Early Origins of Child Obesity: Bridging Disciplines and Phases of Development - September 30–October 1, 2010
Abstract
:1. Introduction
- It is increasingly clear that factors from early life affect the onset and severity of childhood obesity. Research on these factors has tended to remain within domains characterized by discipline and organizational level (genetics, psychology, and epidemiology) and age range (perinatal, first 1–2 years of life, and the preschool/early primary school years). Yet knowledge within traditional disciplines—defined by field, age focus, and other parameters—is relevant outside the disciplines in which it is discovered and discussed. As evidence accumulates that early factors are interactive and cumulative, it is time to develop a research agenda that bridges these divides to develop an integrated understanding of the contribution and interplay of varied factors. Breakthroughs in childhood obesity prevention and control will need to integrate knowledge across these traditional divides. Postponement of this bridge-building risks dead-end research and slowed progress.
- It is virtually impossible for any one investigator—or even one investigative team—to master the full range of knowledge relevant to the development of early childhood obesity. Cross-disciplinary teams are needed. The proposed conference will provide a shared knowledge base that crosses disciplines, and so will provide varied investigators with insight into gaps in their own work. Further, it will provide for networking and linkage that can fill those gaps going forward. Finally, it will produce a research agenda that will build on all the relevant disciplines and that can, as a result, help to guide cross-disciplinary work in the coming years.
Keynote/Introductory Presentation- Matthew Gillman, MD, SM
2. Conference Presentation Summaries (prepared by each speaker)
2.1. Session 1: Prenatal Factors
2.1.1. Obesity and the Thrifty Hypothesis - Michael G. Ross, MD, MPH
2.1.2. Intrauterine Metabolic Influences on Development of Childhood Obesity - Boyd E. Metzger, MD
2.1.3. Cord Blood Biomarkers and Development of Obesity in Early Life - Xiaobin Wang, MD, ScD, MPH
2.2. Session 2: Factors in the First Two Years of Life
2.2.1. Nutrition & Physical Activity Introduction - Helen Binns, MD, MPH
2.2.2. Patterns of Weight Gain, Eating and Environmental Exposures - Helen J. Binns, MD, MPH
2.2.3. Infant Factors - Cynthia A. Stifter, Ph.D.
2.2.4. Preventing Child Obesity: Parenting Factors in the First Two Years of Life - Karen Campbell, Ph.D.
2.3. Session 3: Factors During Ages 2–7 Years
2.3.1. Child Factors - Robert C. Whitaker, MD, MPH
2.3.2. Nutritional Factors in Early Childhood Obesity, 2 to 7 Years - Barbara A. Dennison, MD
2.3.3. Parenting/Household Factors - Sara Gable, Ph.D.
2.3.4. Physical Activity - Tom Baranowski, Ph.D.
3. Results
3.1. Session 4: Research Priorities
Diet focus | Activity focus | Other or Multiple focus | Pre-natal | Age <2 | 2–7 years | |
---|---|---|---|---|---|---|
Risk Factors and Mechanisms | ||||||
Need for better definition of fetal obesity phenotypes beyond traditional measurements: length, weight, head circumference, skinfolds, ponderal index; novel tools: Peapod, MRI, BIA, DEXA | x | x | ||||
Need to evaluate novel in-utero risk factors: relative importance of maternal/paternal factors, fetal/placental factors | x | x | ||||
The role of micronutrients: vitamin D, folate, fatty acids | x | x | ||||
The role of environmental toxins, especially endocrine disruptors | x | x | ||||
Microbiome: C/S vs. vaginal delivery; in-utero infection/inflammation; pre- and post-natal antibiotic use; dietary contents; breastfeeding | x | x | ||||
Assessment of early life adversities (poor nutrition, stress, maternal obesity, pregnancy complications) | x | x | ||||
Evaluate early life adversities in the context of genetic susceptibility and test gene-environmental interactions | x | x | ||||
Biomarkers such as leptin, adiponectin, and insulin, may offer mechanistic insight | x | x | ||||
Epigenetic studies, including: identify genomic loci that carry obesity-specific epigenetic modifications; define metabolic gene-networks governed by epigenetic processes | x | x | ||||
How are obesity risk factors reflected in epigenomics, when do epigenomic changes occur, and how does the time of occurrence affect risk? | x | x | x | x | ||
How do parent-child relationships affect later weight status? | x | x | x | x | ||
How do mental health factors (e.g., maternal depression, child ADHD) affect weight status, and why do subgroup patterns of association differ (e.g., females more affected)? | x | x | x | x | ||
How does media use affect eating and activity behavior, and how does this change with age and over time? | x | x | x | x | ||
What factors make some children and families able to avoid the effects of the obesigenic environment? | x | x | x | x | ||
Do environmental exposures, such as BPA, affect obesity risk and, if so, how? | x | x | x | x | ||
How do policies and programs, such as WIC, food stamps, affect parent behaviors related to obesity risk and how are these best taken into account? | x | x | x | x | ||
The contributions of social inequities (poverty, minority and immigrant status, etc.) | x | x | x | x | ||
Studies that interacting address medical risk (e.g., medically complex, those with food allergies)? | x | x | x | x | ||
What child and parent factors affect child sleep patterns and how do those patterns affect risk of obesity? | x | x | x | |||
How does child care and school affect child obesity risk, and what factors of the child care/school settings, child, and family affect that? | x | x | x | |||
How does parental modeling affect child behaviors related to obesity risk, self-regulation, sleep, eating, activity? | x | x | x | |||
What social factors (e.g., maternal employment, family constellation, isolation/social networking patterns, work schedules, racial segregation, immigrant status) affect maternal and child dietary and physical activity patterns, and how? | x | x | x | |||
How do season, climate, weather, geography and other aspects of the physical environment (such as distance to food sources) affect weight status and how is this best taken into account in studies? | x | x | ||||
Does it make a difference for later feeding behavior and obesity risk if breast milk is ingested from a bottle vs. from the breast, and, if so, why? (For example, satiety effects, calorie exertion during feeding.) | x | x | x | |||
Does maternal diet during breastfeeding affect infant responses to the foods ingested or not ingested, and, if so, how? | x | x | x | |||
To what extent do genetic factors affect physical activity and inactivity? | x | x | x | |||
To what extent do unmeasured factors, like coordination, affect physical activity? | x | x | x | |||
What parental attitudes affect physical activity (e.g., fear of neighborhood dangers) and how are these best taken into account? | x | x | ||||
Interventions | ||||||
What are the most effective ways to help parents and children learn self-regulation, particularly in response to stress? | x | x | x | x | ||
Does consistency of approaches across home and other settings—re environment, messaging, other—affect obesity risk? | x | x | x | x | ||
What is the best use of health care provider time, in terms of affecting obesity risk patterns? | x | x | x | x | ||
What outcomes other than weight status are affected by modification of obesity risk factors and interventions aimed at doing that? | x | x | x | x | ||
What are the most effective ways to help parents learn behaviors that will reduce child obesity risk, e.g., to what knowledge and attitudes (re learning, weight, other) should training be tied; how best to teach structure and routine? | x | x | x | x | ||
How do early developmental factors affect later physical activity (e.g., sleeping position, timing of walking)? | x | x | x | |||
How can parental attitudes that affect physical activity (e.g., fear of neighborhood dangers) be effectively altered in ways that improve PA? | x | x | ||||
Research Designs and Methods | ||||||
Novel study designs: longitudinal birth cohort study; multi-level, multifaceted data collection; integration of pre- and post-natal risk factors, genetic variants, hormone levels, and epigenetic alterations in order to have a comprehensive risk assessment and understanding of etiology and biological mechanisms; develop accurate early prediction model and cost-effective early prevention strategies | x | |||||
Novel study designs | x | x | x | x | ||
What care-takers besides parents need to be taken into account in studies? | x | x | x | x | ||
How can sample generalizability be best assessed? | x | x | x | x | ||
International studies as natural experiments | x | x | x | x | ||
Bring epidemiologic risk factors into basic research | x | x | x | x | ||
How best to assess the importance of fidelity in intervention outcome? | x | x | ||||
How stable are food cue responsiveness and spontaneous activity? | x | x | x | |||
What are the most accurate and feasible ways to measure diet? | x | x | x | x | ||
How can we best sort out the causal direction for relationships between weight status and diet, physical activity? | x | x | x | x | ||
What are the most accurate and feasible ways to measure physical activity? | x | x | x | x |
4. Conclusions
Acknowledgments
Conflict of Interest
Appendix: Speaker Biographies
References
- Gillman, M.W. Developmental origins of health and disease. N. Engl. J. Med. 2005, 353, 1848–1850. [Google Scholar]
- Gluckman, P.; Hansen, M.A.; Cooper, C.; Thornburg, K.L. Effect of in utero and early-life conditions on adult health and disease. N. Engl. J. Med. 2008, 359, 61–73. [Google Scholar]
- Barker, D.J.P. Mothers, Babies, and Health in Later Life, 2nd ed; Churchill Livingstone: Edinburgh, UK, New York, NY, USA, 1998; p. ix. [Google Scholar]
- Buka, S.L.; Cannon, T.D.; Torrey, E.F.; Yolken, R.H. Maternal exposure to herpes simplex virus and risk of psychosis among adult offspring. Biol. Psychiatry 2008, 63, 809–815. [Google Scholar]
- Gillman, M.W.; Rifas-Shiman, S.L.; Kleinman, K.; Oken, E.; Rich-Edwards, J.W.; Taveras, E.M. Developmental origins of childhood overweight: Potential public health impact. Obesity 2008, 16, 1651–1656. [Google Scholar]
- Trasande, L.; Cronk, C.; Durkin, M.; Weiss, M.; Schoeller, D.A.; Gall, E.A.; Hewitt, J.B.; Carrel, A.L.; Landrigan, P.J.; Gillman, M.W. Environment and obesity in the National Children’s Study. Environ. Health Perspect. 2009, 117, 159–166. [Google Scholar]
- Gillman, M.W.; Oakey, H.; Baghurst, P.A.; Volkmer, R.E.; Robinson, J.S.; Crowther, C.A. Effect of treatment of gestational diabetes mellitus on obesity in the next generation. Diabetes Care 2010, 33, 964–968. [Google Scholar]
- Dabelea, D.; Hanson, R.L.; Lindsay, R.S.; Pettitt, D.J.; Imperatore, G.; Gabir, M.M.; Roumain, J.; Bennett, P.H.; Knowler, W.C. Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: A study of discordant sibships. Diabetes 2000, 49, 2208–2211. [Google Scholar]
- Davey Smith, G.; Leary, S.; Ness, A.; Lawlor, D.A. Challenges and novel approaches in the epidemiological study of early life influences on later disease. Adv. Exp. Med. Biol. 2009, 646, 1–14. [Google Scholar]
- Khan, I.Y.; Dekou, V.; Douglas, G.; Jensen, R.; Hanson, M.A.; Poston, L.; Taylor, P.D. A high-fat diet during rat pregnancy or suckling induces cardiovascular dysfunction in adult offspring. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 288, R127–R133. [Google Scholar]
- McMillen, I.C.; MacLaughlin, S.M.; Muhlhausler, B.S.; Gentili, S.; Duffield, J.L.; Morrison, J.L. Developmental origins of adult health and disease: The role of periconceptional and foetal nutrition. Basic Clin. Pharmacol. Toxicol. 2008, 102, 82–89. [Google Scholar]
- Radesky, J.S.; Oken, E.; Rifas-Shiman, S.L.; Kleinman, K.P.; Rich-Edwards, J.W.; Gillman, M.W. Diet during early pregnancy and development of gestational diabetes. Paediatr. Perinat. Epidemiol. 2008, 22, 47–59. [Google Scholar]
- Gillman, M.W.; Smith, G.D.; Hanson, M.A.; Spencer, H.G. Developmental Origins of Health and Disease Across Generations–Theory, Observation, Experiment. In Early Life Origins of Human Health and Disease; Newnham, J.P., Ross, M.G., Eds.; S. Karger AG: Basel, Switzerland, 2009; pp. 52–64. [Google Scholar]
- Waterland, R.A.; Michels, K. Epigenetic epidemiology of the developmental origins hypothesis. Annu. Rev. Nutr. 2007, 27, 363–388. [Google Scholar]
- Board on Children, Youth, and Families, Division of Behavioral and Social Sciences and Education and Food and Nutrition Board. In Influence of Pregnancy Weight on Maternal and Child Health. Workshop Report. Committee on the Impact of Pregnancy Weight on Maternal and Child Health; Institute of Medicine, The National Academies Press: Washington, DC, USA, 2007.
- Desai, M.; Gayle, D.; Babu, J.; Ross, M.G. Programmed obesity in intrauterine growth restricted newborns: Modulation by newborn nutrition. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 288, R91–R96. [Google Scholar]
- Desai, M.; Gayle, D.; Babu, J.; Ross, M.G. The timing of nutrient restriction during rat pregnancy/lactation alters metabolic syndrome phenotype. Am. J. Obstet. Gynecol. 2007, 196, 555.e1–555.e7. [Google Scholar] [CrossRef]
- Desai, M.; Gayle, D.; Han, G.; Ross, M.G. Programmed hyperphagia due to reduced anorexigenic mechanisms in intrauterine growth restricted offspring. Reprod. Sci. 2007, 14, 329–337. [Google Scholar]
- Desai, M.; Babu, J.; Ross, M.G. Programmed metabolic syndrome: Prenatal undernutrition and post-weaning overnutrition. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 293, R2306–R2314. [Google Scholar]
- Desai, M.; Li, T.; Ross, M.G. Hypothalamic neurosphere progenitor cells in low birth-weight rat newborns: Neurotrophic effects of leptin and insulin. Brain Res. 2011, 1378, 29–42. [Google Scholar]
- Metzger, B.E. Long-term outcomes in mothers diagnosed with gestational diabetes mellitus and their offspring. Clin. Obstet. Gynecol. 2007, 50, 972–979. [Google Scholar]
- Metzger, B.E.; Silverman, B.; Freinkel, N.; Dooley, S.L.; Ogata, E.S.; Green, O.C. Amniotic fluid insulin concentration as a predictor of obesity. Arch. Dis. Child. 1990, 65, 1050–1052. [Google Scholar]
- Silverman, B.L.; Metzger, B.E.; Cho, N.H.; Loeb, C.A. Impaired glucose tolerance in adolescent offspring of diabetic mothers: Relationship to fetal hyperinsulinism. Diabetes Care 1995, 18, 611–617. [Google Scholar]
- Hillier, T.A.; Pedula, K.L.; Schmidt, M.M.; Mullen, J.A.; Charles, M.A.; Pettitt, D.J. Childhood obesity and metabolic imprinting. Diabetes Care 2007, 30, 2287–2292. [Google Scholar]
- Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study Cooperative Research Group (Metzger BE, HAPO Study PI). Hyperglycemia and adverse pregnancy outcomes. N. Engl. J. Med. 2008, 358, 1991–2002. [CrossRef]
- Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study Cooperative Research Group (Metzger BE, HAPO Study PI). Hyperglycemia and adverse pregnancy outcome (HAPO) study: Associations with body mass index. Br. J. Obstet. Gynecol. 2010, 117, 575–584. [CrossRef]
- Crowther, C.A.; Hiller, J.E.; Moss, J.R.; McPhee, A.J.; Jeffries, W.S.; Robinson, J.S. Australian Carbohydrate Intolerance Study in Pregnant Women (ACHOIS) Trial Group. Effect of treatment of gestational diabetes mellitus on pregnancy outcomes. N. Engl. J. Med. 2005, 352, 2477–2486. [Google Scholar] [CrossRef]
- Landon, M.B.; Spong, C.Y.; Thom, E.; Carpenter, M.W.; Ramin, S.M.; Casey, B.; Wapner, R.J.; Varner, M.W.; Rouse, D.J.; Thorp, J.M., Jr.; et al. A multicenter, randomized trial of treatment for mild gestational diabetes. N. Engl. J. Med. 2009, 361, 1339–1348. [Google Scholar]
- Gillman, M.W.; Rifas-Shiman, S.; Berkey, C.S.; Field, A.E.; Colditz, G.A. Maternal gestational diabetes, birth weight, and adolescent obesity. Pediatrics 2003, 111, e221–e226. [Google Scholar] [CrossRef]
- Forhead, A.J.; Fowden, A.L. The hungry fetus? Role of leptin as a nutritional signal before birth. J. Physiol. 2009, 587, 1145–1152. [Google Scholar]
- Tung, W.K.; Lin, S.J.; Hwang, Y.S.; Wu, C.M.; Wang, Y.H.; Tsai, W.H. Association of cord plasma leptin with birth size in term newborns. Pediatr. Neonatol. 2009, 50, 255–260. [Google Scholar]
- Ong, K.K.; Ahmed, M.L.; Sherriff, A.; Woods, K.A.; Watts, A.; Golding, J.; Dunger, D.B. Cord blood leptin is associated with size at birth and predicts infancy weight gain in humans. ALSPAC Study Team. Avon Longitudinal Study of Pregnancy and Childhood. J. Clin. Endocrinol. Metab. 1999, 84, 1145–1148. [Google Scholar]
- Mantzoros, C.S.; Rifas-Shiman, S.L.; Williams, C.J.; Fargnoli, J.L.; Kelesidis, T.; Gillman, M.W. Cord blood leptin and adiponectin as predictors of adiposity in children at 3 years of age: A prospective cohort study. Pediatrics 2009, 123, 682–689. [Google Scholar]
- Lindsay, R.S.; Walker, J.D.; Havel, P.J.; Hamilton, B.A.; Calder, A.A.; Johnstone, F.D. Adiponectin is present in cord blood but is unrelated to birth weight. Diabetes Care 2003, 26, 2244–2249. [Google Scholar]
- Sivan, E.; Mazaki-Tovi, S.; Pariente, C.; Efraty, Y.; Schiff, E.; Hemi, R.; Kanety, H. Adiponectin in human cord blood: Relation to fetal birth weight and gender. J. Clin. Endocrinol. Metab. 2003, 88, 5656–5660. [Google Scholar]
- Martos-Moreno, G.A.; Barrios, V.; Sáenz de Pipaón, M.; Pozo, J.; Dorronsoro, I.; Martínez-Biarge, M.; Quero, J.; Argente, J. Influence of prematurity and growth restriction on the adipokine profile, IGF1, and ghrelin levels in cord blood: relationship with glucose metabolism. Eur. J. Endocrinol. 2009, 161, 381–389. [Google Scholar] [CrossRef]
- Fowden, A.L. Endocrine regulation of fetal growth. Reprod. Fertil. Dev. 1995, 7, 351–363. [Google Scholar]
- Fowden, A.L.; Hay, W.W., Jr. The effects of pancreatectomy on the rates of glucose utilization, oxidation and production in the sheep fetus. Q. J. Exp. Physiol. 1988, 73, 973–984. [Google Scholar]
- Setia, S.; Sridhar, M.G.; Bhat, V.; Chaturvedula, L.; Vinayagamoorti, R.; John, M. Insulin sensitivity and insulin secretion at birth in intrauterine growth retarded infants. Pathology 2006, 38, 236–238. [Google Scholar]
- Hattersley, A.T.; Tooke, J.E. The fetal insulin hypothesis: An alternative explanation of the association of low birthweight with diabetes and vascular disease. Lancet 1999, 353, 1789–1792. [Google Scholar]
- Slingerland, A.S.; Hattersley, A.T. Activating mutations in the gene encoding Kir6.2 alter fetal and postnatal growth and also cause neonatal diabetes. J. Clin. Endocrinol. Metab. 2006, 91, 2782–2788. [Google Scholar] [CrossRef]
- Stoy, J.; Edghill, E.L.; Flanagan, S.E.; Ye, H.; Paz, V.P.; Pluzhnikov, A.; Below, J.E.; Hayes, M.G.; Cox, N.J.; Lipkind, G.M.; et al. Insulin gene mutations as a cause of permanent neonatal diabetes. Proc. Natl. Acad. Sci. USA 2007, 104, 15040–15044. [Google Scholar] [Green Version]
- Zhao, J.; Li, M.; Bradfield, J.P.; Wang, K.; Zhang, H.; Sleiman, P.; Kim, C.E.; Annaiah, K.; Glaberson, W.; Glessner, J.T.; et al. Examination of type 2 diabetes loci implicates CDKAL1 as a birth weight gene. Diabetes 2009, 58, 2414–2418. [Google Scholar] [CrossRef]
- Freathy, R.M.; Weedon, M.N.; Bennett, A.; Hypponen, E.; Relton, C.L.; Knight, B.; Shields, B.; Parnell, K.S.; Groves, C.J.; Ring, S.M.; et al. Type 2 diabetes TCF7L2 risk genotypes alter birth weight: A study of 24,053 individuals. Am. J. Hum. Genet. 2007, 80, 1150–1161. [Google Scholar] [CrossRef]
- Campion, J.; Milagro, F.I.; Martinez, J.A. Individuality and epigenetics in obesity. Obes. Rev. 2009, 10, 383–392. [Google Scholar]
- Zeller, M.; Daniels, S. The obesity epidemic: Family matters. J. Pediatr. 2004, 145, 3–4. [Google Scholar]
- Kitsantas, P.; Gaffney, K.F. Risk profiles for overweight/obesity among preschoolers. Early Hum. Dev. 2010, 86, 563–568. [Google Scholar]
- Taveras, E.M.; Rifas-Shiman, S.L.; Belfort, M.B.; Kleinman, K.P.; Oken, E.; Gillman, M.W. Weight status in the first 6 months of life and obesity at 3 years of age. Pediatrics 2009, 123, 1177–1183. [Google Scholar]
- Dennison, B.A.; Edmunds, L.S.; Stratton, H.H.; Pruzek, R.M. Rapid infant weight gain predicts childhood overweight. Obesity 2006, 14, 491–499. [Google Scholar]
- Ogden, C.L.; Carroll, M.D.; Curtin, L.R.; Lamb, M.M.; Flegal, K.M. Prevalence of high body mass index in U.S. children and adolescents, 2007-2008. JAMA 2010, 303, 242–249. [Google Scholar]
- McCormick, D.P.; Sarpong, K.; Jordan, L.; Ray, L.A.; Jain, S. Obesidad infantil: ¿Estamos listos para hacer el diagnóstico? J. Pediatr. 2010, 157, 15–19. [Google Scholar] [CrossRef]
- Harrington, J.W.; Nguyen, V.Q.; Paulson, J.F.; Garland, R.; Pasquinelli, L.; Lewis, D. Identifying the tipping point age for overweight pediatric patients. Clin. Pediatr. 2010, 49, 638–643. [Google Scholar]
- Manning, K.M.; Ariza, A.J.; Massimino, T.K.; Binns, H.J. for the Pediatric Practice Research Group. Health supervision visits of very young children: Time addressing three key topics. Clin. Pediatr. (Phila) 2009, 48, 931–938. [Google Scholar] [CrossRef]
- Trapp, L.W.; Ryan, A.A.; Ariza, A.J.; Garcia, C.M.; Binns, H.J. (for the Pediatric Practice Research Group) Primary care identification of infants at high risk for overweight and obesity. Clin. Pediatr. (Phila) 2009, 48, 313–316. [Google Scholar]
- Grummer-Strawn, L.M.; Reinold, C.; Krebs, N.F. Centers for Disease Control and Prevention (CDC). Use of World Health Organization and CDC growth charts for children aged 0–59 months in the United States. MMWR Recomm. Rep. 2010, 59(RR-9), 1–15. [Google Scholar] Erratum in MMWR Recomm. Rep. 2010, 59, 1184.
- Rolls, E.T. Understanding the mechanisms of food intake and obesity. Obes. Rev. 2007, 8 Suppl. 1, 67–72. [Google Scholar] [CrossRef]
- Carnell, S.; Wardle, J. Appetite and adiposity in children: Evidence for a behavioral susceptibility theory of obesity. Am. J. Clin. Nutr. 2008, 88, 22–29. [Google Scholar]
- Arenz, S.; Ruckerl, R.; Koletzko, B.; von Kries, R. Breast-feeding and childhood obesity – a systematic review. Int. J. Obes. Relat. Metab. Disord. 2004, 28, 1247–1256. [Google Scholar]
- Butte, N.F. Impact of infant feeding practices on childhood obesity. J. Nutr. 2009, 139, 412S–416S. [Google Scholar]
- Kramer, M.S.; Matush, L.; Vanilovich, I.; Platt, R.W.; Bogdanovich, N.; Sevkovskaya, Z.; Dzikovich, I.; Shishko, G.; Collet, J.P.; Martin, R.M.; et al. A randomized breast-feeding promotion intervention did not reduce child obesity in Belarus. J. Nutr. 2009, 139, 417–421. [Google Scholar]
- Feig, D.S.; Lipscombe, L.L.; Tomlinson, G.; Blumer, I. Breastfeeding predicts the risk of childhood obesity in a multi-ethnic cohort of women with diabetes. J. Matern.-Fetal Neonatal Med. 2010, 24, 511–515. [Google Scholar]
- Savino, F.; Liguori, S.A.; Oggero, R.; Silvestro, L.; Miniero, R. Maternal BMI and serum leptin concentration of infancts in the first year of life. Acta Pediatr. 2006, 95, 414–418. [Google Scholar]
- Savino, F.; Liguori, S.A.; Petrucci, E.; Lupica, M.M.; Fissore, M.F.; Oggero, R.; Silvestro, L. Evaluation of leptin in breast milk, lactating mothers and their infants. Eur. J. Clin. Nutr. 2010, 64, 972–977. [Google Scholar]
- Miralles, O.; Sanchez, J.; Palou, A.; Pico, C. A physiological role of breast milk leptin in body weight control in developing infants. Obesity 2006, 14, 1371–1377. [Google Scholar]
- Uysal, F.K.; Onal, E.E.; Aral, Y.Z.; Adam, B.; Dilmen, U.; Ardicolu, Y. Breast milk leptin: Its relationship to maternal and infant adiposity. Clin. Nutr. 2002, 21, 157–160. [Google Scholar]
- Lederman, S.A.; Akabas, S.R.; Moore, B.J.; Bentley, M.E.; Devaney, B.; Gillman, M.W.; Kramer, M.S.; Mennella, J.A.; Ness, A.; Wardle, J. Summary of the presentations at the conference on preventing childhood obesity. December 8, 2003. Pediatrics 2004, 114, 1146–1173. [Google Scholar]
- Fox, M.K.; Pac, S.; Devaney, B.; Jankowski, L. Feeding infants and toddlers study: What foods are infants and toddlers eating? J. Am. Diet. Assoc. 2004, 104, S22–S30. [Google Scholar]
- Grun, F.; Blumberg, B. Mini review: The case for obesogens. Mol. Endocrinol. 2009, 23, 1127–1134. [Google Scholar]
- Ben-Jonathan, N.; Hugo, E.R.; Brandebourg, T.D. Effects of bisphenol A on adipokine release from human adipose tissue: Implications for the metabolic syndrome. Mol. Cell. Endocrinol. 2009, 304, 49–54. [Google Scholar]
- Rubin, B.S.; Murray, M.K.; Damassa, D.A.; King, J.C.; Soto, A.M. Perinatal exposure to low doses of bisphenol A affects body weight, patterns of estrous cyclicity, and plasma LH levels. Environ. Health Perspect. 2001, 109, 675–680. [Google Scholar] [CrossRef]
- Miyawaki, J.; Sakayama, K.; Kato, H.; Yamamoto, H.; Masuno, H. Perinatal and postnatal exposure to bisphenol A increases adipose tissue mass and serum cholesterol level in mice. J. Atheroscler. Thromb. 2007, 14, 245–252. [Google Scholar]
- Wells, J.; Ritz, P. Physical activity at 9–12 months and fatness at 2 years of age. Am. J. Hum. Biol. 2001, 13, 384–389. [Google Scholar]
- Faith, M.; Hittner, J. Infant temperament and eating style predict change in standardized weight status and obesity risk at 6 years of age. Int. J. Obes. 2010, 34, 1515–1523. [Google Scholar]
- Li, R.; O’Connor, L.; Buckley, D.; Specker, B. Relation of activity levels to body fat in infants 6 to 12 months of age. J. Pediatr. 1995, 126, 353–357. [Google Scholar]
- Slining, M.; Adair, L.; Goldman, B.; Borja, J.; Bentley, M. Infant temperament contributes to early infant growth: A prospective cohort of African American infants. Int. J. Behav. Nutr. Phys.Act. 2009, 6, 51. [Google Scholar]
- Eaton, W.; McKeen, N.; Campbell, D. The waxing and waning of movement: Implications for psychological development. Dev. Rev. 2001, 21, 205–223. [Google Scholar]
- Saudino, K.; Eaton, W. Continuity and change in objectively assessed temperament: A longitudinal study of activity level. Br. J. Dev. Psychol. 1995, 13, 81–95. [Google Scholar]
- Saudino, K.; Zapfe, J. Genetic influences on activity level in early childhood: Do situations matter? Child Dev. 2008, 79, 930–943. [Google Scholar] [CrossRef]
- Patel, S.; Hu, F. Short sleep duration and weight gain: A systematic review. Obesity 2008, 16, 643–653. [Google Scholar]
- Snell, E.; Adam, E.; Duncan, G. Sleep and the body mass index and overweight status of children and adolescents. Child Dev. 2007, 78, 309–323. [Google Scholar]
- Cappuccio, F.P.; Taggart, F.M.; Kandala, N.B.; Currie, A.; Peile, E.; Stranges, S.; Miller, M.A. Meta-analysis of short sleep duration and obesity in children and adults. Sleep 2008, 31, 619–626. [Google Scholar]
- Agras, W.S.; Hammer, L.D.; McNicholas, F.; Kraemer, H.C. Risk factors for childhood overweight: A prospective study from birth to 9.5 years. J. Pediatr. 2004, 145, 20–25. [Google Scholar] [CrossRef]
- Taveras, E.; Rifas-Shiman, S.; Oken, E.; Gunderson, E.; Gillman, M. Short sleep duration in infancy and risk of childhood overweight. Arch. Pediatr. Adolesc. Med. 2008, 162, 305–311. [Google Scholar]
- Sadeh, A.; Tikotzky, L.; Scher, A. Parenting and infant sleep. Sleep Med. Rev. 2010, 14, 89–96. [Google Scholar]
- Paul, I.M.; Savage, J.S.; Anzman, S.L.; Beiler, J.S.; Marini, M.E.; Stokes, J.L.; Birch, L.L. Preventing obesity during infancy: A pilot study. Obesity 2011, 19, 353–361. [Google Scholar]
- Carey, W. Temperament and increased weight gain in infants. J. Dev. Behav. Pediatr. 1985, 6, 128–131. [Google Scholar]
- Darlington, A.S.E.; Wright, C.M. The influence of temperament on weight gain in early infancy. J. Dev. Behav. Pediatr. 2006, 27, 329–335. [Google Scholar]
- Wells, J.; Stanley, M.; Laidlaw, A.; Day, J.; Stafford, M.; Davies, P. Investigation of the relationship between infant temperament and later body composition. Int. J. Obes. 1997, 21, 400–406. [Google Scholar]
- Hesketh, K.; Campbell, K. Opportunities for intervention research during transitions in the lifecycle: The Melbourne InFANT Program. Aust. Epidemiol. 2009, 16, 30–31. [Google Scholar]
- Hesketh, K.D.; Campbell, K.J. Interventions to prevent obesity in 0-5 year olds: An updated systematic review of the literature. Obesity 2010, 18, S27–S35. [Google Scholar]
- Campbell, K.; Hesketh, K.; Crawford, D.; Salmon, J.; Ball, K.; McCallum, Z. The Infant Feeding Activity and Nutrition Trial (INFANT) an early intervention to prevent childhood obesity: Cluster-randomised controlled trial. BMC Public Health 2008, 8, 103. [Google Scholar]
- Chen, X.; Beydoun, M.A.; Wang, Y. Is sleep duration associated with childhood obesity? A systematic review and meta-analysis. Obesity 2008, 16, 265–274. [Google Scholar]
- Sandberg, J.F.; Hofferth, S.L. Changes in children’s time with parents: United States, 1981–1997. Demography 2001, 38, 423–436. [Google Scholar]
- Waring, M.E.; Lapane, K.L. Overweight in children and adolescents in relation to attention-deficit/hyperactivity disorder: Results from a national sample. Pediatrics 2008, 122, e1–e6. [Google Scholar]
- Francis, L.A.; Susman, E.J. Self-regulation and rapid weight gain in children from age 3 to 12 years. Arch. Pediatr. Adolesc. Med. 2009, 163, 297–302. [Google Scholar]
- Seeyave, D.M.; Coleman, S.; Appugliese, D.; Corwyn, R.F.; Bradley, R.H.; Davidson, N.S.; Kaciroti, N.; Lumeng, J.C. Ability to delay gratification at age 4 years and risk of overweight at age 11 years. Arch. Pediatr. Adolesc. Med. 2009, 163, 303–308. [Google Scholar]
- Macht, M. How emotions affect eating: A five-way model. Appetite 2008, 50, 1–11. [Google Scholar]
- Ganley, R.M. Emotion and eating in obesity: A review of the literature. Int. J. Eating Disord. 1989, 8, 343–361. [Google Scholar]
- Child Health USA 2006; U.S. Dept. of Health and Human Services, Health Resources and Services Administration, Maternal and Child Health Bureau: Washington, DC, USA, 2006.
- Whitaker, R.C. Obesity prevention in pediatric primary care: Four behaviors to target. Arch. Pediatr. Adolesc. Med. 2003, 157, 725–727. [Google Scholar]
- Bronson, M. Self-Regulation in Early Childhood: Nature and Nurture; Guilford Press: New York, NY, USA, 2000; p. viii. [Google Scholar]
- Thompson, R.A. Emotion regulation: A theme in search of definition. Monogr. Soc. Res. Child Dev. 1994, 59, 25–52. [Google Scholar]
- Whitaker, R.C.; Gooze, R.A. Self-regulation and obesity prevention: A valuable intersection between developmental psychology and pediatrics. Arch. Pediatr. Adolesc. Med. 2009, 163, 386–387. [Google Scholar]
- Morrison, R.M.; Buzby, J.C.; Wells, H.F. Guess who’s turning 100? Tracking a century of American eating. USDA, ERS, Amber Waves. 2010, 8, pp. 1–8. Available online: http://www.ers.usda.gov/AmberWaves/March10/PDF/TrackingACentury.pdf (accessed on 2 April 2012).
- Koplan, J.; Liverman, C.T.; Kraak, V.I. Preventing Childhood Obesity: Health in the Balance; Institute of Medicine, National Academies Press: Washington, DC, USA, 2005; p. xix. [Google Scholar]
- Swinburn, B.; Sacks, G.; Ravussin, E. Increased food energy supply is more than sufficient to explain the U.S. epidemic of obesity. Am. J. Clin. Nutr. 2009, 90, 1453–1456. [Google Scholar] [CrossRef]
- Fox, M.K.; Pac, S.; Devaney, B.; Jankowski, L. Feeding infants and toddlers study: What foods are infants and toddlers eating? J. Am. Diet. Assoc. 2004, 104, 22–30. [Google Scholar]
- Dietary guidelines for Americans. 2010. Available online: http://www.cnpp.usda.gov/DGAs2010-PolicyDocument.htm (accessed on 2 April 2012).
- Birch, L.L.; Fisher, J.O. Development of eating behaviors among children and adolescents. Review. Pediatrics 1998, 101, 539–549. [Google Scholar]
- Birch, L.L.; Fisher, J.O.; Davison, K.K. Learning to overeat: Maternal use of restrictive feeding practices promotes girls’ eating in the absence of hunger. Am. J. Clin. Nutr. 2003, 78, 215–220. [Google Scholar]
- Fitzpatrick, E.; Edmunds, L.S.; Dennison, B.A. Positive effects of family dinner are undone by TV viewing. J. Am. Diet. Assoc. 2007, 107, 666–671. [Google Scholar]
- Gillman, M.W.; Rifas-Shiman, S.L.; Frazier, A.L.; Rockett, H.R.; Camargo, C.A., Jr.; Field, A.E.; Berkey, C.S.; Colditz, G.A. Family dinner and diet quality among older children and adolescents. Arch. Fam. Med. 2000, 9, 235–240. [Google Scholar]
- Anderson, S.E.; Whitaker, R.C. Household routines and obesity in U.S. preschool-aged children. Pediatrics 2010, 125, 420–428. [Google Scholar] [CrossRef]
- Davison, K.K.; Birch, L.L. Childhood overweight: A contextual model and recommendations for future research. Obes. Rev. 2001, 2, 159–171. [Google Scholar]
- Finegood, D.T.; Merth, T.D.N.; Rutter, H. Implications of the foresight obesity system map for solutions to childhood obesity. Obesity 2010, 18, S13–S16. [Google Scholar]
- McGinnis, J.M.; Gootman, J.A.; Kraak, V.I. Food Marketing to Children and Youth: Threat or Opportunity? Institute of Medicine, National Academies Press: Washington, DC, USA, 2006; p. xx.
- Khan, L.K.; Sobush, K.; Keener, D.; Goodman, K.; Lowry, A.; Kakietek, J.; Zaro, S. Recommended community strategies and measurements to prevent obesity in the U.S. MMWR 2009, 58, 1–26. [Google Scholar]
- Mattes, R.D. Dietary compensation by humans for supplemental energy provided as ethanol or carbohydrate in fluids. Physiol. Behav. 1996, 59, 179–187. [Google Scholar]
- Ludwig, D.S.; Peterson, K.E.; Gortmaker, S.L. Relation between consumption of sugar-sweetened drinks and childhood obesity: A prospective, observational analysis. Lancet 2001, 357, 505–508. [Google Scholar]
- Ebbeling, C.B.; Feldman, H.A.; Osganian, S.K.; Chomitz, V.R.; Ellenbogen, S.J.; Ludwig, D.S. Effects of decreasing sugar-sweetened beverage consumption on body weight in adolescents: A randomized, controlled pilot study. Pediatrics 2006, 117, 673–680. [Google Scholar]
- Dennison, B.A.; Rockwell, H.L.; Baker, S.L. Excess fruit juice consumption by preschool-aged children is associated with short stature and obesity. Pediatrics 1997, 99, 15–22. [Google Scholar]
- Welsh, J.A.; Cogswell, M.E.; Rogers, S.; Rockett, H.; Mei, Z.; Grummer-Strawn, L.M. Overweight among low-income preschool chilldren associated with the consumption of sweet drinks: Missouri, 1999–2002. Pediatrics 2005, 115, 223–229. [Google Scholar]
- Faith, M.S.; Dennison, B.A.; Edmunds, L.S.; Stratton, H.H. Fruit juice intake predicts increased adiposity gain in children from low-income families: Weight status-by-environment interaction. Pediatrics 2006, 118, 2066–2075. [Google Scholar]
- Dennison, B.A.; Erb, T.A.; Jenkins, P.L. Television viewing and television in the bedroom associated with overweight risk among low-income preschool children. Pediatrics 2001, 109, 1028–1035. [Google Scholar]
- Bowman, S.A.; Gortmaker, S.L.; Ebbeling, C.B.; Pereira, M.A.; Ludwig, D.S. Effects of fast-food consumption on energy intake and diet quality among children in a national household survey. Pediatrics 2004, 113, 112–118. [Google Scholar]
- Rolls, B.J.; Engell, D.; Birch, L.L. Serving portion size influences 5–year-old but not 3–year-old children’s food intakes. J. Am. Diet. Assoc. 2000, 100, 232–234. [Google Scholar]
- Hesketh, K.D.; Campbell, K.J. Interventions to prevent obesity in 0–5 year olds: An updated systematic review of the literature. Obesity 2010, 18, S27–S35. [Google Scholar]
- Campbell, K.J.; Hesketh, K.D. Strategies which aim to positively impact on weight, physical activity, diet and sedentary behaviours in children from zero to five years. A systematic review of the literature. Obes. Rev. 2007, 8, 327–338. [Google Scholar] [CrossRef]
- Summerbell, C.D.; Waters, E.; Edmunds, L.D.; Kelly, S.; Brown, T.; Campbell, K.J. Interventions for preventing obesity in children. Cochrane Database Syst. Rev. 2005. [Google Scholar] [CrossRef] [Green Version]
- French, S.A.; Wechsler, H. School-based research and initiatives: Fruit and vegetable environment, policy, and pricing workshop. Prev. Med. 2004, 39, 101–107. [Google Scholar] [CrossRef]
- Katz, D.L.; O’Connell, M.; Yeh, M.C.; Nawaz, H.; Njike, V.; Anderson, L.M.; Cory, S.; Dietz, W. Public health strategies for preventing and controlling overweight and obesity in school and worksite settings: A report on recommendations of the Task Force on Community Preventive Services. MMWR Recomm. Rep. 2005, 54(RR-10), 1–12. [Google Scholar]
- Frieden, T.R. A framework for public health action: The health impact pyramid. Am. J. Public Health 2010, 100, 590–595. [Google Scholar]
- Obesity prevalence among low-income, preschool-aged children - United States, 1998-2008. MMWR Morb. Mortal Wkly Rep. 2009, 58, 769–773.
- Edmunds, L.S.; Woelfel, M.L.; Dennison, B.A.; Stratton, H.; Pruzek, R.M.; Abusabha, R. Overweight trends among children enrolled in the New York State Special Supplemental Nutrition Program for Women, Infants, and Children. J. Am. Diet. Assoc. 2006, 106, 113–117. [Google Scholar] [CrossRef]
- Sekhobo, J.P.; Edmunds, L.S.; Reynolds, D.K.; Dalenius, K.; Sharma, A. Trends in prevalence of obesity and overweight among children enrolled in the New York State WIC program, 2002-2007. Public Health Rep. 2010, 125, 218–224. [Google Scholar]
- Birch, L.L.; Fisher, J.A. Appetite and eating behavior in children. Pediatr. Nutr. 1995, 42, 931–953. [Google Scholar]
- Johnson, S.L.; Birch, L.L. Parents’ and children’s adiposity and eating style. Pediatrics 1994, 94, 653–661. [Google Scholar]
- Gable, S.; Lutz, S. Nutrition socialization experiences of children in the Head Start program. J. Am. Diet. Assoc. 2001, 101, 572–577. [Google Scholar]
- Rhee, K.E.; Lumeng, J.C.; Appugliese, D.P.; Kaciroti, N.; Bradley, R.H. Parenting styles and overweight status in first grade. Pediatrics 2006, 117, 2047–2054. [Google Scholar]
- Klesges, R.C.; Eck, L.H.; Hanson, C.L.; Haddock, C.K.; Klesges, L.M. Effects of obesity, social interactions, and physical environment on physical activity in preschoolers. Health Psychol. 1990, 9, 435–449. [Google Scholar] [CrossRef]
- Anderson, S.E.; Whitaker, R.C. Household routines and obesity in U.S. preschool-aged children. Pediatrics 2010, 125, 420–428. [Google Scholar] [CrossRef]
- Gable, S.; Chang, Y.; Krull, J.L. Television watching and frequency of family meals are predictive of overweight onset and persistence in a national sample of school-age children. J. Am. Diet. Assoc. 2007, 107, 53–61. [Google Scholar]
- Dennison, B.A.; Erb, T.A.; Jenkins, P.L. Television viewing and television in bedroom associated with overweight risk among low-income preschool children. Pediatrics 2002, 109, 1028–1035. [Google Scholar]
- Burdette, H.L.; Whitaker, R.C. Neighborhood playgrounds, fast food restaurants, and crime: Relationships to overweight in low-income preschool children. Prev. Med. 2005, 38, 57–63. [Google Scholar]
- Nahikian-Nelms, M.L. Influential factors of caregiver behavior at mealtime: A study of 24 child-care programs. J. Am. Diet. Assoc. 1997, 97, 505–509. [Google Scholar]
- Ramsay, S.A.; Branen, L.J.; Fletcher, J.; Price, E.; Johnson, S.L.; Sigman-Grant, M. “Are you done?” Child care providers’ verbal communication at mealtimes that reinforce or hunger children’s internal cues of hunger and satiation. J. Nutr. Educ. Behav. 2010, 42, 265–270. [Google Scholar] [CrossRef]
- Christakis, D.A.; Garrison, M.M. Preschool-aged children’s television viewing in child care settings. Pediatrics 2009, 124, 1627–1632. [Google Scholar]
- Brown, W.H.; Pfeiffer, K.A.; McIver, E.L.; Dowda, M.; Addy, C.L.; Pate, R.R. Social and environmental factors associated with preschoolers’ nonsedentary physical activity. Child Dev. 2009, 80, 45–58. [Google Scholar]
- Benjamin, S.E.; Cradock, A.; Walker, E.M.; Slining, M.; Gillman, M.W. Obesity prevention in child care: A review of U.S. state regulations. BMC Public Health 2008, 8, 188. [Google Scholar] [CrossRef]
- McWilliams, C.; Ball, S.C.; Benjamin, S.E.; Hales, D.; Vaughn, A.; Ward, D.S. Best-practice guidelines for physical activity at child care. Pediatrics 2009, 124, 1650–1659. [Google Scholar]
- Whitaker, R.C.; Gooze, R.A.; Hughes, C.C.; Finkelstein, D.M. A national survey of obesity prevention practices in Head Start. Arch. Pediatr. Adolesc. Med. 2009, 163, 1144–1150. [Google Scholar]
- Warburton, D. The Physical Activity and Exercise Continuum. In Physical Activity and Obesity, 2nd; Bouchard, C., Katzmarzyk, P., Eds.; Human Kinetics: Champaign, IL, USA, 2010; pp. 7–12. [Google Scholar]
- Anderson, L.B. Physical Activity and Cardiovascular Diseases Risk Profile in Obese Children. In Physical Activity and Obesity, 2nd; Bouchard, C., Katzmarzyk, P., Eds.; Human Kinetics: Champaign, IL, USA, 2010; pp. 327–330. [Google Scholar]
- Courneya, K. Physical Activity and Breast Cancer in Obesity. In Physical Activity and Obesity, 2nd; Bouchard, C., Katzmarzyk, P., Eds.; Human Kinetics: Champaign, IL, USA, 2010; pp. 299–302. [Google Scholar]
- Physical Activity and Health: A Report of the Surgeon General; U.S. Dept. of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion: Pittsburgh, PA, USA; p. xvii.
- Janssen, I. Physical activity guidelines for children and youth. Can. J. Public Health 2007, 98, S109–S121. [Google Scholar]
- Hesketh, K.D.; Campbell, K.J. Interventions to prevent obesity in 0–5 year olds: An updated systematic review of the literature. Obesity 2010, 18, S27–S35. [Google Scholar]
- O’Connor, T.M.; Jago, R.; Baranowski, T. Engaging parents to increase youth physical activity a systematic review. Am. J. Prev. Med. 2009, 37, 141–149. [Google Scholar]
- Baranowski, T.; Baranowski, J.; Cullen, K.; Hingle, M.; Hughes, S.; Jago, R.; Ledoux, T.; Mendoza, J.; Nguyen, T.T.; O’Connor, T.; et al. Problems and Possible Solutions for Interventions among Children and Adolescents. In Childhood Obesity Prevention, International Research, Controversies, and Interventions; O’Dea, J., Eriksen, M., Eds.; Oxford University Press: Oxford, UK, 2010; pp. 408–421. [Google Scholar]
- Owen, N.; Sparling, P.B.; Healy, G.N.; Dunstan, D.W.; Matthews, C.E. Sedentary behavior: Emerging evidence for a new health risk. Mayo Clin. Proc. 2010, 85, 1138–1141. [Google Scholar]
- Owen, N.; Healy, G.N.; Matthews, C.E.; Dunstan, D.W. Too much sitting: The population health science of sedentary behavior. Exerc. Sport Sci. Rev. 2010, 38, 105–113. [Google Scholar]
- Traub, R.E. Reliability for the Social Sciences: Theory and Applications. In Measurement Methods for the Social Sciences Series; Sage: Thousand Oaks, CA, USA, 1994. [Google Scholar]
- Freedman, D.S.; Sherry, B. The validity of BMI as an indicator of body fatness and risk among children. Pediatrics 2009, 124, S23–S34. [Google Scholar]
- Rennie, K.L.; Livingstone, M.B.; Wells, J.C.; McGloin, A.; Coward, W.A.; Prentice, A.M.; Jebb, S.A. Association of physical activity with body-composition indexes in children aged 6–8 y at varied risk of obesity. Am. J. Clin. Nutr. 2005, 82, 13–20. [Google Scholar]
- Bar-Or, O.; Baranowski, T. Physical activity, adiposity and obesity among adolescents. Pediatr. Exerc. Sci. 1994, 6, 348–360. [Google Scholar]
- Jago, R.; Baranowski, T.; Watson, K.; Bachman, C.; Baranowski, J.C.; Thompson, D.; Hernandez, A.E.; Venditti, E.; Blackshear, T.; Moe, E. Development of new physical activity and sedentary behavior change self-efficacy questionnaires using item response modeling. Int. J. Behav. Nutr. Phys. Act. 2009, 6, 20. [Google Scholar]
- Resnicow, K.; Davis, M.; Smith, M.; Lazarus-Yaroch, A.; Baranowski, T.; Baranowski, J.; Doyle, C.; Wang, D.T. How best to measure implementation of school health curricula: A comparison of three measures. Health Educ. Res. 1998, 13, 239–250. [Google Scholar]
- Jago, R.; Baranowski, T.; Baranowski, J.C.; Thompson, D.; Greaves, K.A. BMI from 3–6 y of age is predicted by TV viewing and physical activity, not diet. Int. J. Obes. 2005, 29, 557–564. [Google Scholar]
- Marshall, S.J.; Biddle, S.J.; Gorely, T.; Cameron, N.; Murdey, I. Relationships between media use, body fatness and physical activity in children and youth: A meta-analysis. Int. J. Obes. Relat. Metab. Disord. 2004, 28, 1238–1246. [Google Scholar]
- Lubans, D.R.; Foster, C.; Biddle, S.J. A review of mediators of behavior in interventions to promote physical activity among children and adolescents. Prev. Med. 2008, 47, 463–470. [Google Scholar]
- Bouchard, C. Childhood obesity: Are genetic differences involved? Am. J. Clin. Nutr. 2009, 89, 1494S–1501S. [Google Scholar] [CrossRef]
- Rothbart, M.K.; Ahadi, S.A.; Hershey, K.L.; Fisher, P. Investigations of temperament at three to seven years: The Children’s Behavior Questionnaire. Child Dev. 2001, 72, 1394–1408. [Google Scholar]
- Mayson, T.A.; Harris, S.R.; Bachman, C.L. Gross motor development of Asian and European children on four motor assessments: A literature review. Pediatr. Phys. Ther. 2007, 19, 148–153. [Google Scholar]
- Cawley, J.; Spiess, C.K. Obesity and skill attainment in early childhood. Econ. Hum. Biol. 2008, 6, 388–397. [Google Scholar]
- Morgan, P.J.; Okely, A.D.; Cliff, D.P.; Jones, R.A.; Baur, L.A. Correlates of objectively measured physical activity in obese children. Obesity 2008, 16, 2634–2641. [Google Scholar]
- Baranowski, T.; Thompson, W.O.; DuRant, R.; Baranowski, J.; Puhl, J. Observations on physical activity in physical locations: Age, gender, ethnicity and month effects. Res. Q. Exerc. Sport 1993, 64, 127–133. [Google Scholar]
- Benjamin, S.E.; Rifas-Shiman, S.L.; Taveras, E.M.; Haines, J.; Finkelstein, J.; Kleinman, K.; Gillman, M.W. Early child care and adiposity at ages 1 and 3 years. Pediatrics 2009, 124, 555–562. [Google Scholar]
- Dowda, M.; Brown, W.H.; McIver, K.L.; Pfeiffer, K.A.; O’Neill, J.R.; Addy, C.L.; Pate, R.R. Policies and characteristics of the preschool environment and physical activity of young children. Pediatrics 2009, 123, e261–e266. [Google Scholar]
- Timperio, A.; Salmon, J.; Telford, A.; Crawford, D. Perceptions of local neighbourhood environments and their relationship to childhood overweight and obesity. Int. J. Obes. 2005, 29, 170–175. [Google Scholar]
- Abraham, C.; Michie, S. A taxonomy of behavior change techniques used in interventions. Health Psychol. 2008, 27, 379–387. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Christoffel, K.K.; Wang, X.; Binns, H.J. Early Origins of Child Obesity: Bridging Disciplines and Phases of Development - September 30–October 1, 2010. Int. J. Environ. Res. Public Health 2012, 9, 1227-1262. https://doi.org/10.3390/ijerph9041227
Christoffel KK, Wang X, Binns HJ. Early Origins of Child Obesity: Bridging Disciplines and Phases of Development - September 30–October 1, 2010. International Journal of Environmental Research and Public Health. 2012; 9(4):1227-1262. https://doi.org/10.3390/ijerph9041227
Chicago/Turabian StyleChristoffel, Katherine Kaufer, Xiaobin Wang, and Helen J. Binns. 2012. "Early Origins of Child Obesity: Bridging Disciplines and Phases of Development - September 30–October 1, 2010" International Journal of Environmental Research and Public Health 9, no. 4: 1227-1262. https://doi.org/10.3390/ijerph9041227
APA StyleChristoffel, K. K., Wang, X., & Binns, H. J. (2012). Early Origins of Child Obesity: Bridging Disciplines and Phases of Development - September 30–October 1, 2010. International Journal of Environmental Research and Public Health, 9(4), 1227-1262. https://doi.org/10.3390/ijerph9041227