Health Risk Assessment for Cyanobacterial Toxins in Seafood
Abstract
:1. Introduction
2. Methods, Results and Discussion
2.1. Risk Assessment Methodology
- (1) Hazard identification—qualitative determination of the potential of a chemical or agent to cause adverse effects in humans.
- (2) Dose-response assessment—examination of the quantitative relationship between the hazard at different exposure levels and the incidence of adverse effects in humans or other animals.
- (3) Exposure assessment—determination of the route, frequency and duration of the exposure, including the nature of exposed populations.
- (4) Risk characterisation—integration of hazard presence, dose-response and exposure assessment information.
2.2. Hazard Identification
2.3. Dose-Response Assessment
2.4. Exposure Assessment
Age group (years) | Commodity | Consumer intake 4 g/kg BW 5/day | g/day | Survey 1,2 |
---|---|---|---|---|
≥17 | Fish (diadromous and freshwater) 3 | 5.1 | 377 | 1995 |
Prawns | 5.1 | 377 | ||
Mussels | 2.4 | 178 | ||
2–16 | Fish (diadromous and freshwater | 8.4 | 319 | 2007 |
Prawns | 6.2 | 236 | ||
Molluscs 6 | 3.9 | 148 |
2.5. Allocation Factor
2.6. Risk Characterisation
3. Derivation of Health Guideline Values
3.1. Cylindrospermopsin
Age group (years) | Average bodyweight (kg) | Acceptable daily limit (μg/day) |
---|---|---|
≥17 | 74 | 11 |
2–16 | 38 | 5.7 |
Health Guideline Value (μg/kg of whole organism sample) | |||
---|---|---|---|
Age group (years) | Fish | Prawns | Mussels/Molluscs |
≥17 | 29 | 29 | 62 |
2–16 | 18 | 24 | 39 |
3.2. Microcystins
Age group (years) | Average bodyweight (kg) | Acceptable daily limit (μg/day) |
---|---|---|
≥17 | 74 | 14.8 |
2–16 | 38 | 7.6 |
Health Guideline Value (μg/kg of whole organism sample) | |||
---|---|---|---|
Age group (years) | Fish | Prawns | Mussels/Molluscs |
≥17 | 39 | 39 | 83 |
2–16 | 24 | 32 | 51 |
3.3. Nodularin
3.4. Saxitoxins
4. Summary
Toxin | Health guideline value (μg/kg of whole organism sample) | ||
---|---|---|---|
Fish | Prawns | Mussels or Molluscs | |
Cylindrospermopsin and deoxyCYN | 18 | 24 | 39 |
Microcystin-LR* or equivalent toxins, incl. Nodularin | 24 | 32 | 51 |
Saxitoxins | 800 | 800 | 800 |
References
- Day, P.; Cribb, J.; Burgi, A. The Ecology of Algal Blooms in the Gippsland Lakes; Gippsland Lakes and Catchment Taskforce: Bairnsdale, Australia, 2011. [Google Scholar]
- Falconer, I.R. Cyanobacterial Toxins of Drinking Water Supplies; CRC Press: Boca Raton, FL, USA, 2005; pp. 45–68. [Google Scholar]
- Francis, G. Poisonous Australian lake. Nature 1878, 18, 11–12. [Google Scholar]
- Meriluoto, J.A.O.; Spoof, L. Cyanotoxins: Sampling, Sample Processing and Toxin Uptake. In Cyanobacterial Harmful Algal Blooms: State of Science and Research Needs; Hudnell, H.K., Ed.; Springer: New York, NY, USA, 2008; pp. 483–499. [Google Scholar]
- Van Buynder, P.G.; Oughtred, T.; Kirkby, B.; Phillips, S.; Eaglesham, G.; Thomas, K.; Burch, M. Nodularin uptake by seafood during a cyanobacterial bloom. Environ. Toxicol. 2001, 16, 468–471. [Google Scholar]
- Kuiper-Goodman, T.; Falconer, I.R.; Fitzgerald, J. Human Health Aspects. In Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management; Chorus, I., Bartram, J., Eds.; E & FN Spon: London, UK, 1999; pp. 113–153. [Google Scholar]
- Wekell, J.C.; Hurst, J.; Lefebure, K.A. The origin of the regulatory limits for PSP and ASP toxins in shellfish. J. Shellf. Res. 2004, 23, 927–930. [Google Scholar]
- enHealth, Environmental Health Risk Assessment—Guidelines for Assessing Human Health Risks from Environmental Hazards; Department of Health and Aging and enHealth Council: Sydney, Australia, 2012.
- OECD, OECD Guideline for the Testing of Chemicals; Organisation for European Cooperation and Development: Paris, France, 1998.
- Solecki, L.; Davies, L.; Dellarco, V.; Dewhurst, I.; van Raaij, M.; Tritscher, A. Guidance on setting of acute reference dose (ARfD) for pesticides. Food Chem. Toxicol. 2005, 43, 1569–1593. [Google Scholar]
- Australian Bureau of Statistics, National Nutrition Survey Nutrient Intakes and Physical Measurements Australia 1995; AGPS: Canberra, Australia, 1998.
- Department of Health and Ageing, 2007 Australian National Children’s Nutrition and Physical Activity Survey; Department of Health and Ageing: Canberra, Australia, 2008.
- NHMRC, Guidelines for Managing Risks in Recreational Water; National Health and Medical Research Council: Canberra, Australia, 2008.
- Seifert, M.; McGregor, G.; Eaglesham, G.; Wickramasinghe, W.; Shaw, G. First evidence for the production of cylindrospermopsin and deoxy-cylindrospermopsin by the freshwater benthic cyanobacterium Lyngbya wollei (Farlow ex Gomont) Speziale and Dyck. Harmful Algae 2007, 6, 73–80. [Google Scholar]
- Saker, M.L.; Metcalf, J.S.; Codd, G.A.; Vasconcelos, V.M. Accumulation and depuration of the cyanobacterial toxin cylindrospermopsin in the freshwater mussel Anodonta cygnea. Toxicon 2004, 43, 185–194. [Google Scholar]
- Saker, M.L.; Eaglesham, G.K. The accumulation of cylindrospermopsin from the cyanobacterium Cylindrospermopsis raciborskii in tissues of the Redclaw crayfish Cherax quadricarinatus. Toxicon 1999, 37, 1065–1077. [Google Scholar]
- Kinnear, S. Cylindrospermopsin: A decade of progress on bioaccumulation research. Mar. Drugs 2010, 8, 542–564. [Google Scholar]
- Byth, S. Palm Island mystery disease. Med. J. Aust. 1980, 2, 40–42. [Google Scholar]
- Falconer, I.R.; Hardy, S.J.; Humpage, A.R.; Froscio, S.M.; Tozer, G.J.; Hawkins, P.R. Hepatic and renal toxicity of the blue–green alga (cyanobacterium) Cylindrospermopsis raciborskii in male Swiss albino mice. Environ. Toxicol. 1999, 14, 143–150. [Google Scholar]
- Shaw, G.R.; Seawright, A.A.; Moore, M.R.; Lam, P.K. Cylindrospermopsin, a cyanobacterial alkaloid: Evaluation of its toxicological activity. The. Drug Monit. 2000, 22, 89–92. [Google Scholar]
- Seawright, A.A.; Nolan, C.C.; Shaw, G.R.; Chiswell, R.K.; Norris, R.L.; Moore, M.R.; Smith, M.J. The oral toxicity for mice of the tropical cyanobacterium Cylindrospermopsis raciborskii (Woloszynska). Environ. Toxicol. 1999, 14, 135–142. [Google Scholar]
- Falconer, I.R.; Humpage, A.R. Preliminary evidence for in vivo tumour initiation by oral administration of extracts of the blue-green alga Cylindrospermopsis raciborskii containing the toxin cylindrospermopsin. Environ. Toxicol. 2001, 16, 192–195. [Google Scholar]
- Humpage, A.R.; Falconer, I.R. Oral toxicity of the cyanobacterial toxin cylindrospermopsin in male Swiss albino mice: Determination of No Observed Adverse Effect Level for deriving a drinking water guideline value. Environ. Toxicol. 2003, 18, 94–103. [Google Scholar]
- Sukenik, A.; Reisner, M.; Carmeli, S.; Werman, M. Oral toxicity of the cyanobacterial toxin cylindrospermopsin in mice: Long-term exposure to low doses. Environ. Toxicol. 2006, 21, 575–582. [Google Scholar]
- Rogers, E.H.; Zehr, R.D.; Gage, M.I.; Humpage, A.R.; Falconer, I.R.; Marr, M.; Chernoff, N. The cyanobacterial toxin, cylindrospermopsin, induces fetal toxicity in the mouse after exposure late in gestation. Toxicon 2007, 49, 855–864. [Google Scholar]
- Young, F.M.; Micklem, J.; Humpage, A.R. Effects of blue-green algal toxin cylindrospermopsin (CYN) on human granulosa cells in vitro. Reprod. Toxicol. 2008, 25, 374–380. [Google Scholar]
- Humpage, A.R.; Fenech, M.; Thomas, P.; Falconer, I.R. Micronucleus induction and chromosome loss in transformed human white cells indicate clastogenic and aneugenic action of the cyanobacterial toxin, cylindrospermopsin. Mutat. Res. 2000, 472, 155–161. [Google Scholar]
- Looper, R.E.; Runnegar, M.T.C.; Williams, R.M. Synthesis of the putative structure of 7-deoxycylindrospermopsin: C7 oxygenation is not required for the inhibition of protein synthesis. Angew. Chem. Int. Ed. 2005, 44, 3879–3881. [Google Scholar]
- Neumann, C.; Bain, P.; Shaw, G.R. Studies of the comparative in vitro toxicology of the cyanobacterial metabolite deoxycylindrospermopsin. J. Toxicol. Environ. Health 2007, 70, 1679–1686. [Google Scholar]
- Carmichael, W.W.; Azevedo, S.M.; An, J.S.; Molica, R.J.; Jochimsen, E.M.; Lau, S.; Rinehart, K.L.; Shaw, G.R.; Eaglesham, G.K. Human fatalities from cyanobacteria: Chemical and biological evidence for cyanotoxins. Environ. Health Perspect. 2001, 109, 663–668. [Google Scholar]
- Falconer, I.R. Toxic cyanobacterial bloom problems in Australian waters: Risks and impacts on human health. Phycologia 2001, 40, 228–233. [Google Scholar]
- Rao, P.V.L.; Gupta, N.; Bhaskar, A.S.; Jayaraj, R. Toxins and bioactive compounds from cyanobacteria and their implications on human health. J. Environ. Biol. 2002, 23, 215–224. [Google Scholar]
- CRCWQT, Cyanobacteria Management and Implications for Water Quality: Outcomes from the Research Programs of the Cooperative Research Centre for Water Quality and Treatment; CRCWQT: Salisbury, Australia, 2006.
- Gilroy, D.J.; Kauffman, K.W.; Hall, R.A.; Huang, X.; Chu, F.S. Assessing potential health risks from microcystin toxins in blue–green algae dietary supplements. Environ. Health Perspect. 2000, 108, 435–439. [Google Scholar]
- Ito, E.; Kondo, F.; Terao, K.; Harada, K. Short Communications: Neoplastic nodular formation in mouse liver induced by repeated intraperitoneal injections of microcystin-LR. Toxicon 1997, 35, 1453–1457. [Google Scholar]
- Nishiwaki-Matsushima, R.; Ohta, T.; Nishiwaki, S.; Suganuma, M.; Kohyama, K.; Ishikawa, T.; Carmichael, W.W.; Fujiki, H. Liver tumor promotion by the cyanobacterial cyclic peptide toxin microcystin-LR. J. Cancer Res. Clin. Oncol. 1992, 118, 420–424. [Google Scholar]
- Humpage, A.R.; Hardy, S.J.; Moore, E.J.; Froscio, S.M.; Falconer, I.R. Microcystins (cyanobacterial toxins) in drinking water enhance the growth of aberrant crypt foci in the mouse colon. J. Toxicol. Environ. Health 2000, 61, 155–165. [Google Scholar]
- Fawell, J.K.; James, C.; James, H. Toxins from Blue-Green Algae: Toxicological Assessment of Microcystin-LR and a Method for Its Determination in Water; Water Research Centre: Marlow, Bucks, Medmenham, UK, 1994; pp. 1–46. [Google Scholar]
- Grosse, Y.; Baan, R.; Straif, K.; Secretan, B.; El Ghissassi, F.; Cogliano, V. WHO International Agency for Research on Cancer Monograph Working Group. Carcinogenicity of nitrate, nitrite, and cyanobacterial peptide toxins. Lancet Oncol. 2006, 7, 628–629. [Google Scholar]
- NHMRC, Australian Drinking Water Guidelines; National Health and Medical Research Council and Natural Resource Management Ministerial Council: Canberra, Australia, 2004.
- Baker, P.D.; Humpage, A.R. Toxicity associated with commonly occurring cyanobacteria in surface waters of the Murray-Darling Basin, Australia. Aust. J. Mar. Freshw. Res. 1994, 45, 773–786. [Google Scholar]
- McElhiney, J.; Lawton, L.A. Detection of the cyanobacterial hepatotoxins microcystins. Toxicol. Appl. Pharmacol. 2005, 203, 219–230. [Google Scholar]
- Ohta, T.; Sueoka, E.; Iida, N.; Komori, A.; Suganuma, M.; Nishiwaki, R.; Tatematsu, M.; Kim, S.J.; Carmichael, W.W.; Fujiki, H. Nodularin, a potent inhibitor of protein phosphatases 1 and 2A, is a new environmental carcinogen in male F344 rat liver. Cancer Res. 1994, 54, 6402–6406. [Google Scholar]
- Ibelings, B.W.; Chorus, I. Accumulation of cyanobacterial toxins in freshwater “seafood” and its consequences for public health: A review. Environ. Pollut. 2007, 150, 177–192. [Google Scholar]
- FAOIOCWHOReport of the Joint FAO/IOC/WHO ad hoc Expert Consultation on Biotoxins in Bivalve Molluscs, Short Summary; UNESCO: Oslo, Norway, 2004.
- DPI, Marine Biotoxin Management Plan—Victorian Shellfish Quality Assurance Program. In Fisheries Victoria Management Report Series; Department of Primary Industries: High St. Maitland, NSW, Australia, 2004; pp. 1–70.
- Humpage, A.R.; Rositano, J.; Bretag, A.H.; Brown, R.; Baker, P.D.; Nicholson, B.C.; Steffensen, D.A. Paralytic shellfish poisons from Australian cyanobacterial blooms. Aust. J. Mar. Freshw. Res. 1994, 45, 761–771. [Google Scholar]
- Shimuzu, Y. Part IV Paralytic Shellfish Poisoning: Chemistry and Mechanism of Action. In Seafood and Freshwater Toxins: Pharmacology, Physiology and Detection; Marcel Dekker: New York, NY, USA, 2000; pp. 151–172. [Google Scholar]
- EFSA. Marine Biotoxins in Shellfish—Saxitoxin Group. Scientific Opinion of the Panel on Contaminants in the Food Chain. The EFSA Journal 2009, 1019, 1–76.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Mulvenna, V.; Dale, K.; Priestly, B.; Mueller, U.; Humpage, A.; Shaw, G.; Allinson, G.; Falconer, I. Health Risk Assessment for Cyanobacterial Toxins in Seafood. Int. J. Environ. Res. Public Health 2012, 9, 807-820. https://doi.org/10.3390/ijerph9030807
Mulvenna V, Dale K, Priestly B, Mueller U, Humpage A, Shaw G, Allinson G, Falconer I. Health Risk Assessment for Cyanobacterial Toxins in Seafood. International Journal of Environmental Research and Public Health. 2012; 9(3):807-820. https://doi.org/10.3390/ijerph9030807
Chicago/Turabian StyleMulvenna, Vanora, Katie Dale, Brian Priestly, Utz Mueller, Andrew Humpage, Glen Shaw, Graeme Allinson, and Ian Falconer. 2012. "Health Risk Assessment for Cyanobacterial Toxins in Seafood" International Journal of Environmental Research and Public Health 9, no. 3: 807-820. https://doi.org/10.3390/ijerph9030807
APA StyleMulvenna, V., Dale, K., Priestly, B., Mueller, U., Humpage, A., Shaw, G., Allinson, G., & Falconer, I. (2012). Health Risk Assessment for Cyanobacterial Toxins in Seafood. International Journal of Environmental Research and Public Health, 9(3), 807-820. https://doi.org/10.3390/ijerph9030807