Second Malignant Neoplasms Following Radiotherapy
Abstract
:1. Introduction
2. Pathogenesis of Radiation Induced SMN
3. Temporal Relationship between Radiation Exposure and Development of SMN
4. Age
5. Radiosensitivity of the Organ
Organ | Probability of fatal malignancy (%/Sv) |
---|---|
Stomach | 1.10 |
Colon | 0.85 |
Lung | 0.85 |
Bone marrow | 0.50 |
Bladder | 0.30 |
Esophagus | 0.30 |
Breast | 0.20 |
Liver | 0.15 |
Ovary | 0.10 |
Thyroid | 0.08 |
Skin | 0.02 |
Bone surface | 0.05 |
Remainder of the body | 0.50 |
Total | 5.00 |
6. Gender
7. Radiation Dose
8. Radiation Technique
9. Quality of Radiation
10. SMN after Treatment of Prostate Cancer
11. SMN after Treatment of Breast Cancer
12. SMN after Treatment of Gynecological Malignancies
13. SMN after Treatment of Testicular Cancer
14. SMN after Treatment of Lymphoma
15. SMN after Treatment of Pediatric Malignancies
Invasive SMNs | Number | Median time to SMN occurrence in years, (range) |
---|---|---|
All invasive second malignancies | 802 | 17.8 (5.0–35.2) |
Leukemia | 41 | 8.9 (5.0–31.1) |
ALL | 10 | 11.5 (6.1–26.5) |
AML | 21 | 7.4 (5.0–25.0) |
CNS tumor | 77 | 13.2 (6.0–32.7) |
Glial | 52 | 11.7 (6.0–25.5) |
Medulloblastoma or PNET | 6 | 11.6 (8.0–14.6) |
Malignant Meningioma | 11 | 22.9 (15.8–32.7) |
Breast cancer | 188 | 21.3 (6.7–33.5) |
Melanoma | 48 | 18.9 (5.6–35.2) |
Thyroid cancer | 128 | 18.6 (6.3–34.0) |
Bone cancer | 45 | 9.8 (5.3–26.7) |
Osteosarcoma | 35 | 9.3 (5.3–24.0) |
Ewing sarcoma | 4 | 9.3 (5.3–24.0) |
Lymphoma | 33 | 18.5 (6.9–31.5) |
Hodgkin lymphoma | 9 | 18.5 (7.2–29.1) |
Non-Hodgkin lymphoma | 21 | 21.6 (6.9–31.5) |
Soft tissue sarcoma | 73 | 15.2 (5.3–31.3) |
Kidney cancer | 20 | 19.6 (6.3–28.4) |
Head and neck cancer | 38 | 15.6 (5.3–30.9) |
Small intestine and colorectal cancer | 27 | 23.1 (7.0–29.4) |
Lung and bronchus | 11 | 20.3 (14.0–25.6) |
Female genital cancers | 23 | 19.5 (10.4–32.9) |
Other cancers | 50 | 21.0 (8.2–35.0) |
16. Conclusion and Future Directions
Acknowledgments
References
- Ron, E. Ionizing radiation and cancer risk: Evidence from epidemiology. Radiat. Res. 1998, 150, S30–S41. [Google Scholar] [CrossRef]
- Howlader, N.; Noone, A.M.; Krapcho, M.; Neyman, N.; Aminou, R.; Altekruse, S.F.; Kosary, C.L.; Ruhl, J.; Tatalovich, Z.; Cho, H.; et al. SEER Cancer Statistics Review, 1975–2009; National Cancer Institute: Bethesda, MD, USA, 2012. [Google Scholar]
- Travis, L.B.; Ng, A.K.; Allan, J.M.; Pui, C.H.; Kennedy, A.R.; Xu, X.G.; Purdy, J.A.; Applegate, K.; Yahalom, J.; Constine, L.S.; et al. Second malignant neoplasms and cardiovascular disease following radiotherapy. J. Nat. Cancer Inst. 2012, 104, 357–370. [Google Scholar]
- Suit, H.; Goldberg, S.; Niemierko, A.; Ancukiewicz, M.; Hall, E.; Goitein, M.; Wong, W.; Paganetti, H. Secondary carcinogenesis in patients treated with Radiation: A review of data on radiation-induced cancers in human, non-human primate, canine and rodent subjects. Radiat. Res. 2007, 167, 12–42. [Google Scholar] [CrossRef]
- Li, F.P.; Fraumeni, J.F. Soft-tissue sarcomas, breast cancer, and other neoplasms. A familial syndrome? Ann. Intern. Med. 1969, 71, 747–752. [Google Scholar]
- Sasco, A.J.; Secretan, M.B.; Straif, K. Tobacco smoking and cancer: A brief review of recent epidemiological evidence. Lung Cancer 2004, Suppl. 45, S3–S9. [Google Scholar]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 4, 646–674. [Google Scholar] [CrossRef]
- Preston, D.; Shimizu, Y.; Pierce, D.; Suyama, A.; Mabuchi, K. Studies of mortality of atomic bomb survivors. Report 13: Solid cancer and non-cancer disease mortality: 1950–1997. Radiat. Res. 2003, 160, 381–407. [Google Scholar]
- Mullenders, L.; Atkinson, M.; Paretzke, H.; Sabatier, L.; Bouffler, S. Assessing cancer risks of low-dose radiation. Nat. Rev. Cancer 2009, 9, 596–604. [Google Scholar] [CrossRef]
- Sachs, R.K.; Brenner, D.J. Solid tumor risks after high doses of ionizing radiation. Proc. Nat. Acad. Sci. USA 2005, 102, 13040–13045. [Google Scholar] [CrossRef]
- Taylor, A.M.; Byrd, P.J. Molecular pathology of ataxia telangiectasia. J. Clin. Pathol. 2005, 58, 1009–1015. [Google Scholar] [CrossRef]
- Krueger, S.A.; Joiner, M.C.; Weinfeld, M.; Piasentin, E.; Marples, B. Role of apoptosis in low-dose hyperradiosensitivity. Radiat. Res. 2007, 167, 260–267. [Google Scholar] [CrossRef]
- Prise, K.M.; O’Sullivan, J.M. Radiation-induced bystander signalling in cancer therapy. Nat. Rev. Cancer 2009, 9, 351–360. [Google Scholar] [CrossRef]
- Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2; National Research Council of the National Academies: Washington, DC, USA, 2006.
- Hall, E.J.; Giaccia, A. Radiobiology for the Radiologist; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2011. [Google Scholar]
- Meadows, A.; Friedman, D.; Neglia, J.; Mertens, A.; Donaldson, S.; Stovall, M.; Hammond, S.; Yasui, Y.; Inskip, P. Second neoplasms in survivors of childhood cancer: Findings from the childhood cancer survivor study cohort. J. Clin. Oncol. 2009, 27, 2356–2362. [Google Scholar]
- Chaturvedi, A.K.; Engels, E.A.; Gilbert, E.S.; Chen, B.E.; Storm, H.; Lynch, C.F.; Hall, P.; Langmark, F.; Pukkala, E.; Kaijser, M.; et al. Second cancers among 104,760 survivors of cervical cancer: Evaluation of long-term risk. J. Nat. Cancer Inst. 2007, 99, 1634–1643. [Google Scholar] [CrossRef]
- Reulen, R.; Frobisher, C.; Winter, D.; Kelly, J.; Lancashire, E.; Stiller, C.; Pritchard-Jones, K.; Jenkinson, H.; Hawkins, M. Long-term risks of subsequent primary neoplasms among survivors of childhood cancer. JAMA 2011, 305, 2311–2319. [Google Scholar]
- Hall, E.J. Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 1–7. [Google Scholar] [CrossRef]
- International Commission on Radiological Protection, Recommendations; Annals of the ICRP Publication 60: Ottawa, Canada, 1990.
- Guibout, C.; Adjadj, E.; Rubino, C.; Shamsaldin, A.; Grimaud, E.; Hawkins, M.; Mathieu, M.C.; Oberlin, O.; Zucker, J.M.; Panis, X.; et al. Malignant breast tumors after radiotherapy for a first cancer during childhood. J. Clin. Oncol. 2005, 23, 197–204. [Google Scholar]
- Newhauser, W.D.; Durante, M. Assessing the risk of second malignancies after modern radiotherapy. Nat. Rev. Cancer 2011, 11, 438–448. [Google Scholar] [CrossRef]
- National Council on Radiation Protection and Measurements, Limitation of Exposure to Ionizing Radiation; National Council on Radiation Protection and Measurements: Bethesda, MD, USA, 1993.
- Cardis, E.; Howe, G.; Ron, E.; Bebeshko, V.; Bogdanova, T.; Bouville, A.; Carr, Z.; Chumak, V.; Davis, S.; Demidchik, Y.; et al. Cancer consequences of the Chernobyl accident: 20 years after. J. Radiol. Prot. 2006, 26, 127–140. [Google Scholar] [CrossRef]
- Cairns, J. Somatic stem cells and the kinetics of mutagenesis and carcinogenesis. Proc. Nat. Acad. Sci. USA 2002, 99, 10567–10570. [Google Scholar] [CrossRef]
- Friedman, D.L.; Whitton, J.; Leisenring, W.; Mertens, A.C.; Hammond, S.; Stovall, M.; Donaldson, S.S.; Meadows, A.T.; Robison, L.L.; Neglia, J.P. Subsequent neoplasms in 5-year survivors of childhood cancer: The childhood cancer survivor study. J. Nat. Cancer Inst. 2010, 102, 1083–1095. [Google Scholar] [CrossRef]
- Armstrong, G.T.; Sklar, C.A.; Hudson, M.M.; Robison, L.L. Long-term health status among survivors of childhood cancer: Does sex matter? J. Clin. Oncol. 2007, 25, 4477–4489. [Google Scholar] [CrossRef]
- Zang, E.A.; Wynder, E.L. Differences in lung cancer risk between men and women: Examination of the evidence. J. Nat. Cancer Inst. 1996, 88, 183–192. [Google Scholar]
- Taddei, P.J.; Mahajan, A.; Mirkovic, D.; Zhang, R.; Giebeler, A.; Kornguth, D.; Harvey, M.; Woo, S.; Newhauser, W.D. Predicted risks of second malignant neoplasm incidence and mortality due to secondary neutrons in a girl and boy receiving proton craniospinal irradiation. Phys. Med. Biol. 2010, 55, 7067–7080. [Google Scholar]
- Gray, L.H. Radiation Biology and Cancer. In Cellular Radiation Biology: A Symposium Considering Radiation Effects in the Cell and Possible Implications for Cancer Therapy, a Collection of Papers; Baltimore William and Wilkins: Baltimore, MD, USA, 1965; pp. 8–25. [Google Scholar]
- Taddei, P.J.; Howell, R.M.; Krishnan, S.; Scarboro, S.B.; Mirkovic, D.; Newhauser, W.D. Risk of second malignant neoplasm following proton versus intensity-modulated photon radiotherapies for hepatocellular carcinoma. Phys. Med. Biol. 2010, 55, 7055–7065. [Google Scholar] [CrossRef]
- Harrison, R.M.; Wilkinson, M.; Rawlings, D.J.; Moore, M. Doses to critical organs following radiotherapy and concomitant imaging of the larynx and breast. Br. J. Radiol. 2007, 80, 989–995. [Google Scholar] [CrossRef]
- Durante, M.; Cucinotta, F.A. Heavy ion carcinogenesis and human space exploration. Nat. Rev. Cancer. 2008, 8, 465–472. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.G.; Bednarz, B.; Paganetti, H. A review of dosimetry studies on external-beam radiation treatment with respect to second cancer induction. Phys. Med. Biol. 2008, 53, 193–241. [Google Scholar] [CrossRef]
- Edwards, A.A. RBE of radiations in space and the implications for space travel. Phys. Med. 2001, 17, S147–S152. [Google Scholar]
- Brenner, D.J.; Hall, E.J. Secondary neutrons in clinical proton radiotherapy: A charged issue. Radiother Oncol. 2008, 86, 165–170. [Google Scholar] [CrossRef]
- Zelefsky, M.J.; Housman, D.M.; Pei, X.; Alicikus, Z.; Magsanoc, J.M.; Dauer, L.T.; St Germain, J.; Yamada, Y.; Kollmeier, M.; Cox, B.; Zhang, Z. Incidence of secondary cancer development after high-dose intensity-modulated radiotherapy and image-guided brachytherapy for the treatment of localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, 953–959. [Google Scholar]
- Liauw, S.L.; Sylvester, J.E.; Morris, C.G.; Blasko, J.C.; Grimm, P.D. Second malignancies after prostate brachytherapy: Incidence of bladder and colorectal cancers in patients with 15 years of potential follow-up. Int. J. Radiat. Oncol. Biol. Phys. 2006, 66, 669–673. [Google Scholar]
- Moon, K.; Stukenborg, G.J.; Hein, S.; Theodorescu, D. Cancer incidence after localized therapy for prostate. Cancer 2006, 107, 991–998. [Google Scholar] [CrossRef]
- Brenner, D.; Curtis, R.; Hall, E.; Ron, E. Second malignancies in prostate carcinoma patients after radiotherapy compared with surgery. Cancer 2000, 88, 398–406. [Google Scholar] [CrossRef]
- Kendal, W.S.; Eapen, L.; Macrae, R.; Malone, S.; Nicholas, G. Prostatic irradiation is not associated with any measurable increase in the risk of subsequent rectal cancer. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 661–668. [Google Scholar] [CrossRef]
- Chrouser, K.; Leibovich, B.; Bergstralh, E.; Zincke, H.; Blute, M. Bladder cancer risk following primary and adjuvant external beam radiation for prostate cancer. J. Urol. 2005, 174, 107–110. [Google Scholar]
- Movsas, B.; Hanlon, A.L.; Pinover, W.; Hanks, G.E. Is there an increased risk of second primaries following prostate irradiation? Int. J. Radiat. Oncol. Biol. Phys. 1998, 41, 251–255. [Google Scholar] [CrossRef]
- Pickles, T.; Phillips, N. The risk of second malignancy in men with prostate cancer treated with or without radiation in British Columbia. 1984–2000. Radiother Oncol. 2002, 65, 145–151. [Google Scholar]
- Clarke, M.; Collins, R.; Darby, S.; Davies, C.; Elphinstone, P.; Evans, E.; Godwin, J.; Gray, R.; Hicks, C.; James, S.; et al. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005, 366, 2087–2106. [Google Scholar]
- Tubiana, M. Can we reduce the incidence of second primary malignancies occurring after radiotherapy? A critical review. Radiother Oncol. 2009, 91, 4–15. [Google Scholar] [CrossRef]
- Zhang, W.; Becciolini, A.; Biggeri, A.; Pacini, P.; Muirhead, C.R. Second malignancies in breast cancer patients following radiotherapy: A study in Florence, Italy. Breast Cancer Res. 2011, 13, R38. [Google Scholar] [CrossRef]
- Shaitelman, S.F.; Grills, I.S.; Kestin, L.L.; Ye, H.; Nandalur, S.; Huang, J.; Vicini, F.A. Rates of second malignancies after definitive local treatment for ductal carcinoma in situ of the breast. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 1244–1251. [Google Scholar]
- Boice, J.D., Jr.; Harvey, E.B.; Blettner, M.; Stovall, M.; Flannery, J.T. Cancer in the contralateral breast after radiotherapy for breast cancer. N. Engl. J. Med. 1992, 326, 781–785. [Google Scholar] [CrossRef]
- Deutsch, M.; Land, S.R.; Begovic, M.; Wieand, H.S.; Wolmark, N.; Fisher, B. The incidence of lung carcinoma after surgery for breast carcinoma with and without postoperative radiotherapy. Results of National Surgical Adjuvant Breast and Bowel Project (NSABP) clinical trials B-04 and B-06. Cancer 2003, 98, 1362–1368. [Google Scholar] [CrossRef]
- Zablotska, L.B.; Chak, A.; Das, A.; Neugut, A.I. Increased risk of squamous cell esophageal cancer after adjuvant radiation therapy for primary breast cancer. Am. J. Epidemiol. 2005, 161, 330–337. [Google Scholar] [CrossRef]
- Kirova, Y.M.; Vilcoq, J.R.; Asselain, B.; Sastre-Garau, X.; Fourquet, A. Radiation-induced sarcomas after radiotherapy for breast carcinoma: A large-scale single-institution review. Cancer 2005, 104, 856–863. [Google Scholar] [CrossRef]
- Stovall, M.; Smith, S.A.; Langholz, B.M.; Boice, J.D., Jr.; Shore, R.E.; Andersson, M.; Buchholz, T.A.; Capanu, M.; Bernstein, L.; Lynch, C.F.; et al. Dose to the contralateral breast from radiotherapy and risk of second primary breast cancer in the WECARE study. Int. J. Radiat. Oncol. Biol. Phys. 2008, 72, 1021–1030. [Google Scholar]
- Creutzberg, C.L.; Nout, R.A.; Lybeert, M.L.; Wárlám-Rodenhuis, C.C.; Jobsen, J.J.; Mens, J.W.; Lutgens, L.C.; Pras, E.; van de Poll-Franse, L.V.; van Putten, W.L. Fifteen-year radiotherapy outcomes of the randomized PORTEC-1 trial for endometrial carcinoma. PORTEC Study Group. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, e631–e638. [Google Scholar]
- Fung, C.; Fossa, S.D.; Beard, C.J.; Travis, L.B. Second malignant neoplasms in testicular cancer survivors. J. Natl. Compr. Canc. Netw. 2012, 10, 545–556. [Google Scholar]
- Travis, L.B.; Hill, D.A.; Dores, G.M.; Gospodarowicz, M.; van Leeuwen, F.E.; Holowaty, E.; Glimelius, B.; Andersson, M.; Wiklund, T.; Lynch, C.F.; et al. Breast cancer following radiotherapy and chemotherapy among young women with Hodgkin disease. JAMA 2003, 290, 465–475. [Google Scholar]
- Hodgson, D.C.; Gilbert, E.S.; Dores, G.M.; Schonfeld, S.J.; Lynch, C.F.; Storm, H.; Hall, P.; Langmark, F.; Pukkala, E.; Andersson, M.; et al. Long-term solid cancer risk among 5-year survivors of Hodgkin’s lymphoma. J. Clin. Oncol. 2007, 25, 1489–1497. [Google Scholar]
- O’Brien, M.M.; Donaldson, S.S.; Balise, R.R.; Whittemore, A.S.; Link, M.P. Second malignant neoplasms in survivors of pediatric Hodgkin’s lymphoma treated with low-dose radiation and chemotherapy. J. Clin. Oncol. 2010, 28, 1232–1239. [Google Scholar]
- Travis, L.B.; Curtis, R.E.; Glimelius, B.; Holowaty, E.; Van Leeuwen, F.E.; Lynch, C.F.; Adami, J.; Gospodarowicz, M.; Wacholder, S.; Inskip, P.; et al. Second cancers among long-term survivors of non-Hodgkin’s lymphoma. J. Nat. Cancer Inst. 1993, 85, 1932–1937. [Google Scholar] [CrossRef]
- Tward, J.D.; Wendland, M.M.; Shrieve, D.C.; Szabo, A.; Gaffney, D.K. The risk of secondary malignancies over 30 years after the treatment of non-Hodgkin lymphoma. Cancer 2006, 107, 108–115. [Google Scholar] [CrossRef]
- Travis, L.B.; Weeks, J.; Curtis, R.E.; Chaffey, J.T.; Stovall, M.; Banks, P.M.; Boice, J.D., Jr. Leukemia following low-dose total body irradiation and chemotherapy for non-Hodgkin’s lymphoma. J. Clin. Oncol. 1996, 14, 565–571. [Google Scholar]
- Foss, A.A.; Andersen, A.; Nome, O.; Jacobsen, A.B.; Holte, H.; Foss, A.J.; Kvaløy, S. Long-term risk of second malignancy after treatment of Hodgkin’s disease: The influence of treatment, age and follow-up time. Ann. Oncol. 2002, 13, 1786–1791. [Google Scholar] [CrossRef]
- Koshy, M.; Rich, S.E.; Mahmood, U.; Kwok, Y. Declining use of radiotherapy in stage I and II Hodgkin’s disease and its effect on survival and secondary malignancies. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 619–625. [Google Scholar] [CrossRef]
- Bhatia, S.; Yasui, Y.; Robison, L.L.; Birch, J.M.; Bogue, M.K.; Diller, L.; DeLaat, C.; Fossati-Bellani, F.; Morgan, E.; Oberlin, O.; et al. High risk of subsequent neoplasms continues with extended follow-up of childhood Hodgkin’s disease: Report from the Late Effects Study Group. J. Clin. Oncol. 2003, 21, 4386–4394. [Google Scholar] [CrossRef]
- Garwicz, S.; Anderson, H.; Olsen, J.H.; Døllner, H.; Hertz, H.; Jonmundsson, G.; Langmark, F.; Lanning, M.; Möller, T.; Sankila, R.; Tulinius, H. Second malignant neoplasms after cancer in childhood and adolescence: A population-based case-control study in the 5 Nordic countries. The Nordic Society for Pediatric Hematology and Oncology. The Association of the Nordic Cancer Registries. Int. J. Cancer 2000, 88, 672–678. [Google Scholar] [CrossRef]
- Metayer, C.; Lynch, C.F.; Clarke, E.A.; Glimelius, B.; Storm, H.; Pukkala, E.; Joensuu, T.; van Leeuwen, F.E.; van’t Veer, M.B.; Curtis, R.E.; et al. Second cancers among long-term survivors of Hodgkin’s disease diagnosed in childhood and adolescence. J. Clin. Oncol. 2000, 18, 2435–2443. [Google Scholar]
- Bhatia, S.; Sklar, C. Second cancers in survivors of childhood cancer. Nat. Rev. Cancer 2002, 2, 124–132. [Google Scholar] [CrossRef]
- Reulen, R.; Frobisher, C.; Winter, D.; Kelly, J.; Lancashire, E.; Stiller, C.; Pritchard-Jones, K.; Jenkinson, H.; Hawkins, M. Long-term risks of subsequent primary neoplasms among survivors of childhood cancer. JAMA 2011, 305, 2311–2319. [Google Scholar] [CrossRef]
- Henderson, T.; Oeffinger, K.; Whitton, J.; Leisenring, W.; Neglia, J.; Meadows, A.; Crotty, C.; Rubin, D.; Diller, L.; Inskip, P.; et al. Secondary gastrointestinal cancer in childhood cancer survivors a cohort study. Ann. Intern. Med. 2012, 156, 757–766. [Google Scholar]
- Walter, A.W.; Hancock, M.L.; Pui, C.H.; Hudson, M.M.; Ochs, J.S.; Rivera, G.K.; Pratt, C.B.; Boyett, J.M.; Kun, L.E. Secondary brain tumors in children treated for acute lymphoblastic leukemia at St Jude Children’s Research Hospital. J. Clin. Oncol. 1998, 16, 3761–3767. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kumar, S. Second Malignant Neoplasms Following Radiotherapy. Int. J. Environ. Res. Public Health 2012, 9, 4744-4759. https://doi.org/10.3390/ijerph9124744
Kumar S. Second Malignant Neoplasms Following Radiotherapy. International Journal of Environmental Research and Public Health. 2012; 9(12):4744-4759. https://doi.org/10.3390/ijerph9124744
Chicago/Turabian StyleKumar, Sanath. 2012. "Second Malignant Neoplasms Following Radiotherapy" International Journal of Environmental Research and Public Health 9, no. 12: 4744-4759. https://doi.org/10.3390/ijerph9124744
APA StyleKumar, S. (2012). Second Malignant Neoplasms Following Radiotherapy. International Journal of Environmental Research and Public Health, 9(12), 4744-4759. https://doi.org/10.3390/ijerph9124744