anal. Appl. Pyrol 2006, 76, 285–289. [Google Scholar]
- Swift, RS. Sequestration of carbon by soil. Soil Sci 2001, 166, 858–871. [Google Scholar]
- McLauchlan, K. The nature and longevity of agricultural impacts on soil carbon and nutrients: A review. Ecosystems 2006, 9, 1364–1382. [Google Scholar]
- Lützow, MV; Kögel-Knabner, I; Ekschmitt, K; Matzner, E; Guggenberger, G. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions—A review. Eur. J. Soil Sci 2006, 57, 426–445. [Google Scholar]
- Glaser, B; Lehmann, J; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar]
- Lehmann, J. A handful of carbon. Nature 2007, 447, 143–144. [Google Scholar]
- Skjemstad, JO; Janik, LJ; Taylor, JA. Non-living soil organic matter: What do we know about it? Aust. J. Exp. Agr 1998, 38, 667–680. [Google Scholar]
- Liang, B; Lehmann, J; Solomon, D; Kinyangi, J; Grossman, J; O’Neill, B; Skjemstad, JO; Thies, J; Luizão, FJ; Petersen, J; et al. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J 2006, 70, 1719–1730. [Google Scholar]
- Cheng, C; Lehmann, J; Thies, JE; Burton, SD; Engelhard, MH. Oxidation of black carbon by biotic and abiotic processes. Org. Geochem 2006, 37, 1477–1488. [Google Scholar]
- Lehmann, J; da Silva, JP, Jr; Rondon, M; Cravo, MS; Greenwood, J; Nehls, T; Steiner, C; Glaser, B. Slash-and-Char: A Feasible Alternative for Soil Fertility Management in the Central Amazon? In Proceedings of the 17th World Congress of Soil Science, Bangkok, Thailand, 14–21 August 2002; Volume 449. pp. 1–12.
- Steiner, C; Teixeira, WG; Lehmann, J; Nehls, T; Vasconcelos de Macedo, JL; Blum, WEH; Zech, W. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 2007, 291, 275–290. [Google Scholar]
- Guo, Z; Sun, C; Grebner, DL. Utilization of forest derived biomass for energy production in the U.S.A.: Status, challenges, and policies. Int. Forest. Rev 2007, 9, 748–758. [Google Scholar]
- Cook, J; Beyea, J. Bioenergy in the United States: Progress and possibilities. Biomass Bioenergy 2000, 18, 441–455. [Google Scholar]
- Demirbas, A. Progress and recent trends in biofuels. Progr. Energ. Combust. Sci 2007, 33, 1–18. [Google Scholar]
- Demirbas, A. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energ. Convers. Manag 2008, 49, 2106–2116. [Google Scholar]
- Perkins, HF. Characterization Data for Selected Georgia Soils; The Georgia Agricultural Experiment Stations, College of Agriculture, The University of Georgia: Athens, GA, USA, 1987; Special Publication 43. [Google Scholar]
- Mulvaney, RL. Nitrogen-inorganic forms. In Methods of Soil Analysis Part 3—Chemical Method; Sparks, DL, Ed.; American Society of Agronomy—Soil Science Society of America: Madison, WI, USA, 1996; pp. 1152–1155. [Google Scholar]
- Kuo, S. Phosphorus. In Methods of Soil Analysis Part 3—Chemical Method; Sparks, DL, Ed.; American Society of Agronomy—Soil Science Society of America: Madison, WI, USA, 1996; pp. 908–909. [Google Scholar]
- Nelson, DW; Sommers, LE. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis Part 3—Chemical Method; Sparks, DL, Ed.; American Society of Agronomy—Soil Science Society of America: Madison, WI, USA, 1996; pp. 965–977. [Google Scholar]
- USEPA, Methods for Chemical Analysis of Water and Wastes; Environmental Monitoring and Support Laboratory: Cincinnati, OH, USA, 1979.
- Gaskin, JW; Steiner, C; Harris, K; Das, KC; Bibens, B. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans. ASABE 2008, 51, 2061–2069. [Google Scholar]
- SAS/STAT 92 User’s Guide; SAS Institute: Cary, NC, USA, 2008.
- Ferguson, RB; Kissel, DE; Koelliker, JK; Basel, W. Ammonia volatilization from surface-applied urea: Effect of hydrogen ion buffering capacity. Soil Sci. Soc. Am. J 1984, 48, 578–582. [Google Scholar]
- Court, MN; Stephen, RC; Waid, JS. Toxicity as a cause of the inefficiency of urea as a fertilizer. J. Soil Sci 1964, 15, 43–48. [Google Scholar]
- Tasistro, AS; Cabrera, ML; Kissel, DE. Water soluble phosphorus released by poultry litter: Effect of extraction pH and time after application. Nutr. Cycl. Agroecosyst 2004, 68, 223–234. [Google Scholar]
- Steiner, C; Glaser, B; Teixeira, WG; Lehmann, J; Blum, WEH; Zech, W. Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. J. Plant Nutr. Soil Sci 2008, 171, 893–899. [Google Scholar]
- Lehmann, J; da Silva, JP, Jr; Steiner, C; Nehls, T; Zech, W; Glaser, B. Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the central amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil 2003, 249, 343–357. [Google Scholar]
- Chan, KY; van Zwieten, L; Meszaros, I; Downie, A; Joseph, S. Agronomic values of greenwaste biochar as a soil amendment. Aust. J. Soil Res 2007, 45, 629–634. [Google Scholar]
- Rondon, MA; Lehmann, J; Ramirez, J; Hurtado, M. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol. Fertil. Soils 2007, 43, 699–708. [Google Scholar]
- Hossain, MK; Strezov, V; Chan, KY; Nelson, PF. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere 2010, 78, 1167–1171. [Google Scholar]
- Atkinson, J; Fitzgerald, JD; Hipps, NA. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil 2010, 337, 1–18. [Google Scholar]
Sample | pH | NH4 + (μg N g −1) | NO3 − (μg N g−1) | PO4 −3 (μg P g −1) | Buffering capacity cmol H+ kg −1 pH −1 | Total C, g kg −1 | Total P, μg g −1 | Total N, μg g −1 | CEC, cmol + kg −1 |
---|---|---|---|---|---|---|---|---|---|
Soil† | 6.69 b‡ | 10 b | 51 b | 11 b | 4 b | 22 c | 724 b | 2,027 b | 6.4 c |
PL | 8.62 a | 9,378 a | 633 a | 340 a | ND | 353 b | 16,238 a | 41,833 a | ND |
PC | 2.54 c | 1 b | 0 b | 11 b | 28 a | 608 a | 18 b | 1,372 b | 17.4 a |
PH | 2.55 c | 1 b | 0 b | 36 b | 35 a | 625 a | 126 b | 1,835 b | 15.7 b |
Treatments | Inorganic N, μg g −1 | Inorganic P, μg g −1 | |||||
---|---|---|---|---|---|---|---|
Volatilized | Leached | Extracted | Total | Leached | Extracted | Total | |
Surface-applied | |||||||
PL | 226 a‡ | 270 b | 6 a | 502 a | 4 a | 33 a | 37 a |
PL + PC | 83 b | 376 a | 17 a | 476 a | 6 a | 42 a | 49 a |
PL + PH | 95 b† | 407 a† | 17 †a | 519 a† | 4 a | 39 a | 43 a |
Incorporated | |||||||
PL | 97 a | 254 b | 7 a | 358 a | 36 a | 37 a | 73 a |
PL + PC | 39 b | 323 ab | 13 a | 375 a | 50 a | 46 a | 96 a |
PL + PH | 43 b | 354 a | 12 a | 409 a | 46 a | 45 a | 91 a |
Sample | pH (without soil) | pH (with soil) |
---|---|---|
PL | 8.55 a† | 6.94 a |
PL + PC | 7.26 c | 6.47 b |
PL + PH | 7.39 b | 6.73 ab |
Treatments | Surface-applied | Incorporated | ||
---|---|---|---|---|
Leached NH4 + | Leached NO3 − | Leached NH4 + | Leached NO3 − | |
μg g −1 soil | ||||
PL | 212 a‡ | 58 a | 215 b | 38 a |
PL + PC | 284 a | 92 a | 253 ab | 70 a |
PL + PH | 338 a† | 69 a† | 278 a | 77 a |
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Doydora, S.A.; Cabrera, M.L.; Das, K.C.; Gaskin, J.W.; Sonon, L.S.; Miller, W.P. Release of Nitrogen and Phosphorus from Poultry Litter Amended with Acidified Biochar. Int. J. Environ. Res. Public Health 2011, 8, 1491-1502. https://doi.org/10.3390/ijerph8051491
Doydora SA, Cabrera ML, Das KC, Gaskin JW, Sonon LS, Miller WP. Release of Nitrogen and Phosphorus from Poultry Litter Amended with Acidified Biochar. International Journal of Environmental Research and Public Health. 2011; 8(5):1491-1502. https://doi.org/10.3390/ijerph8051491
Chicago/Turabian StyleDoydora, Sarah A., Miguel L. Cabrera, Keshav C. Das, Julia W. Gaskin, Leticia S. Sonon, and William P. Miller. 2011. "Release of Nitrogen and Phosphorus from Poultry Litter Amended with Acidified Biochar" International Journal of Environmental Research and Public Health 8, no. 5: 1491-1502. https://doi.org/10.3390/ijerph8051491
APA StyleDoydora, S. A., Cabrera, M. L., Das, K. C., Gaskin, J. W., Sonon, L. S., & Miller, W. P. (2011). Release of Nitrogen and Phosphorus from Poultry Litter Amended with Acidified Biochar. International Journal of Environmental Research and Public Health, 8(5), 1491-1502. https://doi.org/10.3390/ijerph8051491