Hormone Replacement Therapy Does Not Eliminate Risk Factors for Joint Complications following Total Joint Arthroplasty: A Matched Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Study Design
2.2. Demographic Data and Clinical Characteristics
2.3. Outcomes
2.4. Statistical Analysis
3. Results
3.1. THA-TRT Study Population
3.2. THA-ERT Study Population
3.3. TKA-TRT Study Population
3.4. TKA-ERT Study Population
3.5. Complications after Primary THA in the TRT Cohort
3.6. Complications after Primary THA in the ERT Cohort
3.7. Complications after Primary TKA in the TRT Cohort
3.8. Complications after Primary TKA in the ERT Cohort
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Horstman, A.M.; Dillon, E.L.; Urban, R.J.; Sheffield-Moore, M. The Role of Androgens and Estrogens on Healthy Aging and Longevity. J. Gerontol. A Biol. Sci. Med. Sci. 2012, 67, 1140–1152. [Google Scholar] [CrossRef] [Green Version]
- Fink, H.A.; Ewing, S.K.; Ensrud, K.E.; Barrett-Connor, E.; Taylor, B.C.; Cauley, J.A.; Orwoll, E.S. Association of Testosterone and Estradiol Deficiency with Osteoporosis and Rapid Bone Loss in Older Men. J. Clin. Endocrinol. Metab. 2006, 91, 3908–3915. [Google Scholar] [CrossRef] [Green Version]
- Lephart, E.D. A Review of the Role of Estrogen in Dermal Aging and Facial Attractiveness in Women. J. Cosmet. Dermatol. 2018, 17, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Valdes, A.; Bajaj, T. Estrogen Therapy. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Golds, G.; Houdek, D.; Arnason, T. Male Hypogonadism and Osteoporosis: The Effects, Clinical Consequences, and Treatment of Testosterone Deficiency in Bone Health. Int. J. Endocrinol. 2017, 2017, 4602129. [Google Scholar] [CrossRef] [PubMed]
- Cauley, J.A. Estrogen and Bone Health in Men and Women. Steroids 2015, 99, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Barbonetti, A.; D’Andrea, S.; Francavilla, S. Testosterone Replacement Therapy. Andrology 2020, 8, 1551–1566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fait, T. Menopause Hormone Therapy: Latest Developments and Clinical Practice. Drugs Context 2019, 8, 212551. [Google Scholar] [CrossRef]
- Mohamad, N.-V.; Soelaiman, I.-N.; Chin, K.-Y. A Concise Review of Testosterone and Bone Health. Clin. Interv. Aging 2016, 11, 1317–1324. [Google Scholar] [CrossRef] [Green Version]
- An, J.; Cheetham, T.C.; Van Den Eeden, S. PS3-36: Testosterone Replacement Therapy Patterns for Aging Males in a Managed Care Setting. Clin. Med. Res. 2013, 11, 141. [Google Scholar] [CrossRef] [Green Version]
- Bone, Reproductive and Urologic Drugs Advisory Committee. 2014 Meeting Materials, Bone, Reproductive and Urologic Drugs Advisory Committee (Formerly Advisory Committee for Reproductive Health Drugs (ACRHD)). Available online: http://www.fda.gov/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/ReproductiveHealthDrugsAdvisoryCommittee/ucm404895.htm (accessed on 12 January 2023).
- Gambacciani, M.; Levancini, M. Hormone Replacement Therapy and the Prevention of Postmenopausal Osteoporosis. Prz. Menopauzalny 2014, 13, 213–220. [Google Scholar] [CrossRef]
- Jo, D.G.; Lee, H.S.; Joo, Y.M.; Seo, J.T. Effect of Testosterone Replacement Therapy on Bone Mineral Density in Patients with Klinefelter Syndrome. Yonsei Med. J. 2013, 54, 1331–1335. [Google Scholar] [CrossRef] [Green Version]
- Tracz, M.J.; Sideras, K.; Boloña, E.R.; Haddad, R.M.; Kennedy, C.C.; Uraga, M.V.; Caples, S.M.; Erwin, P.J.; Montori, V.M. Testosterone Use in Men and Its Effects on Bone Health. A Systematic Review and Meta-Analysis of Randomized Placebo-Controlled Trials. J. Clin. Endocrinol. Metab. 2006, 91, 2011–2016. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Kang, D.; Li, H. The Effects of Testosterone on Bone Health in Males with Testosterone Deficiency: A Systematic Review and Meta-Analysis. BMC Endocr. Disord. 2020, 20, 33. [Google Scholar] [CrossRef] [PubMed]
- Francis, R.M. The Effects of Testosterone on Osteoporosis in Men. Clin. Endocrinol. 1999, 50, 411–414. [Google Scholar] [CrossRef]
- Tirabassi, G.; Biagioli, A.; Balercia, G. Bone Benefits of Testosterone Replacement Therapy in Male Hypogonadism. Panminerva Med. 2014, 56, 151–163. [Google Scholar]
- Polackwich, A.S.; Tadros, N.N.; Ostrowski, K.A.; Hedges, J.C. Benefits and Consequences of Testosterone Replacement Therapy: A Review. Eur. Endocrinol. 2013, 9, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H. Testosterone Replacement Therapy and Bone Mineral Density in Men with Hypogonadism. Endocrinol. Metab. 2014, 29, 30–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, S.; Kemal, O.; Lu, M.; Lix, L.M.; Leslie, W.D.; Yang, S. Age at Attainment of Peak Bone Mineral Density and Its Associated Factors: The National Health and Nutrition Examination Survey 2005–2014. Bone 2020, 131, 115163. [Google Scholar] [CrossRef]
- Samaras, N.; Samaras, D.; Frangos, E.; Forster, A.; Philippe, J. A Review of Age-Related Dehydroepiandrosterone Decline and Its Association with Well-Known Geriatric Syndromes: Is Treatment Beneficial? Rejuvenation Res. 2013, 16, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Khosla, S.; Oursler, M.J.; Monroe, D.G. Estrogen and the Skeleton. Trends Endocrinol. Metab. 2012, 23, 576–581. [Google Scholar] [CrossRef] [Green Version]
- Riggs, B.L. The Mechanisms of Estrogen Regulation of Bone Resorption. J. Clin. Investig. 2000, 106, 1203–1204. [Google Scholar] [CrossRef] [Green Version]
- Bagger, Y.Z.; Tankó, L.B.; Alexandersen, P.; Hansen, H.B.; Møllgaard, A.; Ravn, P.; Qvist, P.; Kanis, J.A.; Christiansen, C. Two to Three Years of Hormone Replacement Treatment in Healthy Women Have Long-Term Preventive Effects on Bone Mass and Osteoporotic Fractures: The PERF Study. Bone 2004, 34, 728–735. [Google Scholar] [CrossRef]
- Furman, D.; Hejblum, B.P.; Simon, N.; Jojic, V.; Dekker, C.L.; Thiébaut, R.; Tibshirani, R.J.; Davis, M.M. Systems Analysis of Sex Differences Reveals an Immunosuppressive Role for Testosterone in the Response to Influenza Vaccination. Proc. Natl. Acad. Sci. USA 2014, 111, 869–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salciccia, S.; Del Giudice, F.; Eisenberg, M.L.; Mastroianni, C.M.; De Berardinis, E.; Ricciuti, G.P.; Viscuso, P.; Zingaropoli, A.; Pasculli, P.; Ciardi, M.R.; et al. Testosterone Target Therapy: Focus on Immune Response, Controversies and Clinical Implications in Patients with COVID-19 Infection. Ther. Adv. Endocrinol. Metab. 2021, 12, 20420188211010104. [Google Scholar] [CrossRef] [PubMed]
- Hope, V.; Kimber, J.; Vickerman, P.; Hickman, M.; Ncube, F. Frequency, Factors and Costs Associated with Injection Site Infections: Findings from a National Multi-Site Survey of Injecting Drug Users in England. BMC Infect. Dis. 2008, 8, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herring, M.J.; Oskui, P.M.; Hale, S.L.; Kloner, R.A. Testosterone and the Cardiovascular System: A Comprehensive Review of the Basic Science Literature. J. Am. Heart Assoc. 2013, 2, e000271. [Google Scholar] [CrossRef] [Green Version]
- Nussmeier, N.A.; Mora-Mangano, C.; Fontes, M.; Schwann, N.M.; Mangano, D.T. Investigators of the Ischemia Education Foundation; Multicenter Study of Perioperative Ischemia Research Group Hormone Replacement Therapy Is Safe in Women Undergoing Coronary Artery Bypass Grafting. Tex. Heart Inst. J. 2005, 32, 507–514. [Google Scholar]
- CMS. 2021 Medicare Fee-for-Service Supplemental Improper Payment Data. Available online: https://www.cms.gov/research-statistics-data-and-systemsmonitoring-programsmedicare-ffs-compliance/2021-medicare-fee-service-supplemental-improper-payment-data (accessed on 22 June 2022).
TRT (n = 6725) | Controls (n = 26,698) | p-Value | |||
---|---|---|---|---|---|
Characteristics | n | % | n | % | |
Age (Years), Mean ± SD | 61.7 ± 8.6 | - | 61.9 ± 8.5 | - | 0.48 |
U.S. Region, n (%) | |||||
Northeast | 1163 | 17.3% | 6417 | 24.0% | <0.001 |
South | 2913 | 43.3% | 8609 | 32.2% | <0.001 |
Midwest | 1451 | 21.6% | 7689 | 28.8% | <0.001 |
West | 1204 | 17.9% | 3892 | 14.6% | <0.001 |
BMI, n (%) | |||||
<30 | 132 | 2.0% | 498 | 1.9% | 0.46 |
30–35 | 191 | 2.8% | 726 | 2.7% | 0.38 |
35–40 | 112 | 1.7% | 557 | 2.1% | 0.03 |
>40 | 139 | 2.1% | 540 | 2.0% | 0.67 |
Comorbidities, n (%) | |||||
Diabetes Mellitus | 3189 | 47.4% | 12,645 | 47.4% | 0.94 |
Obesity | 3460 | 51.4% | 13,719 | 51.4% | 0.94 |
Rheumatoid Arthritis | 281 | 4.2% | 1008 | 3.8% | 0.13 |
Coronary Artery Disease | 2604 | 38.7% | 9960 | 37.3% | 0.03 |
Congestive Heart Failure | 647 | 9.6% | 2532 | 9.5% | 0.75 |
Glucocorticoid Use | 1123 | 16.7% | 4334 | 16.2% | 0.37 |
Depression | 2554 | 38.0% | 7608 | 28.5% | <0.001 |
Osteoporosis | 293 | 4.4% | 857 | 3.2% | <0.001 |
Low T | 3441 | 51.2% | 1048 | 3.9% | <0.001 |
Tobacco Use | 2829 | 42.1% | 11,218 | 42.0% | 0.95 |
Length of Stay (Days), Mean ± SD | 3.5 ± 2.4 | - | 2.5 ± 1.6 | - | <0.001 |
ERT (n = 6302) | Controls (n = 25,127) | p-Value | |||
---|---|---|---|---|---|
Characteristics | n | % | n | % | |
Age (Years), Mean ± SD | 66.6 ± 7.8 | - | 66.6 ± 7.7 | - | 0.82 |
U.S. Region, n (%) | |||||
Northeast | 1029 | 16.3% | 5446 | 21.7% | <0.001 |
South | 2455 | 39.0% | 8627 | 34.3% | <0.001 |
Midwest | 1632 | 25.9% | 6975 | 27.8% | 0.003 |
West | 1172 | 18.6% | 3992 | 15.9% | <0.001 |
BMI, n (%) | |||||
<30 | 186 | 3.0% | 726 | 2.9% | 0.06 |
30–35 | 117 | 1.9% | 444 | 1.8% | 0.10 |
35–40 | 57 | 0.9% | 318 | 1.3% | 0.09 |
>40 | 65 | 1.0% | 387 | 1.5% | 0.01 |
Comorbidities, n (%) | |||||
Diabetes Mellitus | 2073 | 32.9% | 8255 | 32.9% | 0.96 |
Obesity | 2130 | 33.8% | 8488 | 33.8% | 0.99 |
Rheumatoid Arthritis | 550 | 8.7% | 1987 | 7.9% | 0.03 |
Coronary Artery Disease | 1778 | 28.2% | 7101 | 28.3% | 0.95 |
Congestive Heart Failure | 550 | 8.7% | 2344 | 9.3% | 0.15 |
Glucocorticoid Use | 1070 | 17.0% | 4216 | 16.8% | 0.72 |
Depression | 2972 | 47.2% | 10,459 | 41.6% | <0.001 |
Osteoporosis | 1135 | 18.0% | 4802 | 19.1% | 0.05 |
Breast Cancer | 113 | 1.8% | 422 | 1.7% | 0.57 |
Tobacco Use | 2141 | 34.0% | 8518 | 33.9% | 0.92 |
Length of Stay (Days), Mean ± SD | 7.9 ± 13.1 | - | 3.1 ± 5.7 | - | <0.001 |
TRT (n = 14,290) | Controls (n = 57,002) | p-Value | |||
---|---|---|---|---|---|
Characteristics | n | % | n | % | |
Age (Years), Mean ± SD | 62.6 ± 8.0 | - | 62.6 ± 8.0 | - | 0.57 |
U.S. Region, n (%) | |||||
Northeast | 2011 | 14.1% | 11,117 | 19.5% | <0.001 |
South | 6695 | 46.9% | 20,683 | 36.3% | <0.001 |
Midwest | 3187 | 22.3% | 16,777 | 29.4% | <0.001 |
West | 2388 | 16.7% | 8245 | 14.5% | <0.001 |
BMI, n (%) | |||||
<30 | 249 | 1.7% | 983 | 1.7% | 0.99 |
30–35 | 375 | 2.6% | 1589 | 2.8% | 0.17 |
35–40 | 345 | 2.4% | 1304 | 2.3% | 0.39 |
>40 | 389 | 2.7% | 1503 | 2.6% | 0.53 |
Comorbidities, n (%) | |||||
Diabetes Mellitus | 7840 | 54.9% | 31,271 | 54.9% | 1.00 |
Obesity | 8000 | 56.0% | 31,916 | 56.0% | 0.99 |
Rheumatoid Arthritis | 712 | 5.0% | 2632 | 4.6% | 0.07 |
Coronary Artery Disease | 6219 | 43.5% | 23,665 | 41.5% | <0.001 |
Congestive Heart Failure | 1565 | 11.0% | 6188 | 10.9% | 0.75 |
Glucocorticoid Use | 2475 | 17.3% | 9778 | 17.2% | 0.65 |
Depression | 5703 | 39.9% | 17,420 | 30.6% | <0.001 |
Osteoporosis | 525 | 3.7% | 1728 | 3.0% | <0.001 |
CMS Low T | 7265 | 50.8% | 2507 | 4.4% | <0.001 |
Tobacco Use | 6372 | 44.6% | 25,406 | 44.6% | 0.97 |
Length of Stay (Days), Mean ± SD | 6.5 ± 3.67 | - | 2.7 ± 1.55 | - | <0.001 |
ERT (n = 16,525) | Controls (n = 65,952) | p-Value | |||
---|---|---|---|---|---|
Characteristics | n | % | n | % | |
Age (Years), Mean ± SD | 65.5 ± 8.0 | - | 62.6 ± 8.0 | - | 0.73 |
U.S. Region, n (%) | |||||
Northeast | 2210 | 13.4% | 12,483 | 18.9% | <0.001 |
South | 7225 | 43.7% | 25,069 | 38.0% | <0.001 |
Midwest | 4384 | 26.5% | 18,706 | 28.4% | <0.001 |
West | 2670 | 16.2% | 9459 | 14.3% | <0.001 |
BMI, n (%) | |||||
<30 | 445 | 2.7% | 1397 | 2.1% | <0.001 |
30–35 | 381 | 2.3% | 1407 | 2.1% | 0.01 |
35–40 | 254 | 1.5% | 1238 | 1.9% | 0.02 |
>40 | 315 | 1.9% | 1867 | 2.8% | <0.001 |
Comorbidities, n (%) | |||||
Diabetes Mellitus | 6819 | 41.3% | 27,206 | 41.3% | 0.98 |
Obesity | 7571 | 45.8% | 30,211 | 45.8% | 1.00 |
Rheumatoid Arthritis | 1652 | 10.0% | 6011 | 9.1% | <0.001 |
Coronary Artery Disease | 4896 | 29.6% | 19,828 | 30.1% | 0.28 |
Congestive Heart Failure | 1520 | 9.2% | 6716 | 10.2% | <0.001 |
Glucocorticoid Use | 3099 | 18.8% | 12,274 | 18.6% | 0.68 |
Depression | 8424 | 51.0% | 29,899 | 45.3% | <0.001 |
Osteoporosis | 2743 | 16.6% | 11,788 | 17.9% | <0.001 |
Breast Cancer | 1144 | 6.9% | 4480 | 6.8% | 0.56 |
Tobacco Use | 5113 | 30.9% | 20,364 | 30.9% | 0.88 |
Length of Stay (Days), Mean ± SD | 13.9 ± 6.5 | - | 2.9 ± 1.4 | - | <0.001 |
TRT | Controls | Statistical Analysis | |||
---|---|---|---|---|---|
(n = 6725) | (n = 26,698) | (Ref Group, TRT cohort) | |||
Complication | n | % | n | % | OR (95% CI) |
90 Days | |||||
Any Medical Complication | 767 | 11.4% | 2472 | 9.3% | 1.18 (1.06–1.32) |
DVT | 38 | 0.6% | 94 | 0.4% | 1.24 (0.77–1.98) |
PE | 48 | 0.7% | 168 | 0.6% | 1.02 (0.68–1.50) |
AKI | 238 | 3.5% | 696 | 2.6% | 1.22 (1.01–1.47) |
MI | 228 | 3.4% | 889 | 3.3% | 0.96 (0.80–1.15) |
Transfusion | 205 | 3.0% | 918 | 3.4% | 0.90 (0.74–1.07) |
Inpatient Readmission | 202 | 3.0% | 927 | 3.5% | 0.78 (0.64–0.93) |
2 Years | |||||
Any Joint Complication | 380 | 5.7% | 920 | 3.4% | 1.72 (1.48–2.00) |
Dislocation | 83 | 1.2% | 243 | 0.9% | 1.24 (0.91–1.68) |
Revision THA | 240 | 3.6% | 624 | 2.3% | 1.46 (1.21–1.75) |
PJI | 145 | 2.2% | 381 | 1.4% | 1.67 (1.31–2.09) |
Aseptic Loosening | 50 | 0.7% | 168 | 0.6% | 0.84 (0.56–1.25) |
Periprosthetic Fracture | 39 | 0.6% | 129 | 0.5% | 1.01 (0.64–1.56) |
ERT | Controls | Statistical Analysis | |||
---|---|---|---|---|---|
(n = 6302) | (n = 25,127) | (Ref Group, ERT cohort) | |||
Complication | n | % | n | % | OR (95% CI) |
90 Days | |||||
Any Medical Complication | 824 | 13.1% | 3314 | 13.2% | 0.96 (0.88–1.05) |
DVT | 12 | 0.2% | 59 | 0.2% | 0.70 (0.36–1.27) |
PE | 49 | 0.8% | 142 | 0.6% | 1.40 (1.00–1.91) |
AKI | 116 | 1.8% | 455 | 1.8% | 0.96 (0.77–1.18) |
MI | 124 | 2.0% | 425 | 1.7% | 1.15 (0.93–1.41) |
Transfusion | 494 | 7.8% | 2117 | 8.4% | 0.91 (0.92–1.01) |
Inpatient Readmission | 230 | 3.6% | 1019 | 4.1% | 0.85 (0.75–0.95) |
2 Years | |||||
Any Joint Complication | 367 | 5.8% | 1050 | 4.2% | 1.40 (1.24–1.58) |
Dislocation | 122 | 1.9% | 402 | 1.6% | 1.18 (0.96–1.45) |
Revision THA | 202 | 3.2% | 720 | 2.9% | 1.11 (0.94–1.30) |
PJI | 78 | 1.2% | 302 | 1.2% | 1.01 (0.78–1.29) |
Aseptic Loosening | 51 | 0.8% | 139 | 0.6% | 1.45 (1.04–2.00) |
Periprosthetic Fracture | 59 | 0.9% | 241 | 1.0% | 0.97 (0.72–1.29) |
TRT | Controls | Statistical Analysis | |||
---|---|---|---|---|---|
(n = 14,290) | (n = 57,002) | (Ref Group, TRT cohort) | |||
Complication | n | % | n | % | OR (95% CI) |
90 Days | |||||
Any Medical Complication | 1798 | 12.6% | 6950 | 12.2% | 0.93 (0.87–1.00) |
DVT | 58 | 0.4% | 212 | 0.4% | 0.74 (0.51–1.06) |
PE | 143 | 1.0% | 508 | 0.9% | 0.95 (0.75–1.19) |
AKI | 559 | 3.9% | 1595 | 2.8% | 1.24 (1.10–1.40) |
MI | 525 | 3.7% | 1910 | 3.4% | 1.03 (0.91–1.16) |
Transfusion | 299 | 2.1% | 1584 | 2.8% | 0.74 (0.64–0.86) |
Inpatient Readmission | 693 | 4.8% | 3164 | 5.6% | 0.77 (0.70–0.86) |
2 Years | |||||
Any Joint Complication | 1151 | 8.1% | 4257 | 7.5% | 1.05 (0.97–1.14) |
Septic Revision | 200 | 1.4% | 542 | 1.0% | 1.44 (1.19–1.76) |
Aseptic Revision | 436 | 3.1% | 1414 | 2.5% | 1.20 (1.05–1.37) |
All-Cause Revision | 518 | 3.6% | 1585 | 2.8% | 1.27 (1.13–1.44) |
Periprosthetic fracture | 39 | 0.3% | 117 | 0.2% | 1.53 (1.00–2.29) |
Stiffening | 615 | 4.3% | 2641 | 4.6% | 0.90 (0.81–1.00) |
Loosening | 139 | 1.0% | 416 | 0.7% | 1.34 (1.06–1.69) |
ERT | Controls | Statistical Analysis | |||
---|---|---|---|---|---|
(n = 16,525) | (n = 65,952) | (Ref Group, ERT cohort) | |||
Complication | n | % | n | % | OR (95% CI) |
90 Days | |||||
Any Medical Complication | 1830 | 11.1% | 7777 | 11.8% | 0.91 (0.86–0.96) |
DVT | 39 | 0.2% | 209 | 0.3% | 0.63 (0.44–0.88) |
PE | 136 | 0.8% | 615 | 0.9% | 0.87 (0.72–1.05) |
AKI | 355 | 2.1% | 1237 | 1.9% | 1.20 (0.99–1.27) |
MI | 289 | 1.7% | 960 | 1.5% | 1.21 (1.05–1.38) |
Transfusion | 796 | 4.8% | 3672 | 5.6% | 0.85 (0.79–0.92) |
Inpatient Readmission | 816 | 4.9% | 3750 | 5.7% | 0.83 (0.77–0.90) |
2 Years | |||||
Any Joint Complication | 1189 | 7.2% | 4249 | 6.4% | 1.12 (1.04–1.20) |
Septic Revision | 141 | 0.9% | 319 | 0.5% | 1.70 (1.38–2.07) |
Aseptic Revision | 337 | 2.0% | 1149 | 1.7% | 1.18 (1.04–1.33) |
All-Cause Revision | 415 | 2.5% | 1266 | 1.9% | 1.31 (1.17–1.47) |
Periprosthetic fracture | 47 | 0.3% | 196 | 0.3% | 0.92 (0.67–1.27) |
Stiffening | 747 | 4.5% | 2879 | 4.4% | 1.03 (0.95–1.12) |
Loosening | 118 | 0.7% | 405 | 0.6% | 1.12 (0.90–1.37) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collins, L.K.; Cole, M.W.; Waters, T.L.; Iloanya, M.; Massey, P.A.; Sherman, W.F. Hormone Replacement Therapy Does Not Eliminate Risk Factors for Joint Complications following Total Joint Arthroplasty: A Matched Cohort Study. Pathophysiology 2023, 30, 123-135. https://doi.org/10.3390/pathophysiology30020011
Collins LK, Cole MW, Waters TL, Iloanya M, Massey PA, Sherman WF. Hormone Replacement Therapy Does Not Eliminate Risk Factors for Joint Complications following Total Joint Arthroplasty: A Matched Cohort Study. Pathophysiology. 2023; 30(2):123-135. https://doi.org/10.3390/pathophysiology30020011
Chicago/Turabian StyleCollins, Lacee K., Matthew W. Cole, Timothy L. Waters, Michael Iloanya, Patrick A. Massey, and William F. Sherman. 2023. "Hormone Replacement Therapy Does Not Eliminate Risk Factors for Joint Complications following Total Joint Arthroplasty: A Matched Cohort Study" Pathophysiology 30, no. 2: 123-135. https://doi.org/10.3390/pathophysiology30020011
APA StyleCollins, L. K., Cole, M. W., Waters, T. L., Iloanya, M., Massey, P. A., & Sherman, W. F. (2023). Hormone Replacement Therapy Does Not Eliminate Risk Factors for Joint Complications following Total Joint Arthroplasty: A Matched Cohort Study. Pathophysiology, 30(2), 123-135. https://doi.org/10.3390/pathophysiology30020011