Breast Cancer Risk, Fungicide Exposure and CYP1A1*2A Gene-Environment Interactions in a Province-Wide Case Control Study in Prince Edward Island, Canada
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Exposure Assessment
2.3. Genetic Polymorphism Data
2.4. Data Analysis
- Model I Analysis of the association between fungicide exposure and breast cancer risk adjusting for matching variables. Separate models were run for fungicide exposure as a binary, categorical and continuous variable.
- Model II Analysis of the association between CYP1A1 as a main effect and breast cancer risk, adjusting for matching variables. We explored the potential for a gene-environment interaction between the three fungicide exposure variables and the CYP1A1*2A allele by adding a multiplicative interaction term to the model and assessing the significance of the p value (Wald test) of the interaction term. All analyses were performed using SAS v 9.2 [30].
3. Results and Discussion
3.1. Descriptive Statistics
Variable | Level of Variable | Cases Mean (95% CI) | Controls Mean (95% CI) | Crude Odds Ratio | 95% CI | p value 1 |
---|---|---|---|---|---|---|
Age | 54.6 | 55.0 | 0.99 | 0.98, 1.01 | 0.67 | |
(53.1–56.1) | (54.1–55.8) | |||||
Duration of Residence on PEI (years) | 44.1 | 42.7 | 1.00 | 0.99, 1.01 | 0.40 | |
(41.4–46.7) | (41.3–44.2) | |||||
Age at Menarche (years) | 12.9 | 13.0 | 0.96 | 0.86, 1.07 | 0.52 | |
(12.7–13.1) | (12.8–13.1) | |||||
N (%) | N (%) | |||||
Positive Family History of Breast Cancer | Yes | 53 (25.6) | 159 (25.6) | 1.0 | 0.70, 1.43 | 1.0 |
No | 154 (74.4) | 462 (74.4) | ||||
Menopausal status | Post | 127 (61.4) | 381 (61.4) | 1.0 | 0.72, 1.38 | 1.0 |
Pre | 80 (38.7) | 240 (38.7) | ||||
Ethnicity | Caucasian | 207 (100) | 621 (100) | NA | ||
Other | 0 | 0 | ||||
Birthplace | PEI | 150 (72.4) | 472 (76.1) | 0.82 | 0.57, 1.18 | 0.30 |
Other | 57 (27.5) | 148 (23.9) | ||||
Body Mass Index (at time of recruitment) | BMI ≤25 | 61 (30.2) | 244 (39.80) | 1.53 | 1.09, 2.15 | 0.01 |
BMI >25 | 141 (69.8) | 369 (60.20) | ||||
Number of Children | None | 31 (15.1) | 64 (10.3) | 1.0 | 0.45, 1.17 | 0.01 |
1–3 | 137 (66.5) | 389 (62.6) | 0.73 | |||
>4 | 38 (18.5) | 168 (27.1) | 0.47 | 0.27, 0.81 | ||
Ovariectomy at <45 Years of Age | No | 195 (94.2) | 546 (88.2) | 0.46 | 0.24, 0.87 | 0.01 |
Yes | 12 (5.8) | 73 (11.8) | ||||
Oral Contraceptive Use | Never | 69 (33.5) | 170 (27.4) | 1.0 | 0.53, 1.05 | 0.09 |
Ever | 137 (66.5) | 451 (72.6) | 0.75 | |||
Currently Drink Alcohol | Yes | 129 (62.9) | 348 (56.7) | 1.32 | 0.95, 1.83 | 0.09 |
No | 76 (37.1) | 271 (43.8) |
3.2. Model I Association Between Breast Cancer Risk and Fungicide Exposure
Variable | Levelof Variable | Cases N (%) | Controls N (%) | Adjusted Odds Ratio | 95% CI |
---|---|---|---|---|---|
Fungicide Exposure(continuous) | -- | 207 | 617 | 0.98 | 0.97–1.01 |
Fungicide Exposure | Low | 178 (85.9) | 507 (81.6) | 1.0 | 0.46–1.12 |
High | 29 (14.1) | 114 (18.4) | 0.72 | ||
Fungicide Exposure | Low | 145 (70.0) | 426 (68.6) | 1.0 | |
Medium | 33 (15.9) | 81 (13.04) | 1.19 | 0.76–1.87 | |
High | 29 (14.01) | 114 (18.4) | 0.74 | 0.47–1.17 |
3.3. Model II. Association Between Breast Cancer Risk, Fungicide Exposure and CYP1A1*2A
Variable | Level of Variable | Cases N (%) | Controls N (%) | Odds Ratio | 95% CI | Product Term | p value |
---|---|---|---|---|---|---|---|
CYP1A1*2A a | Referent | 160 (78.4%) | 465 (75.0) | 0.78 | 0.55–1.13 | -- | -- |
Variant | 44 (21.6%) | 154 (25.0) | |||||
CYP1A1*2Ab | Referent | 160 (78.4%) | 465 (75.0) | 0.78 | 0.55–1.13 | CYP1A1*2Ax | 0.14 |
Variant | 44 (21.6%) | 154 (25.0) | Continuous Exposure | ||||
CYP1A1*2Ac | Referent | 160 (78.4%) | 465 (75.0) | 0.79 | 0.55–1.12 | CYP1A1*2Ax | 0.22 |
Variant | 44 (21.6%) | 154 (25.0) | Binary Exposure | ||||
CYP1A1*2Ad | Referent | 160 (78.4%) | 465 (75.0) | 0.78 | 0.55–1.13 | CYP1A1*2Ax | 0.71 |
Variant | 44 (21.6%) | 154 (25.0) | Categorical Exposure |
3.4. Discussion
3.5. Strengths and Limitations
4. Conclusions
Acknowledgments
Conflict of Interest
References
- Canadian Cancer Society. Canadian cancer statistics. Available online: http://www.cancer.ca/Canada-wide/Publications/Alphabetical%20list%20of%20publications/Canadian%20Cancer%20Statistics.aspx?sc_lang=en (accessed on 9 May 2012).
- Center for Disease Prevention and Control. Breast cancer statistics. 2010. Available online: http://www.cdc.gov/CANCER/breast/statistics/ (accessed on 9 May 2012).
- Rockhill, B.; Weinberg, C.R.; Newman, B. Population attributable fraction estimation for established breast cancer risk factors: Considering the issues of high prevalence and unmodifiability. Am. J. Epidemiol. 1998, 147, 826–833. [Google Scholar]
- Snedeker, S. Pesticides and breast cancer risk: A review of DDT, DDE and dieldrin. Environ. Health Perspect. 2001, 109, 35–47. [Google Scholar]
- Salehi, F.; Turner, M.C.; Phillips, K.P.; Wigle, D.T.; Krewski, D.; Aronson, K.J. Review of the etiology of breast cancer with special attention to organochlorines as potential endocrine disruptors. J. Toxicol. Environ. Health Part B 2008, 11, 276–300. [Google Scholar]
- Muir, K.R. Endocrine-disrupting pesticides and selected hormonally dependent cancers. Scand. J. Work Environ. Health 2005, 31, 55–61. [Google Scholar]
- U.S. EPA. Chlorothalonil reregistration eligibility decisions. 1999. Available online: http://www.epa.gov/pesticides/reregistration/status_page_c.htm (accessed on 9 May 2012).
- ational Institute of Health National Toxicology Program. NTP Study Reports tr-388 Toxicology and Carcinogenesis Studies of Ethylene Thiourea (cas 96-45-7) in f344 Rats and b6c3f Mice (Feed Studies). Available online: http://www.ntp.niehs.nih.gov/index.cfm (accessed on 9 May 2012).
- Engel, L.S.; Hill, D.A.; Hoppin, J.A. Pesticide use and breast cancer risk among farmers’ wives in the agricultural health study. Am. J. Epidemiol. 2005, 161, 121–135. [Google Scholar]
- Laden, F.; Ishibie, N.; Hankinson, S.E.; Wolff, M.S.; Gertig, D.M.; Hunter, D.J.; Kelsey, K.T. Polychlorinated biphenyls, cytochrome p450 1a1, and breast cancer risk in the nurses’ health stud. Cancer Epidem. Biomar. 2002, 11, 1560–1565. [Google Scholar]
- Moysich, K.B.; Shields, P.G.; Freudenheim, J.L.; Schisterman, E.F.; Vena, J.E. Polychlorinated biphenyls, cytochrome p4501a1 polymorphism, and postmenopausal breast cancer risk. Cancer Epidem. Biomar. 1999, 8, 41–44. [Google Scholar]
- Saintot, M.; Malaveille, C.; Hautefeuille, A. Interactions between genetic polymorphism of cytochrome p450-1b1, sulfotransferase 1a1, catechol-o-methyltransferase and tobacco exposure in breast cancer risk. Int. J. Cancer 2003, 107, 652–657. [Google Scholar] [CrossRef]
- Masson, L.F.; Sharp, L.; Cotton, S.C.; Little, J. Cytochrome p-450 1a1 gene polymorphisms and risk of breast cancer: A huge review. Am. J. Epidemiol. 2005, 161, 901–915. [Google Scholar]
- Yao, L.; Yu, X.; Yu, L. Lack of signification association between cyp1a1 t3801c polymorphism and breast cancer risk: A meta-analysis involving 25,087 subjects. Breast Cancer Res. Treat. 2010, 122, 503–507. [Google Scholar]
- Sergentanis, T.N.; Economopoulos, K.P. Four polymorphisms in cytochrome p450 1a1 (cyp1a1) gene and breast cancer risk: A meta-analysis. Breast Cancer Res. Treat. 2010, 122, 459–469. [Google Scholar]
- Chen, C.; Huang, Y.; Li, Y.; Mao, Y.; Xie, Y. Cytochrome p450 1a1 (cyp1a1) t3801c and a2455g polymorphisms in breast cancer risk: A meta-analysis. J. Hum. Genet. 2007, 52, 423–435. [Google Scholar]
- Cribb, A.E.; Knight, M.J.; Dryer, D. Role of polymorphic human cytochrome p450 enzymes in estrone oxidation. Cancer Epidemiol. Biomar. 2006, 15, 551–558. [Google Scholar]
- Modugno, F.; Knoll, C.; Kanbour-Shakir, A. A potential role for the estrogen metabolizing cytochrome p450 enzymes in human breast carcinogensis. Breast Cancer Res. Treat. 2003, 82, 191–197. [Google Scholar]
- Boyapati, S.M.; Shu, X.O.; Gao, Y.; Cai, Q.; Jin, F.; Zheng, W. Polymorphisms in cyp1a1 and breast carcinoma risk in a population based case control study of chinese women. Cancer 2005, 103, 2228–2235. [Google Scholar]
- Ambrosone, C.B.; Freudenheim, J.L.; Graham, S.; Marshall, J.R.; Vena, J.E.; Brasure, J.R.; Laughlin, R.; Nemoto, T. Cytochrome p4501a1 and glutathione s-transferase (m1) genetic polymorphisms and postmenopausal breast cancer risk. Cancer Res. 1995, 55, 3483–3485. [Google Scholar]
- Wu, X.J.; Lu, W.Q.; Roos, P.H.; Mersch-Sundermann, V. Vinclozolin, a widely used fungicide, enhanced bap-induced micronucleus formation in human derived hepatoma cells by increasing cyp1a1 expression. Toxicol. Lett. 2005, 159, 83–88. [Google Scholar] [CrossRef]
- Chan, W.H.; Liao, J.W.; Chou, C.P.; Chan, P.K.; Wie, C.F.; Ueng, T.H. Induction of cyp1a1, 2b, 2e1 and 3a in rat liver by organochlorine pesticide dicofol. Toxicol. Lett. 2009, 190, 150–155. [Google Scholar] [CrossRef]
- Cribb, A.E.; Knight, J.M.; Guernsey, J. Cyp17, catechol-o-methyltransferase, and glutathione transferase m1 genetic polymorphisms, lifestyle factors, and breast cancer risk in women on Prince Edward Island. Breast J. 2011, 17, 24–31. [Google Scholar] [CrossRef]
- Sturz, A.; MacPhail, P. Potato Late Blight Information Guide; PEI Dept. of Agriculture and Forestry: Charlottetown, Canada, 2002. [Google Scholar]
- ESRI (Environmental Systems Research Institute), 2005. ArcMap 9.1. ESRI: Redlands, California, USA.
- National Research Council, Health Effects of Exposure to Low Levels of Ionizing Radiation; National Academy Press: Washington DC, USA, 1991.
- Richards, B.; Skoletsky, J.; Shuber, A.P.; Balfour, R.; Stern, R.C. Multiplex pcr amplification from the cftr gene using DNA prepared from buccal brushes/swabs. Hum. Mol. Genet. 1993, 2, 159–163. [Google Scholar]
- Bailey, L.R.; Roodi, N.; Verrier, C.S.; Yee, C.J.; Dupont, W.D.; Parl, F.F. Breast cancer and cyp1a1, gstm1, and gstt1 polymorphisms: Evidence of a lack of association in caucasians and african american. Cancer Res. 1998, 58, 65–70. [Google Scholar]
- Szklo, M.; Nieto, F.G. Epidemiology Beyond the Basics; Jones and Bartlett Publishers: Sudbury, MA, USA, 2004. [Google Scholar]
- SAS Institute Inc. 2008 SAS version 9.2. SAS: Cary, North Carolina, USA.
- Caux, P.Y.; Kent, R.A; Fan, G.T.; Stephenson, G.L. Environmental fate and effects of chlorothalonil: A Canadian perspective. Crit. Rev. Environ. Sci. Technol. 1996, 26, 45–93. [Google Scholar] [CrossRef]
- Lin, N.; Garry, V.F. In vitro studies of cellular and molecular developmental toxicity of adjuvants, herbicides, and fungicides commonly used in Red River Valley, Minneso. J. Toxicol. Envrion. Health A 2000, 60, 423–439. [Google Scholar] [CrossRef]
- Calviello, G.; Piccioni, E.; Boninsegna, A.; Tedesco, B.; Maggiano, N.; Serini, S.; Wolf, F.I.; Palozza, P. DNA damage and apoptosis induction by the pesticide Mancozeb in rat cells: Involvement of the oxidative mechanism. Toxicol. Appl. Pharm. 2006, 211, 87–96. [Google Scholar]
- National Toxicology Program Report on Carcinogens. Ethylene Thiourea CAS No. 96-45-7. 2011. Available online: http://ntp.niehs.nih.gov/ntp/roc/twelth/profiles/EthyleneThiourea.pdf (accessed on 9 May 2012).
- Bertini, S.; Del Carratore, R.; Giorgi, M.; Bronzetti, G.; Cella Croce, C. Genotoxic and mono-oxygenase system effects of the fungicide maneb. Arch. Toxicol. 2000, 74, 415–420. [Google Scholar]
- Li, Y.; Millikan, R.; Bell, D.A.; Cui, L.; Tse, C.K.; Newman, B.; Conway, K. Polychlorinated biphenyls, cytochrome p450a1a (cyp1a1) polymorphisms and breast cancer risk among African American women and white women in North Carolina: A population based case control study. Breast Cancer Res. 2005, 7, R12–R18. [Google Scholar]
- Mitrunen, K.; Hirvonen, A. Molecular epidemiology of sporadic breast cancer: The role of polymorphic genes involved in oestrogen biosynthesis and metabolism. Mutat. Res. 2003, 544, 9–41. [Google Scholar]
- Prince Edward Island Department of Health and Social Services. Prince Edward Island Highlights. Second Report on the Health of Canadians. September 1999. Available online: http://princeedwardisland.com/photos/original/hss_1999second.pdf (accessed on 9 May 2012).
- White, L.M.; Ernst, W.R.; Julien, G.; Garron, C.; Leger, M. Ambient air concentrations of pesticides used in potato cultivation in Prince Edward Island, Canada. Pest Manag. Sci. 2006, 62, 126–136. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ashley-Martin, J.; VanLeeuwen, J.; Cribb, A.; Andreou, P.; Guernsey, J.R. Breast Cancer Risk, Fungicide Exposure and CYP1A1*2A Gene-Environment Interactions in a Province-Wide Case Control Study in Prince Edward Island, Canada. Int. J. Environ. Res. Public Health 2012, 9, 1846-1858. https://doi.org/10.3390/ijerph9051846
Ashley-Martin J, VanLeeuwen J, Cribb A, Andreou P, Guernsey JR. Breast Cancer Risk, Fungicide Exposure and CYP1A1*2A Gene-Environment Interactions in a Province-Wide Case Control Study in Prince Edward Island, Canada. International Journal of Environmental Research and Public Health. 2012; 9(5):1846-1858. https://doi.org/10.3390/ijerph9051846
Chicago/Turabian StyleAshley-Martin, Jillian, John VanLeeuwen, Alastair Cribb, Pantelis Andreou, and Judith Read Guernsey. 2012. "Breast Cancer Risk, Fungicide Exposure and CYP1A1*2A Gene-Environment Interactions in a Province-Wide Case Control Study in Prince Edward Island, Canada" International Journal of Environmental Research and Public Health 9, no. 5: 1846-1858. https://doi.org/10.3390/ijerph9051846
APA StyleAshley-Martin, J., VanLeeuwen, J., Cribb, A., Andreou, P., & Guernsey, J. R. (2012). Breast Cancer Risk, Fungicide Exposure and CYP1A1*2A Gene-Environment Interactions in a Province-Wide Case Control Study in Prince Edward Island, Canada. International Journal of Environmental Research and Public Health, 9(5), 1846-1858. https://doi.org/10.3390/ijerph9051846