Pathophysiology, Management, and Therapeutics in Subarachnoid Hemorrhage and Delayed Cerebral Ischemia: An Overview
Abstract
:1. Introduction
2. Loss of Cerebral Autoregulation in SAH
3. Early Brain Injury and Acute Ischemia (0–3 Days)
3.1. Glycocalyx
3.2. Endothelial Dysfunction and Neuroinflammation
3.3. Ischemia, Endothelial Dysfunction, and ACE-2: ‘Death in Rigor’
3.4. Neuroinflammation
3.5. Astrocytes
3.6. Glymphatic System
3.7. SAH and the Intramural Periarterial Drainage (IPAD)
4. Intermediate Injury (3–5 Days)
4.1. BBB Dysfunction
4.2. Neurovascular Uncoupling
5. Delayed Injury (5–14 Days)
Cellular Changes
6. Clinical Relevance and Management
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AQP4 | aquaporin 4 |
CBV | cerebral blood volume |
CSD | cortical spreading depressions |
CTA | computed tomography angiography |
CVS | cerebral vasospasm |
DCI | delayed cerebral ischemia |
EVD | external ventricular drain |
GJ | gap junction |
GS | glymphatic system |
ICP | intracranial pressure |
NVU | neurovascular unit |
PVS | perivascular space |
SAH | subarachnoid hemorrhage |
aSAH | aneurysmal subarachnoid hemorrhage |
sSAH | spontaneous subarachnoid hemorrhage |
tSAH: | traumatic subarachnoid hemorrhage |
TCD | transcranial Doppler (ultrasound) |
References
- Griswold, D.P.; Fernandez, L.; Rubiano, A.M. Diagnosis and Management of Traumatic Subarachnoid Hemorrhage: Protocol for a Scoping Review. JMIR Res. Protoc. 2021, 10, e26709. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, R.L.; Schweizer, T.A. Spontaneous Subarachnoid Haemorrhage. Lancet 2017, 389, 655–666. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, S. Aneurysmal Subarachnoid Hemorrhage. J. Neurosurg. Anesth. 2015, 27, 222–240. [Google Scholar] [CrossRef] [PubMed]
- Kozak, N.; Hayashi, M. Trends in the Incidence of Subarachnoid Hemorrhage in Akita Prefecture, Japan. J. Neurosurg. 2007, 106, 234–238. [Google Scholar] [CrossRef]
- Sacco, S.; Totaro, R.; Toni, D.; Marini, C.; Cerone, D.; Carolei, A. Incidence, Case-Fatalities and 10-Year Survival of Subarachnoid Hemorrhage in a Population-Based Registry. Eur. Neurol. 2009, 62, 155–160. [Google Scholar] [CrossRef]
- Feigin, V.L.; Lawes, C.M.; Bennett, D.A.; Barker-Collo, S.L.; Parag, V. Worldwide Stroke Incidence and Early Case Fatality Reported in 56 Population-Based Studies: A Systematic Review. Lancet Neurol. 2009, 8, 355–369. [Google Scholar] [CrossRef]
- Schievink, W.I.; Wijdicks, E.F.; Parisi, J.E.; Piepgras, D.G.; Whisnant, J.P. Sudden Death from Aneurysmal Subarachnoid Hemorrhage. Neurology 1995, 45, 871–874. [Google Scholar] [CrossRef]
- de Rooij, N.K.; Linn, F.H.; van der Plas, J.A.; Algra, A.; Rinkel, G.J. Incidence of Subarachnoid Haemorrhage: A Systematic Review with Emphasis on Region, Age, Gender and Time Trends. J. Neurol. Neurosurg. Psychiatry 2007, 78, 1365–1372. [Google Scholar] [CrossRef]
- Shea, A.M.; Reed, S.D.; Curtis, L.H.; Alexander, M.J.; Villani, J.J.; Schulman, K.A. Characteristics of Nontraumatic Subarachnoid Hemorrhage in the United States in 2003. Neurosurgery 2007, 61, 1131–1137, discussion 1137–1138. [Google Scholar] [CrossRef]
- Molenberg, R.; Thio, C.H.L.; Aalbers, M.W.; Uyttenboogaart, M.; ISGC Intracranial Aneurysm Working Group; Larsson, S.C.; Bakker, M.K.; Ruigrok, Y.M.; Snieder, H.; van Dijk, J.M.C. Sex Hormones and Risk of Aneurysmal Subarachnoid Hemorrhage: A Mendelian Randomization Study. Stroke 2022, 53, 2870–2875. [Google Scholar] [CrossRef]
- Silverman, A.; Petersen, N.H. Physiology, Cerebral Autoregulation. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Armstead, W.M. Cerebral Blood Flow Autoregulation and Dysautoregulation. Anesth. Clin. 2016, 34, 465–477. [Google Scholar] [CrossRef]
- Lidington, D.; Wan, H.; Bolz, S.S. Cerebral Autoregulation in Subarachnoid Hemorrhage. Front. Neurol. 2021, 12, 688362. [Google Scholar] [CrossRef] [PubMed]
- Folkow, B. Intravascular Pressure as a Factor Regulating the Tone of the Small Vessels. Acta Physiol. Scand. 1949, 17, 289–310. [Google Scholar] [CrossRef] [PubMed]
- Wallis, S.J.; Firth, J.; Dunn, W.R. Pressure-Induced Myogenic Responses in Human Isolated Cerebral Resistance Arteries. Stroke 1996, 27, 2287–2290, discussion 2291. [Google Scholar] [CrossRef] [PubMed]
- Lidington, D.; Schubert, R.; Bolz, S.S. Capitalizing on Diversity: An Integrative Approach towards the Multiplicity of Cellular Mechanisms Underlying Myogenic Responsiveness. Cardiovasc. Res. 2013, 97, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Cole, W.C.; Welsh, D.G. Role of Myosin Light Chain Kinase and Myosin Light Chain Phosphatase in the Resistance Arterial Myogenic Response to Intravascular Pressure. Arch. Biochem. Biophys. 2011, 510, 160–173. [Google Scholar] [CrossRef] [PubMed]
- Muizelaar, J.P.; Schroder, M.L. Overview of Monitoring of Cerebral Blood Flow and Metabolism after Severe Head Injury. Can. J. Neurol. Sci. 1994, 21, S6–S11. [Google Scholar] [CrossRef]
- Paulson, O.B.; Strandgaard, S.; Edvinsson, L. Cerebral Autoregulation. Cerebrovasc. Brain Metab. Rev. 1990, 2, 161–192. [Google Scholar]
- Zoerle, T.; Lombardo, A.; Colombo, A.; Longhi, L.; Zanier, E.R.; Rampini, P.; Stocchetti, N. Intracranial Pressure after Subarachnoid Hemorrhage. Crit. Care Med. 2015, 43, 168–176. [Google Scholar] [CrossRef]
- Munakomi, S.; Das, J.M. Brain Herniation. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Bauernfeind, A.L.; Barks, S.K.; Duka, T.; Grossman, L.I.; Hof, P.R.; Sherwood, C.C. Aerobic Glycolysis in the Primate Brain: Reconsidering the Implications for Growth and Maintenance. Brain Struct. Funct. 2014, 219, 1149–1167. [Google Scholar] [CrossRef]
- Thornton, C.; Leaw, B.; Mallard, C.; Nair, S.; Jinnai, M.; Hagberg, H. Cell Death in the Developing Brain after Hypoxia-Ischemia. Front. Cell Neurosci. 2017, 11, 248. [Google Scholar] [CrossRef] [PubMed]
- Melkonian, E.A.; Schury, M.P. Biochemistry, Anaerobic Glycolysis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Liang, D.; Bhatta, S.; Gerzanich, V.; Simard, J.M. Cytotoxic Edema: Mechanisms of Pathological Cell Swelling. Neurosurg. Focus. 2007, 22, E2. [Google Scholar] [CrossRef] [PubMed]
- Goulay, R.; Flament, J.; Gauberti, M.; Naveau, M.; Pasquet, N.; Gakuba, C.; Emery, E.; Hantraye, P.; Vivien, D.; Aron-Badin, R.; et al. Subarachnoid Hemorrhage Severely Impairs Brain Parenchymal Cerebrospinal Fluid Circulation in Nonhuman Primate. Stroke 2017, 48, 2301–2305. [Google Scholar] [CrossRef]
- Mathiisen, T.M.; Lehre, K.P.; Danbolt, N.C.; Ottersen, O.P. The Perivascular Astroglial Sheath Provides a Complete Covering of the Brain Microvessels: An Electron Microscopic 3D Reconstruction. Glia 2010, 58, 1094–1103. [Google Scholar] [CrossRef] [PubMed]
- Akeret, K.; Buzzi, R.M.; Schaer, C.A.; Thomson, B.R.; Vallelian, F.; Wang, S.; Willms, J.; Sebok, M.; Held, U.; Deuel, J.W.; et al. Cerebrospinal Fluid Hemoglobin Drives Subarachnoid Hemorrhage-Related Secondary Brain Injury. J. Cereb. Blood Flow. Metab. 2021, 41, 3000–3015. [Google Scholar] [CrossRef]
- Ayer, R.E.; Zhang, J.H. Oxidative Stress in Subarachnoid Haemorrhage: Significance in Acute Brain Injury and Vasospasm. Acta Neurochir. Suppl. 2008, 104, 33–41. [Google Scholar] [CrossRef]
- Wagner, K.R.; Sharp, F.R.; Ardizzone, T.D.; Lu, A.; Clark, J.F. Heme and Iron Metabolism: Role in Cerebral Hemorrhage. J. Cereb. Blood Flow. Metab. 2003, 23, 629–652. [Google Scholar] [CrossRef]
- Selim, M.; Yeatts, S.; Goldstein, J.N.; Gomes, J.; Greenberg, S.; Morgenstern, L.B.; Schlaug, G.; Torbey, M.; Waldman, B.; Xi, G.; et al. Safety and Tolerability of Deferoxamine Mesylate in Patients with Acute Intracerebral Hemorrhage. Stroke 2011, 42, 3067–3074. [Google Scholar] [CrossRef]
- Wang, J.; Dore, S. Heme Oxygenase 2 Deficiency Increases Brain Swelling and Inflammation after Intracerebral Hemorrhage. Neuroscience 2008, 155, 1133–1141. [Google Scholar] [CrossRef]
- Hatakeyama, T.; Okauchi, M.; Hua, Y.; Keep, R.F.; Xi, G. Deferoxamine Reduces Neuronal Death and Hematoma Lysis after Intracerebral Hemorrhage in Aged Rats. Transl. Stroke Res. 2013, 4, 546–553. [Google Scholar] [CrossRef]
- Haque, M.E.; Gabr, R.E.; Zhao, X.; Hasan, K.M.; Valenzuela, A.; Narayana, P.A.; Ting, S.M.; Sun, G.; Savitz, S.I.; Aronowski, J. Serial Quantitative Neuroimaging of Iron in the Intracerebral Hemorrhage Pig Model. J. Cereb. Blood Flow. Metab. 2018, 38, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Reitsma, S.; Slaaf, D.W.; Vink, H.; van Zandvoort, M.A.; oude Egbrink, M.G. The Endothelial Glycocalyx: Composition, Functions, and Visualization. Pflugers Arch. 2007, 454, 345–359. [Google Scholar] [CrossRef] [PubMed]
- Cosgun, Z.C.; Fels, B.; Kusche-Vihrog, K. Nanomechanics of the Endothelial Glycocalyx: From Structure to Function. Am. J. Pathol. 2020, 190, 732–741. [Google Scholar] [CrossRef]
- Schott, U.; Solomon, C.; Fries, D.; Bentzer, P. The Endothelial Glycocalyx and Its Disruption, Protection and Regeneration: A Narrative Review. Scand. J. Trauma. Resusc. Emerg. Med. 2016, 24, 48. [Google Scholar] [CrossRef]
- Schenck, H.; Netti, E.; Teernstra, O.; De Ridder, I.; Dings, J.; Niemela, M.; Temel, Y.; Hoogland, G.; Haeren, R. The Role of the Glycocalyx in the Pathophysiology of Subarachnoid Hemorrhage-Induced Delayed Cerebral Ischemia. Front. Cell Dev. Biol. 2021, 9, 731641. [Google Scholar] [CrossRef] [PubMed]
- Schneider, U.C.; Xu, R.; Vajkoczy, P. Inflammatory Events Following Subarachnoid Hemorrhage (SAH). Curr. Neuropharmacol. 2018, 16, 1385–1395. [Google Scholar] [CrossRef]
- Mastorakos, P.; McGavern, D. The Anatomy and Immunology of Vasculature in the Central Nervous System. Sci. Immunol. 2019, 4, eaav0492. [Google Scholar] [CrossRef]
- Choi, S.J.; Lillicrap, D. A Sticky Proposition: The Endothelial Glycocalyx and von Willebrand Factor. J. Thromb. Haemost. 2020, 18, 781–785. [Google Scholar] [CrossRef]
- Blatter, L.A.; Wier, W.G. Nitric Oxide Decreases [Ca2+]i in Vascular Smooth Muscle by Inhibition of the Calcium Current. Cell Calcium 1994, 15, 122–131. [Google Scholar] [CrossRef]
- Battinelli, E.; Willoughby, S.R.; Foxall, T.; Valeri, C.R.; Loscalzo, J. Induction of Platelet Formation from Megakaryocytoid Cells by Nitric Oxide. Proc. Natl. Acad. Sci. USA 2001, 98, 14458–14463. [Google Scholar] [CrossRef]
- Freitas, A.; Alves-Filho, J.C.; Secco, D.D.; Neto, A.F.; Ferreira, S.H.; Barja-Fidalgo, C.; Cunha, F.Q. Heme Oxygenase/Carbon Monoxide-Biliverdin Pathway down Regulates Neutrophil Rolling, Adhesion and Migration in Acute Inflammation. Br. J. Pharmacol. 2006, 149, 345–354. [Google Scholar] [CrossRef]
- Friedrich, V.; Flores, R.; Muller, A.; Sehba, F.A. Escape of Intraluminal Platelets into Brain Parenchyma after Subarachnoid Hemorrhage. Neuroscience 2010, 165, 968–975. [Google Scholar] [CrossRef] [PubMed]
- Iuliano, B.A.; Pluta, R.M.; Jung, C.; Oldfield, E.H. Endothelial Dysfunction in a Primate Model of Cerebral Vasospasm. J. Neurosurg. 2004, 100, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Gotsch, U.; Jager, U.; Dominis, M.; Vestweber, D. Expression of P-Selectin on Endothelial Cells Is Upregulated by LPS and TNF-Alpha in Vivo. Cell Adhes. Commun. 1994, 2, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, M.; Kusaka, G.; Yamaguchi, N.; Sekizuka, E.; Nakadate, H.; Minamitani, H.; Shinoda, S.; Watanabe, E. Platelet and Leukocyte Adhesion in the Microvasculature at the Cerebral Surface Immediately after Subarachnoid Hemorrhage. Neurosurgery 2009, 64, 546–553, discussion 553–554. [Google Scholar] [CrossRef]
- Hall, C.N.; Reynell, C.; Gesslein, B.; Hamilton, N.B.; Mishra, A.; Sutherland, B.A.; O’Farrell, F.M.; Buchan, A.M.; Lauritzen, M.; Attwell, D. Capillary Pericytes Regulate Cerebral Blood Flow in Health and Disease. Nature 2014, 508, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Barzegar, M.; Stokes, K.Y.; Chernyshev, O.; Kelley, R.E.; Alexander, J.S. The Role of the ACE2/MasR Axis in Ischemic Stroke: New Insights for Therapy. Biomedicines 2021, 9, 1667. [Google Scholar] [CrossRef]
- Barzegar, M.; Vital, S.; Stokes, K.Y.; Wang, Y.; Yun, J.W.; White, L.A.; Chernyshev, O.; Kelley, R.E.; Alexander, J.S. Human Placenta Mesenchymal Stem Cell Protection in Ischemic Stroke Is Angiotensin Converting Enzyme-2 and MasR Receptor-Dependent. Stem Cells Dayt. Ohio 2021, 39, 1335–1348. [Google Scholar] [CrossRef]
- Barzegar, M.; Wang, Y.; Eshaq, R.S.; Yun, J.W.; Boyer, C.J.; Cananzi, S.G.; White, L.A.; Chernyshev, O.; Kelley, R.E.; Minagar, A.; et al. Human Placental Mesenchymal Stem Cells Improve Stroke Outcomes via Extracellular Vesicles-Mediated Preservation of Cerebral Blood Flow. eBioMedicine 2021, 63, 103161. [Google Scholar] [CrossRef]
- Sen, O.; Caner, H.; Aydin, M.V.; Ozen, O.; Atalay, B.; Altinors, N.; Bavbek, M. The Effect of Mexiletine on the Level of Lipid Peroxidation and Apoptosis of Endothelium Following Experimental Subarachnoid Hemorrhage. Neurol. Res. 2006, 28, 859–863. [Google Scholar] [CrossRef]
- Fumoto, T.; Naraoka, M.; Katagai, T.; Li, Y.; Shimamura, N.; Ohkuma, H. The Role of Oxidative Stress in Microvascular Disturbances after Experimental Subarachnoid Hemorrhage. Transl. Stroke Res. 2019, 10, 684–694. [Google Scholar] [CrossRef] [PubMed]
- Gris, T.; Laplante, P.; Thebault, P.; Cayrol, R.; Najjar, A.; Joannette-Pilon, B.; Brillant-Marquis, F.; Magro, E.; English, S.W.; Lapointe, R.; et al. Innate Immunity Activation in the Early Brain Injury Period Following Subarachnoid Hemorrhage. J. Neuroinflam. 2019, 16, 253. [Google Scholar] [CrossRef] [PubMed]
- Sabri, M.; Jeon, H.; Ai, J.; Tariq, A.; Shang, X.; Chen, G.; Macdonald, R.L. Anterior Circulation Mouse Model of Subarachnoid Hemorrhage. Brain Res. 2009, 1295, 179–185. [Google Scholar] [CrossRef]
- Coulibaly, A.P.; Pezuk, P.; Varghese, P.; Gartman, W.; Triebwasser, D.; Kulas, J.A.; Liu, L.; Syed, M.; Tvrdik, P.; Ferris, H.; et al. Neutrophil Enzyme Myeloperoxidase Modulates Neuronal Response in a Model of Subarachnoid Hemorrhage by Venous Injury. Stroke 2021, 52, 3374–3384. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.S.; Woo, S.K.; Kurland, D.B.; Yoon, S.H.; Palmer, A.F.; Banerjee, U.; Iqbal, S.; Ivanova, S.; Gerzanich, V.; Simard, J.M. Methemoglobin Is an Endogenous Toll-like Receptor 4 Ligand-Relevance to Subarachnoid Hemorrhage. Int. J. Mol. Sci. 2015, 16, 5028–5046. [Google Scholar] [CrossRef]
- Seo, K.W.; Lee, S.J.; Kim, Y.H.; Bae, J.U.; Park, S.Y.; Bae, S.S.; Kim, C.D. Mechanical Stretch Increases MMP-2 Production in Vascular Smooth Muscle Cells via Activation of PDGFR-Beta/Akt Signaling Pathway. PLoS ONE 2013, 8, e70437. [Google Scholar] [CrossRef]
- Ma, M.; Li, H.; Wu, J.; Zhang, Y.; Shen, H.; Li, X.; Wang, Z.; Chen, G. Roles of Prokineticin 2 in Subarachnoid Hemorrhage-Induced Early Brain Injury via Regulation of Phenotype Polarization in Astrocytes. Mol. Neurobiol. 2020, 57, 3744–3758. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, K.; Zhou, J.; Zhang, X.; Yin, S.; Peng, J.; Liao, Y.; Jiang, Y. Ponesimod Protects against Neuronal Death by Suppressing the Activation of A1 Astrocytes in Early Brain Injury after Experimental Subarachnoid Hemorrhage. J. Neurochem. 2021, 158, 880–897. [Google Scholar] [CrossRef]
- Zamanian, J.L.; Xu, L.; Foo, L.C.; Nouri, N.; Zhou, L.; Giffard, R.G.; Barres, B.A. Genomic Analysis of Reactive Astrogliosis. J. Neurosci. 2012, 32, 6391–6410. [Google Scholar] [CrossRef]
- Fei, X.; Dou, Y.N.; Wang, L.; Wu, X.; Huan, Y.; Wu, S.; He, X.; Lv, W.; Wei, J.; Fei, Z. Homer1 Promotes the Conversion of A1 Astrocytes to A2 Astrocytes and Improves the Recovery of Transgenic Mice after Intracerebral Hemorrhage. J. Neuroinflam. 2022, 19, 67. [Google Scholar] [CrossRef]
- Hou, J.; Bi, H.; Ge, Q.; Teng, H.; Wan, G.; Yu, B.; Jiang, Q.; Gu, X. Heterogeneity Analysis of Astrocytes Following Spinal Cord Injury at Single-Cell Resolution. FASEB J. 2022, 36, e22442. [Google Scholar] [CrossRef] [PubMed]
- Luchena, C.; Zuazo-Ibarra, J.; Valero, J.; Matute, C.; Alberdi, E.; Capetillo-Zarate, E. A Neuron, Microglia, and Astrocyte Triple Co-Culture Model to Study Alzheimer’s Disease. Front. Aging Neurosci. 2022, 14, 844534. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wu, L.; Duan, Y.; Xu, S.; Yang, Y.; Yin, J.; Lang, Y.; Gao, Z.; Wu, C.; Lv, Z.; et al. Phenotype Shifting in Astrocytes Account for Benefits of Intra-Arterial Selective Cooling Infusion in Hypertensive Rats of Ischemic Stroke. Neurotherapeutics 2022, 19, 386–398. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Zhang, Y.; Ning, B. Reactive Astrocytes in Central Nervous System Injury: Subgroup and Potential Therapy. Front. Cell Neurosci. 2021, 15, 792764. [Google Scholar] [CrossRef]
- Liddelow, S.A.; Barres, B.A. Reactive Astrocytes: Production, Function, and Therapeutic Potential. Immunity 2017, 46, 957–967. [Google Scholar] [CrossRef]
- Lai, N.; Wu, D.; Liang, T.; Pan, P.; Yuan, G.; Li, X.; Li, H.; Shen, H.; Wang, Z.; Chen, G. Systemic Exosomal MiR-193b-3p Delivery Attenuates Neuroinflammation in Early Brain Injury after Subarachnoid Hemorrhage in Mice. J. Neuroinflam. 2020, 17, 74. [Google Scholar] [CrossRef]
- Anzabi, M.; Ardalan, M.; Iversen, N.K.; Rafati, A.H.; Hansen, B.; Ostergaard, L. Hippocampal Atrophy Following Subarachnoid Hemorrhage Correlates with Disruption of Astrocyte Morphology and Capillary Coverage by AQP4. Front. Cell Neurosci. 2018, 12, 19. [Google Scholar] [CrossRef]
- Lv, T.; Zhao, B.; Hu, Q.; Zhang, X. The Glymphatic System: A Novel Therapeutic Target for Stroke Treatment. Front. Aging Neurosci. 2021, 13, 689098. [Google Scholar] [CrossRef]
- Benveniste, H.; Liu, X.; Koundal, S.; Sanggaard, S.; Lee, H.; Wardlaw, J. The Glymphatic System and Waste Clearance with Brain Aging: A Review. Gerontology 2019, 65, 106–119. [Google Scholar] [CrossRef]
- Louveau, A.; Smirnov, I.; Keyes, T.J.; Eccles, J.D.; Rouhani, S.J.; Peske, J.D.; Derecki, N.C.; Castle, D.; Mandell, J.W.; Lee, K.S.; et al. Structural and Functional Features of Central Nervous System Lymphatic Vessels. Nature 2015, 523, 337–341. [Google Scholar] [CrossRef]
- Wichmann, T.O.; Damkier, H.H.; Pedersen, M. A Brief Overview of the Cerebrospinal Fluid System and Its Implications for Brain and Spinal Cord Diseases. Front. Hum. Neurosci. 2021, 15, 737217. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, L.; Xu, H.; Xing, L.; Zhuang, Z.; Zheng, Y.; Li, X.; Wang, C.; Chen, S.; Guo, Z.; et al. Meningeal Lymphatics Clear Erythrocytes That Arise from Subarachnoid Hemorrhage. Nat. Commun. 2020, 11, 3159. [Google Scholar] [CrossRef]
- Luo, C.; Yao, X.; Li, J.; He, B.; Liu, Q.; Ren, H.; Liang, F.; Li, M.; Lin, H.; Peng, J.; et al. Paravascular Pathways Contribute to Vasculitis and Neuroinflammation after Subarachnoid Hemorrhage Independently of Glymphatic Control. Cell Death Dis. 2016, 7, e2160. [Google Scholar] [CrossRef]
- Pu, T.; Zou, W.; Feng, W.; Zhang, Y.; Wang, L.; Wang, H.; Xiao, M. Persistent Malfunction of Glymphatic and Meningeal Lymphatic Drainage in a Mouse Model of Subarachnoid Hemorrhage. Exp. Neurobiol. 2019, 28, 104–118. [Google Scholar] [CrossRef] [PubMed]
- Bolte, A.C.; Dutta, A.B.; Hurt, M.E.; Smirnov, I.; Kovacs, M.A.; McKee, C.A.; Ennerfelt, H.E.; Shapiro, D.; Nguyen, B.H.; Frost, E.L.; et al. Meningeal Lymphatic Dysfunction Exacerbates Traumatic Brain Injury Pathogenesis. Nat. Commun. 2020, 11, 4524. [Google Scholar] [CrossRef] [PubMed]
- Louveau, A.; Herz, J.; Alme, M.N.; Salvador, A.F.; Dong, M.Q.; Viar, K.E.; Herod, S.G.; Knopp, J.; Setliff, J.C.; Lupi, A.L.; et al. CNS Lymphatic Drainage and Neuroinflammation Are Regulated by Meningeal Lymphatic Vasculature. Nat. Neurosci. 2018, 21, 1380–1391. [Google Scholar] [CrossRef] [PubMed]
- Liu, E.; Peng, X.; Ma, H.; Zhang, Y.; Yang, X.; Zhang, Y.; Sun, L.; Yan, J. The Involvement of Aquaporin-4 in the Interstitial Fluid Drainage Impairment Following Subarachnoid Hemorrhage. Front. Aging Neurosci. 2020, 12, 611494. [Google Scholar] [CrossRef]
- El Amki, M.; Dubois, M.; Lefevre-Scelles, A.; Magne, N.; Roussel, M.; Clavier, T.; Guichet, P.O.; Gerardin, E.; Compere, V.; Castel, H. Long-Lasting Cerebral Vasospasm, Microthrombosis, Apoptosis and Paravascular Alterations Associated with Neurological Deficits in a Mouse Model of Subarachnoid Hemorrhage. Mol. Neurobiol. 2018, 55, 2763–2779. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Yang, L.; Qin, W.; Yang, S.; Yuan, J.; Jiang, T.; Hu, W. The Relationship between Blood-Brain Barrier Permeability and Enlarged Perivascular Spaces: A Cross-Sectional Study. Clin. Interv. Aging 2019, 14, 871–878. [Google Scholar] [CrossRef]
- Badaut, J.; Brunet, J.F.; Grollimund, L.; Hamou, M.F.; Magistretti, P.J.; Villemure, J.G.; Regli, L. Aquaporin 1 and Aquaporin 4 Expression in Human Brain after Subarachnoid Hemorrhage and in Peritumoral Tissue. Acta Neurochir. Suppl. 2003, 86, 495–498. [Google Scholar] [CrossRef]
- Bloch, O.; Papadopoulos, M.C.; Manley, G.T.; Verkman, A.S. Aquaporin-4 Gene Deletion in Mice Increases Focal Edema Associated with Staphylococcal Brain Abscess. J. Neurochem. 2005, 95, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, E.; Pei, Y.; Yao, Q.; Ma, H.; Mu, Y.; Wang, Y.; Zhang, Y.; Yang, X.; Wang, X.; et al. The Impairment of Intramural Periarterial Drainage in Brain after Subarachnoid Hemorrhage. Acta Neuropathol. Commun. 2022, 10, 187. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Xu, P.; Fang, Y.; Lenahan, C. The Updated Role of the Blood Brain Barrier in Subarachnoid Hemorrhage: From Basic and Clinical Studies. Curr. Neuropharmacol. 2020, 18, 1266–1278. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, Q.; Tang, J.; Feng, H.; Zhang, J.H. The Evolving Roles of Pericyte in Early Brain Injury after Subarachnoid Hemorrhage. Brain Res. 2015, 1623, 110–122. [Google Scholar] [CrossRef]
- George, N.; Geller, H.M. Extracellular Matrix and Traumatic Brain Injury. J. Neurosci. Res. 2018, 96, 573–588. [Google Scholar] [CrossRef]
- Mishra, A.; Reynolds, J.P.; Chen, Y.; Gourine, A.V.; Rusakov, D.A.; Attwell, D. Astrocytes Mediate Neurovascular Signaling to Capillary Pericytes but Not to Arterioles. Nat. Neurosci. 2016, 19, 1619–1627. [Google Scholar] [CrossRef]
- Kisler, K.; Nelson, A.R.; Rege, S.V.; Ramanathan, A.; Wang, Y.; Ahuja, A.; Lazic, D.; Tsai, P.S.; Zhao, Z.; Zhou, Y.; et al. Pericyte Degeneration Leads to Neurovascular Uncoupling and Limits Oxygen Supply to Brain. Nat. Neurosci. 2017, 20, 406–416. [Google Scholar] [CrossRef]
- Cai, C.; Fordsmann, J.C.; Jensen, S.H.; Gesslein, B.; Lonstrup, M.; Hald, B.O.; Zambach, S.A.; Brodin, B.; Lauritzen, M.J. Stimulation-Induced Increases in Cerebral Blood Flow and Local Capillary Vasoconstriction Depend on Conducted Vascular Responses. Proc. Natl. Acad. Sci. USA 2018, 115, E5796–E5804. [Google Scholar] [CrossRef]
- Sengillo, J.D.; Winkler, E.A.; Walker, C.T.; Sullivan, J.S.; Johnson, M.; Zlokovic, B.V. Deficiency in Mural Vascular Cells Coincides with Blood-Brain Barrier Disruption in Alzheimer’s Disease. Brain Pathol. 2013, 23, 303–310. [Google Scholar] [CrossRef]
- Zhu, J.; Li, X.; Yin, J.; Hu, Y.; Gu, Y.; Pan, S. Glycocalyx Degradation Leads to Blood-Brain Barrier Dysfunction and Brain Edema after Asphyxia Cardiac Arrest in Rats. J. Cereb. Blood Flow. Metab. 2018, 38, 1979–1992. [Google Scholar] [CrossRef]
- Friedman, A.; Kaufer, D.; Heinemann, U. Blood-Brain Barrier Breakdown-Inducing Astrocytic Transformation: Novel Targets for the Prevention of Epilepsy. Epilepsy Res. 2009, 85, 142–149. [Google Scholar] [CrossRef]
- Stokum, J.A.; Gerzanich, V.; Simard, J.M. Molecular Pathophysiology of Cerebral Edema. J. Cereb. Blood Flow. Metab. 2016, 36, 513–538. [Google Scholar] [CrossRef]
- Ozen, I.; Deierborg, T.; Miharada, K.; Padel, T.; Englund, E.; Genove, G.; Paul, G. Brain Pericytes Acquire a Microglial Phenotype after Stroke. Acta Neuropathol. 2014, 128, 381–396. [Google Scholar] [CrossRef] [PubMed]
- Anderova, M.; Benesova, J.; Mikesova, M.; Dzamba, D.; Honsa, P.; Kriska, J.; Butenko, O.; Novosadova, V.; Valihrach, L.; Kubista, M.; et al. Altered Astrocytic Swelling in the Cortex of Alpha-Syntrophin-Negative GFAP/EGFP Mice. PLoS ONE 2014, 9, e113444. [Google Scholar] [CrossRef] [PubMed]
- Gundersen, G.A.; Vindedal, G.F.; Skare, O.; Nagelhus, E.A. Evidence That Pericytes Regulate Aquaporin-4 Polarization in Mouse Cortical Astrocytes. Brain Struct. Funct. 2014, 219, 2181–2186. [Google Scholar] [CrossRef]
- Wang, S.; Cao, C.; Chen, Z.; Bankaitis, V.; Tzima, E.; Sheibani, N.; Burridge, K. Pericytes Regulate Vascular Basement Membrane Remodeling and Govern Neutrophil Extravasation during Inflammation. PLoS ONE 2012, 7, e45499. [Google Scholar] [CrossRef]
- Shimamura, N.; Ohkuma, H. Phenotypic Transformation of Smooth Muscle in Vasospasm after Aneurysmal Subarachnoid Hemorrhage. Transl. Stroke Res. 2014, 5, 357–364. [Google Scholar] [CrossRef]
- Forsyth, E.A.; Aly, H.M.; Neville, R.F.; Sidawy, A.N. Proliferation and Extracellular Matrix Production by Human Infragenicular Smooth Muscle Cells in Response to Interleukin-1 Beta. J. Vasc. Surg. 1997, 26, 1002–1007, discussion 1007–1008. [Google Scholar] [CrossRef] [PubMed]
- Kemp, S.S.; Aguera, K.N.; Cha, B.; Davis, G.E. Defining Endothelial Cell-Derived Factors That Promote Pericyte Recruitment and Capillary Network Assembly. Arter. Thromb. Vasc. Biol. 2020, 40, 2632–2648. [Google Scholar] [CrossRef]
- Orlich, M.M.; Dieguez-Hurtado, R.; Muehlfriedel, R.; Sothilingam, V.; Wolburg, H.; Oender, C.E.; Woelffing, P.; Betsholtz, C.; Gaengel, K.; Seeliger, M.; et al. Mural Cell SRF Controls Pericyte Migration, Vessel Patterning and Blood Flow. Circ. Res. 2022, 131, 308–327. [Google Scholar] [CrossRef]
- Zhang, J.H. Vascular Neural Network in Subarachnoid Hemorrhage. Transl. Stroke Res. 2014, 5, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhao, G.; Liu, L.; He, J.; Darwazeh, R.; Liu, H.; Chen, H.; Zhou, C.; Guo, Z.; Sun, X. Bexarotene Exerts Protective Effects Through Modulation of the Cerebral Vascular Smooth Muscle Cell Phenotypic Transformation by Regulating PPARgamma/FLAP/LTB(4) After Subarachnoid Hemorrhage in Rats. Cell Transpl. 2019, 28, 1161–1172. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, V.; Flores, R.; Sehba, F.A. Cell Death Starts Early after Subarachnoid Hemorrhage. Neurosci. Lett. 2012, 512, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Metea, M.R.; Newman, E.A. Glial Cells Dilate and Constrict Blood Vessels: A Mechanism of Neurovascular Coupling. J. Neurosci. 2006, 26, 2862–2870. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, M.D.; Ayyadurai, S.; Zlokovic, B.V. Pericytes of the Neurovascular Unit: Key Functions and Signaling Pathways. Nat. Neurosci. 2016, 19, 771–783. [Google Scholar] [CrossRef] [PubMed]
- Tait, M.J.; Saadoun, S.; Bell, B.A.; Papadopoulos, M.C. Water Movements in the Brain: Role of Aquaporins. Trends Neurosci. 2008, 31, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Zhan, J.; Cai, Q.; Xu, F.; Chai, R.; Lam, K.; Luan, Z.; Zhou, G.; Tsang, S.; Kipp, M.; et al. The Water Transport System in Astrocytes-Aquaporins. Cells 2022, 11, 2564. [Google Scholar] [CrossRef]
- Lo, W.D.; Betz, A.L.; Schielke, G.P.; Hoff, J.T. Transport of Sodium from Blood to Brain in Ischemic Brain Edema. Stroke 1987, 18, 150–157. [Google Scholar] [CrossRef]
- Karimy, J.K.; Zhang, J.; Kurland, D.B.; Theriault, B.C.; Duran, D.; Stokum, J.A.; Furey, C.G.; Zhou, X.; Mansuri, M.S.; Montejo, J.; et al. Inflammation-Dependent Cerebrospinal Fluid Hypersecretion by the Choroid Plexus Epithelium in Posthemorrhagic Hydrocephalus. Nat. Med. 2017, 23, 997–1003. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Ding, Y.; Krafft, P.; Wan, W.; Yan, F.; Wu, G.; Zhang, Y.; Zhan, Q.; Zhang, J.H. Targeting Germinal Matrix Hemorrhage-Induced Overexpression of Sodium-Coupled Bicarbonate Exchanger Reduces Posthemorrhagic Hydrocephalus Formation in Neonatal Rats. J. Am. Heart Assoc. 2018, 7, e007192. [Google Scholar] [CrossRef]
- Thrane, A.S.; Rangroo Thrane, V.; Nedergaard, M. Drowning Stars: Reassessing the Role of Astrocytes in Brain Edema. Trends Neurosci. 2014, 37, 620–628. [Google Scholar] [CrossRef] [PubMed]
- Simard, M.; Nedergaard, M. The Neurobiology of Glia in the Context of Water and Ion Homeostasis. Neuroscience 2004, 129, 877–896. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.F.; Parpura, V. Astroglial Modulation of Hydromineral Balance and Cerebral Edema. Front. Mol. Neurosci. 2018, 11, 204. [Google Scholar] [CrossRef] [PubMed]
- Winkler, M.K.; Chassidim, Y.; Lublinsky, S.; Revankar, G.S.; Major, S.; Kang, E.J.; Oliveira-Ferreira, A.I.; Woitzik, J.; Sandow, N.; Scheel, M.; et al. Impaired Neurovascular Coupling to Ictal Epileptic Activity and Spreading Depolarization in a Patient with Subarachnoid Hemorrhage: Possible Link to Blood-Brain Barrier Dysfunction. Epilepsia 2012, 53 (Suppl. S6), 22–30. [Google Scholar] [CrossRef]
- Santiago, M.F.; Veliskova, J.; Patel, N.K.; Lutz, S.E.; Caille, D.; Charollais, A.; Meda, P.; Scemes, E. Targeting Pannexin1 Improves Seizure Outcome. PLoS ONE 2011, 6, e25178. [Google Scholar] [CrossRef]
- Atangana, E.; Schneider, U.C.; Blecharz, K.; Magrini, S.; Wagner, J.; Nieminen-Kelha, M.; Kremenetskaia, I.; Heppner, F.L.; Engelhardt, B.; Vajkoczy, P. Intravascular Inflammation Triggers Intracerebral Activated Microglia and Contributes to Secondary Brain Injury After Experimental Subarachnoid Hemorrhage (ESAH). Transl. Stroke Res. 2017, 8, 144–156. [Google Scholar] [CrossRef]
- Bell, A.H.; Miller, S.L.; Castillo-Melendez, M.; Malhotra, A. The Neurovascular Unit: Effects of Brain Insults During the Perinatal Period. Front. Neurosci. 2019, 13, 1452. [Google Scholar] [CrossRef]
- Carmignoto, G.; Gomez-Gonzalo, M. The Contribution of Astrocyte Signalling to Neurovascular Coupling. Brain Res. Rev. 2010, 63, 138–148. [Google Scholar] [CrossRef]
- Muoio, V.; Persson, P.B.; Sendeski, M.M. The Neurovascular Unit—Concept Review. Acta Physiol. 2014, 210, 790–798. [Google Scholar] [CrossRef]
- Hendrikx, D.; Smits, A.; Lavanga, M.; De Wel, O.; Thewissen, L.; Jansen, K.; Caicedo, A.; Van Huffel, S.; Naulaers, G. Measurement of Neurovascular Coupling in Neonates. Front. Physiol. 2019, 10, 65. [Google Scholar] [CrossRef]
- Ittner, C.; Burek, M.; Stork, S.; Nagai, M.; Forster, C.Y. Increased Catecholamine Levels and Inflammatory Mediators Alter Barrier Properties of Brain Microvascular Endothelial Cells in Vitro. Front. Cardiovasc. Med. 2020, 7, 73. [Google Scholar] [CrossRef]
- Solar, P.; Zamani, A.; Lakatosova, K.; Joukal, M. The Blood-Brain Barrier and the Neurovascular Unit in Subarachnoid Hemorrhage: Molecular Events and Potential Treatments. Fluids Barriers CNS 2022, 19, 29. [Google Scholar] [CrossRef]
- Varatharaj, A.; Galea, I. The Blood-Brain Barrier in Systemic Inflammation. Brain Behav. Immun. 2017, 60, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Buckwalter, M.; Soreq, H.; Vezzani, A.; Kaufer, D. Blood-Brain Barrier Dysfunction-Induced Inflammatory Signaling in Brain Pathology and Epileptogenesis. Epilepsia 2012, 53 (Suppl. S6), 37–44. [Google Scholar] [CrossRef] [PubMed]
- Dehouck, M.P.; Meresse, S.; Delorme, P.; Fruchart, J.C.; Cecchelli, R. An Easier, Reproducible, and Mass-Production Method to Study the Blood-Brain Barrier in Vitro. J. Neurochem. 1990, 54, 1798–1801. [Google Scholar] [CrossRef] [PubMed]
- Haseloff, R.F.; Blasig, I.E.; Bauer, H.C.; Bauer, H. In Search of the Astrocytic Factor(s) Modulating Blood-Brain Barrier Functions in Brain Capillary Endothelial Cells In Vitro. Cell Mol. Neurobiol. 2005, 25, 25–39. [Google Scholar] [CrossRef]
- David, Y.; Cacheaux, L.P.; Ivens, S.; Lapilover, E.; Heinemann, U.; Kaufer, D.; Friedman, A. Astrocytic Dysfunction in Epileptogenesis: Consequence of Altered Potassium and Glutamate Homeostasis? J. Neurosci. 2009, 29, 10588–10599. [Google Scholar] [CrossRef]
- Viviani, B.; Gardoni, F.; Marinovich, M. Cytokines and Neuronal Ion Channels in Health and Disease. Int. Rev. Neurobiol. 2007, 82, 247–263. [Google Scholar] [CrossRef]
- Vezzani, A.; Friedman, A. Brain Inflammation as a Biomarker in Epilepsy. Biomark. Med. 2011, 5, 607–614. [Google Scholar] [CrossRef]
- Fieschi, C.; Lenzi, G.L.; Zanette, E.; Orzi, F.; Passero, S. Effects on EEG of the Osmotic Opening of the Blood-Brain Barrier in Rats. Life Sci. 1980, 27, 239–243. [Google Scholar] [CrossRef]
- van Vliet, E.A.; da Costa Araujo, S.; Redeker, S.; van Schaik, R.; Aronica, E.; Gorter, J.A. Blood-Brain Barrier Leakage May Lead to Progression of Temporal Lobe Epilepsy. Brain 2007, 130 Pt 2, 521–534. [Google Scholar] [CrossRef]
- Frigerio, F.; Frasca, A.; Weissberg, I.; Parrella, S.; Friedman, A.; Vezzani, A.; Noe, F.M. Long-Lasting pro-Ictogenic Effects Induced in Vivo by Rat Brain Exposure to Serum Albumin in the Absence of Concomitant Pathology. Epilepsia 2012, 53, 1887–1897. [Google Scholar] [CrossRef] [PubMed]
- Scholler, K.; Trinkl, A.; Klopotowski, M.; Thal, S.C.; Plesnila, N.; Trabold, R.; Hamann, G.F.; Schmid-Elsaesser, R.; Zausinger, S. Characterization of Microvascular Basal Lamina Damage and Blood-Brain Barrier Dysfunction Following Subarachnoid Hemorrhage in Rats. Brain Res. 2007, 1142, 237–246. [Google Scholar] [CrossRef]
- Ciurea, A.V.; Palade, C.; Voinescu, D.; Nica, D.A. Subarachnoid Hemorrhage and Cerebral Vasospasm—Literature Review. J. Med. Life 2013, 6, 120–125. [Google Scholar] [PubMed]
- Verhoog, Q.P.; Holtman, L.; Aronica, E.; van Vliet, E.A. Astrocytes as Guardians of Neuronal Excitability: Mechanisms Underlying Epileptogenesis. Front. Neurol. 2020, 11, 591690. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, T.H. Neurovascular Coupling and Epilepsy: Hemodynamic Markers for Localizing and Predicting Seizure Onset. Epilepsy Curr. 2007, 7, 91–94. [Google Scholar] [CrossRef]
- Wong, M. Astrocyte Networks and Epilepsy: When Stars Collide. Epilepsy Curr. 2009, 9, 113–115. [Google Scholar] [CrossRef]
- Gavillet, M.; Allaman, I.; Magistretti, P.J. Modulation of Astrocytic Metabolic Phenotype by Proinflammatory Cytokines. Glia 2008, 56, 975–989. [Google Scholar] [CrossRef]
- Escartin, C.; Rouach, N. Astroglial Networking Contributes to Neurometabolic Coupling. Front. Neuroenergetics 2013, 5, 4. [Google Scholar] [CrossRef]
- Sheldon, A.L.; Robinson, M.B. The Role of Glutamate Transporters in Neurodegenerative Diseases and Potential Opportunities for Intervention. Neurochem. Int. 2007, 51, 333–355. [Google Scholar] [CrossRef]
- Oliveira, J.F.; Araque, A. Astrocyte Regulation of Neural Circuit Activity and Network States. Glia 2022, 70, 1455–1466. [Google Scholar] [CrossRef]
- Li, R.; Zhao, M.; Yao, D.; Zhou, X.; Lenahan, C.; Wang, L.; Ou, Y.; He, Y. The Role of the Astrocyte in Subarachnoid Hemorrhage and Its Therapeutic Implications. Front. Immunol. 2022, 13, 1008795. [Google Scholar] [CrossRef]
- Bazargani, N.; Attwell, D. Astrocyte Calcium Signaling: The Third Wave. Nat. Neurosci. 2016, 19, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Belanger, M.; Allaman, I.; Magistretti, P.J. Brain Energy Metabolism: Focus on Astrocyte-Neuron Metabolic Cooperation. Cell Metab. 2011, 14, 724–738. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.M.; Ransom, B.R. Astrocyte Glycogen and Brain Energy Metabolism. Glia 2007, 55, 1263–1271. [Google Scholar] [CrossRef]
- Suh, S.W.; Bergher, J.P.; Anderson, C.M.; Treadway, J.L.; Fosgerau, K.; Swanson, R.A. Astrocyte Glycogen Sustains Neuronal Activity during Hypoglycemia: Studies with the Glycogen Phosphorylase Inhibitor CP-316,819 ([R-R*,S*]-5-Chloro-N-[2-Hydroxy-3-(Methoxymethylamino)-3-Oxo-1-(Phenylmethyl)Propyl]-1H-Indole-2-Carboxamide). J. Pharmacol. Exp. Ther. 2007, 321, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Boison, D.; Steinhauser, C. Epilepsy and Astrocyte Energy Metabolism. Glia 2018, 66, 1235–1243. [Google Scholar] [CrossRef]
- Amantea, D.; Bagetta, G. Excitatory and Inhibitory Amino Acid Neurotransmitters in Stroke: From Neurotoxicity to Ischemic Tolerance. Curr. Opin. Pharmacol. 2017, 35, 111–119. [Google Scholar] [CrossRef]
- Choi, D.W. Excitotoxicity: Still Hammering the Ischemic Brain in 2020. Front. Neurosci. 2020, 14, 579953. [Google Scholar] [CrossRef]
- Suzuki, H.; Kanamaru, H.; Kawakita, F.; Asada, R.; Fujimoto, M.; Shiba, M. Cerebrovascular Pathophysiology of Delayed Cerebral Ischemia after Aneurysmal Subarachnoid Hemorrhage. Histol. Histopathol. 2021, 36, 143–158. [Google Scholar] [CrossRef] [PubMed]
- Dreier, J.P.; Major, S.; Pannek, H.W.; Woitzik, J.; Scheel, M.; Wiesenthal, D.; Martus, P.; Winkler, M.K.; Hartings, J.A.; Fabricius, M.; et al. Spreading Convulsions, Spreading Depolarization and Epileptogenesis in Human Cerebral Cortex. Brain 2012, 135 Pt 1, 259–275. [Google Scholar] [CrossRef] [PubMed]
- Ostergaard, L.; Aamand, R.; Karabegovic, S.; Tietze, A.; Blicher, J.U.; Mikkelsen, I.K.; Iversen, N.K.; Secher, N.; Engedal, T.S.; Anzabi, M.; et al. The Role of the Microcirculation in Delayed Cerebral Ischemia and Chronic Degenerative Changes after Subarachnoid Hemorrhage. J. Cereb. Blood Flow. Metab. 2013, 33, 1825–1837. [Google Scholar] [CrossRef]
- Bosche, B.; Graf, R.; Ernestus, R.I.; Dohmen, C.; Reithmeier, T.; Brinker, G.; Strong, A.J.; Dreier, J.P.; Woitzik, J.; Members of the Cooperative Study of Brain Injury, D. Recurrent Spreading Depolarizations after Subarachnoid Hemorrhage Decreases Oxygen Availability in Human Cerebral Cortex. Ann. Neurol. 2010, 67, 607–617. [Google Scholar] [CrossRef] [PubMed]
- Kramer, D.R.; Fujii, T.; Ohiorhenuan, I.; Liu, C.Y. Cortical Spreading Depolarization: Pathophysiology, Implications, and Future Directions. J. Clin. Neurosci. 2016, 24, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Kawakita, F.; Asada, R. Neuroelectric Mechanisms of Delayed Cerebral Ischemia after Aneurysmal Subarachnoid Hemorrhage. Int. J. Mol. Sci. 2022, 23, 3102. [Google Scholar] [CrossRef]
- Kramer, D.R.; Fujii, T.; Ohiorhenuan, I.; Liu, C.Y. Interplay between Cortical Spreading Depolarization and Seizures. Ster. Funct. Neurosurg. 2017, 95, 1–5. [Google Scholar] [CrossRef]
- Haghir, H.; Kovac, S.; Speckmann, E.J.; Zilles, K.; Gorji, A. Patterns of Neurotransmitter Receptor Distributions Following Cortical Spreading Depression. Neuroscience 2009, 163, 1340–1352. [Google Scholar] [CrossRef]
- Ghadiri, M.K.; Kozian, M.; Ghaffarian, N.; Stummer, W.; Kazemi, H.; Speckmann, E.J.; Gorji, A. Sequential Changes in Neuronal Activity in Single Neocortical Neurons after Spreading Depression. Cephalalgia 2012, 32, 116–124. [Google Scholar] [CrossRef]
- van Lieshout, J.H.; Dibue-Adjei, M.; Cornelius, J.F.; Slotty, P.J.; Schneider, T.; Restin, T.; Boogaarts, H.D.; Steiger, H.J.; Petridis, A.K.; Kamp, M.A. An Introduction to the Pathophysiology of Aneurysmal Subarachnoid Hemorrhage. Neurosurg. Rev. 2018, 41, 917–930. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Suzuki, H.; Sozen, T.; Altay, O.; Zhang, J.H. Apoptotic Mechanisms for Neuronal Cells in Early Brain Injury after Subarachnoid Hemorrhage. Acta Neurochir. Suppl. 2011, 110 Pt 1, 43–48. [Google Scholar] [CrossRef]
- Cahill, J.; Calvert, J.W.; Solaroglu, I.; Zhang, J.H. Vasospasm and P53-Induced Apoptosis in an Experimental Model of Subarachnoid Hemorrhage. Stroke 2006, 37, 1868–1874. [Google Scholar] [CrossRef] [PubMed]
- Cahill, J.; Calvert, J.W.; Zhang, J.H. Mechanisms of Early Brain Injury after Subarachnoid Hemorrhage. J. Cereb. Blood Flow. Metab. 2006, 26, 1341–1353. [Google Scholar] [CrossRef] [PubMed]
- Siuta, M.; Zuckerman, S.L.; Mocco, J. Nitric Oxide in Cerebral Vasospasm: Theories, Measurement, and Treatment. Neurol. Res. Int. 2013, 2013, 972417. [Google Scholar] [CrossRef]
- Claassen, J.; Bernardini, G.L.; Kreiter, K.; Bates, J.; Du, Y.E.; Copeland, D.; Connolly, E.S.; Mayer, S.A. Effect of Cisternal and Ventricular Blood on Risk of Delayed Cerebral Ischemia after Subarachnoid Hemorrhage: The Fisher Scale Revisited. Stroke 2001, 32, 2012–2020. [Google Scholar] [CrossRef] [PubMed]
- Green, D.M.; Burns, J.D.; DeFusco, C.M. ICU Management of Aneurysmal Subarachnoid Hemorrhage. J. Intensive Care Med. 2013, 28, 341–354. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, C.; Hinson, H.E.; Baguley, I.J. Autonomic Dysfunction Syndromes after Acute Brain Injury. Handb. Clin. Neurol. 2015, 128, 539–551. [Google Scholar] [CrossRef]
- Khalid, F.; Yang, G.L.; McGuire, J.L.; Robson, M.J.; Foreman, B.; Ngwenya, L.B.; Lorenz, J.N. Autonomic Dysfunction Following Traumatic Brain Injury: Translational Insights. Neurosurg. Focus. 2019, 47, E8. [Google Scholar] [CrossRef]
- Borutta, M.C.; Gerner, S.T.; Moeser, P.; Hoelter, P.; Engelhorn, T.; Doerfler, A.; Huttner, H.B.; Schwab, S.; Kuramatsu, J.B.; Koehn, J. Correlation between Clinical Severity and Extent of Autonomic Cardiovascular Impairment in the Acute Phase of Subarachnoid Hemorrhage. J. Neurol. 2022, 269, 5541–5552. [Google Scholar] [CrossRef]
- Manea, M.M.; Comsa, M.; Minca, A.; Dragos, D.; Popa, C. Brain-Heart Axis--Review Article. J. Med. Life 2015, 8, 266–271. [Google Scholar]
- Ecker, A.; Riemenschneider, P.A. Arteriographic Demonstration of Spasm of the Intracranial Arteries, with Special Reference to Saccular Arterial Aneurysms. J. Neurosurg. 1951, 8, 660–667. [Google Scholar] [CrossRef]
- Budohoski, K.P.; Guilfoyle, M.; Helmy, A.; Huuskonen, T.; Czosnyka, M.; Kirollos, R.; Menon, D.K.; Pickard, J.D.; Kirkpatrick, P.J. The Pathophysiology and Treatment of Delayed Cerebral Ischaemia Following Subarachnoid Haemorrhage. J. Neurol. Neurosurg. Psychiatry 2014, 85, 1343–1353. [Google Scholar] [CrossRef] [PubMed]
- Allcock, J.M.; Drake, C.G. Postoperative Angiography in Cases of Ruptured Intracranial Aneurysm. J. Neurosurg. 1963, 20, 752–759. [Google Scholar] [CrossRef] [PubMed]
- Harders, A.; Gilsbach, J. Transcranial Doppler Sonography and Its Application in Extracranial-Intracranial Bypass Surgery. Neurol. Res. 1985, 7, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Lindvall, P.; Runnerstam, M.; Birgander, R.; Koskinen, L.O. The Fisher Grading Correlated to Outcome in Patients with Subarachnoid Haemorrhage. Br. J. Neurosurg. 2009, 23, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Deferoxamine In the Treatment of Aneurysmal Subarachnoid Hemorrhage (aSAH)—Full Text View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT04566991 (accessed on 27 June 2023).
- Selim, M.; Foster, L.D.; Moy, C.S.; Xi, G.; Hill, M.D.; Morgenstern, L.B.; Greenberg, S.M.; James, M.L.; Singh, V.; Clark, W.M.; et al. Deferoxamine Mesylate in Patients with Intracerebral Haemorrhage (i-DEF): A Multicentre, Randomised, Placebo-Controlled, Double-Blind Phase 2 Trial. Lancet Neurol. 2019, 18, 428–438. [Google Scholar] [CrossRef]
- Wei, C.; Wang, J.; Foster, L.D.; Yeatts, S.D.; Moy, C.; Mocco, J.; Selim, M.; i-DEF Investigators. Effect of Deferoxamine on Outcome According to Baseline Hematoma Volume: A Post Hoc Analysis of the i-DEF Trial. Stroke 2022, 53, 1149–1156. [Google Scholar] [CrossRef]
- Toda, N.; Shimizu, K.; Ohta, T. Mechanism of Cerebral Arterial Contraction Induced by Blood Constituents. J. Neurosurg. 1980, 53, 312–322. [Google Scholar] [CrossRef]
- Toda, N. Mechanisms of Contracting Action of Oxyhemoglobin in Isolated Monkey and Dog Cerebral Arteries. Am. J. Physiol. 1990, 258 Pt 2, H57–H63. [Google Scholar] [CrossRef]
- Macdonald, R.L.; Weir, B.K.; Grace, M.G.; Martin, T.P.; Doi, M.; Cook, D.A. Morphometric Analysis of Monkey Cerebral Arteries Exposed in Vivo to Whole Blood, Oxyhemoglobin, Methemoglobin, and Bilirubin. Blood Vessels 1991, 28, 498–510. [Google Scholar] [CrossRef]
- Macdonald, R.L.; Weir, B.K. A Review of Hemoglobin and the Pathogenesis of Cerebral Vasospasm. Stroke 1991, 22, 971–982. [Google Scholar] [CrossRef]
- Winterbourn, C.C. Toxicity of Iron and Hydrogen Peroxide: The Fenton Reaction. Toxicol. Lett. 1995, 82–83, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Sreekrishnan, A.; Leasure, A.C.; Shi, F.D.; Hwang, D.Y.; Schindler, J.L.; Petersen, N.H.; Gilmore, E.J.; Kamel, H.; Sansing, L.H.; Greer, D.M.; et al. Functional Improvement Among Intracerebral Hemorrhage (ICH) Survivors up to 12 Months Post-Injury. Neurocrit Care 2017, 27, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Hop, J.W.; Rinkel, G.J.; Algra, A.; van Gijn, J. Case-Fatality Rates and Functional Outcome after Subarachnoid Hemorrhage: A Systematic Review. Stroke 1997, 28, 660–664. [Google Scholar] [CrossRef] [PubMed]
- Broderick, J.P.; Brott, T.G.; Duldner, J.E.; Tomsick, T.; Huster, G. Volume of Intracerebral Hemorrhage. A Powerful and Easy-to-Use Predictor of 30-Day Mortality. Stroke 1993, 24, 987–993. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tsirka, S.E. Neuroprotection by Inhibition of Matrix Metalloproteinases in a Mouse Model of Intracerebral Haemorrhage. Brain 2005, 128 Pt 7, 1622–1633. [Google Scholar] [CrossRef]
- Hayman, L.A.; Pagani, J.J.; Kirkpatrick, J.B.; Hinck, V.C. Pathophysiology of Acute Intracerebral and Subarachnoid Hemorrhage: Applications to MR Imaging. AJR Am. J. Roentgenol. 1989, 153, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Xi, G.; Keep, R.F.; Hoff, J.T. Mechanisms of Brain Injury after Intracerebral Haemorrhage. Lancet Neurol. 2006, 5, 53–63. [Google Scholar] [CrossRef]
- Pluta, R.M.; Hansen-Schwartz, J.; Dreier, J.; Vajkoczy, P.; Macdonald, R.L.; Nishizawa, S.; Kasuya, H.; Wellman, G.; Keller, E.; Zauner, A.; et al. Cerebral Vasospasm Following Subarachnoid Hemorrhage: Time for a New World of Thought. Neurol. Res. 2009, 31, 151–158. [Google Scholar] [CrossRef]
- Zazulia, A.R.; Diringer, M.N.; Derdeyn, C.P.; Powers, W.J. Progression of Mass Effect after Intracerebral Hemorrhage. Stroke 1999, 30, 1167–1173. [Google Scholar] [CrossRef]
- Dang, G.; Yang, Y.; Wu, G.; Hua, Y.; Keep, R.F.; Xi, G. Early Erythrolysis in the Hematoma After Experimental Intracerebral Hemorrhage. Transl. Stroke Res. 2017, 8, 174–182. [Google Scholar] [CrossRef]
- Koeppen, A.H.; Dickson, A.C.; McEvoy, J.A. The Cellular Reactions to Experimental Intracerebral Hemorrhage. J. Neurol. Sci. 1995, 134, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Samagh, N.; Bhagat, H.; Jangra, K. Monitoring Cerebral Vasospasm: How Much Can We Rely on Transcranial Doppler. J. Anaesthesiol. Clin. Pharmacol. 2019, 35, 12–18. [Google Scholar] [CrossRef]
- Newell, D.W.; Winn, H.R. Transcranial Doppler in Cerebral Vasospasm. Neurosurg. Clin. N. Am. 1990, 1, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Mascia, L.; Del Sorbo, L. Diagnosis and Management of Vasospasm. F1000 Med. Rep. 2009, 1, 33. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.; Ai, J.; Sabri, M.; Tariq, A.; Shang, X.; Chen, G.; Macdonald, R.L. Neurological and Neurobehavioral Assessment of Experimental Subarachnoid Hemorrhage. BMC Neurosci. 2009, 10, 103. [Google Scholar] [CrossRef]
- Zakaria, Z.; Abdullah, M.M.; Halim, S.A.; Ghani, A.R.I.; Idris, Z.; Abdullah, J.M. The Neurological Exam of a Comatose Patient: An Essential Practical Guide. Malays. J. Med. Sci. 2020, 27, 108–123. [Google Scholar] [CrossRef]
- Woitzik, J.; Dreier, J.P.; Hecht, N.; Fiss, I.; Sandow, N.; Major, S.; Winkler, M.; Dahlem, Y.A.; Manville, J.; Diepers, M.; et al. Delayed Cerebral Ischemia and Spreading Depolarization in Absence of Angiographic Vasospasm after Subarachnoid Hemorrhage. J. Cereb. Blood Flow. Metab. 2012, 32, 203–212. [Google Scholar] [CrossRef]
- Waziri, A.; Claassen, J.; Stuart, R.M.; Arif, H.; Schmidt, J.M.; Mayer, S.A.; Badjatia, N.; Kull, L.L.; Connolly, E.S.; Emerson, R.G.; et al. Intracortical Electroencephalography in Acute Brain Injury. Ann. Neurol. 2009, 66, 366–377. [Google Scholar] [CrossRef]
- Claassen, J.; Hirsch, L.J.; Frontera, J.A.; Fernandez, A.; Schmidt, M.; Kapinos, G.; Wittman, J.; Connolly, E.S.; Emerson, R.G.; Mayer, S.A. Prognostic Significance of Continuous EEG Monitoring in Patients with Poor-Grade Subarachnoid Hemorrhage. Neurocrit Care 2006, 4, 103–112. [Google Scholar] [CrossRef]
- Claassen, J.; Perotte, A.; Albers, D.; Kleinberg, S.; Schmidt, J.M.; Tu, B.; Badjatia, N.; Lantigua, H.; Hirsch, L.J.; Mayer, S.A.; et al. Nonconvulsive Seizures after Subarachnoid Hemorrhage: Multimodal Detection and Outcomes. Ann. Neurol. 2013, 74, 53–64. [Google Scholar] [CrossRef]
- Soustiel, J.F.; Bruk, B.; Shik, B.; Hadani, M.; Feinsod, M. Transcranial Doppler in Vertebrobasilar Vasospasm after Subarachnoid Hemorrhage. Neurosurgery 1998, 43, 282–291, discussion 291–293. [Google Scholar] [CrossRef]
- Bathala, L.; Mehndiratta, M.M.; Sharma, V.K. Transcranial Doppler: Technique and Common Findings (Part 1). Ann. Indian. Acad. Neurol. 2013, 16, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Connolly, E.S., Jr.; Rabinstein, A.A.; Carhuapoma, J.R.; Derdeyn, C.P.; Dion, J.; Higashida, R.T.; Hoh, B.L.; Kirkness, C.J.; Naidech, A.M.; Ogilvy, C.S.; et al. Guidelines for the Management of Aneurysmal Subarachnoid Hemorrhage: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2012, 43, 1711–1737. [Google Scholar] [CrossRef] [PubMed]
- van Gijn, J.; Kerr, R.S.; Rinkel, G.J. Subarachnoid Haemorrhage. Lancet 2007, 369, 306–318. [Google Scholar] [CrossRef] [PubMed]
- Voldby, B.; Enevoldsen, E.M. Intracranial Pressure Changes Following Aneurysm Rupture. Part 1: Clinical and Angiographic Correlations. J. Neurosurg. 1982, 56, 186–196. [Google Scholar] [CrossRef]
- Nornes, H. Cerebral Arterial Flow Dynamics during Aneurysm Haemorrhage. Acta Neurochir. Wien. 1978, 41, 39–48. [Google Scholar] [CrossRef]
- Fontanarosa, P.B. Recognition of Subarachnoid Hemorrhage. Ann. Emerg. Med. 1989, 18, 1199–1205. [Google Scholar] [CrossRef]
- Bassi, P.; Bandera, R.; Loiero, M.; Tognoni, G.; Mangoni, A. Warning Signs in Subarachnoid Hemorrhage: A Cooperative Study. Acta Neurol. Scand. 1991, 84, 277–281. [Google Scholar] [CrossRef]
- Brisman, J.L.; Song, J.K.; Newell, D.W. Cerebral Aneurysms. N. Engl. J. Med. 2006, 355, 928–939. [Google Scholar] [CrossRef]
- Matsuda, M.; Watanabe, K.; Saito, A.; Matsumura, K.; Ichikawa, M. Circumstances, Activities, and Events Precipitating Aneurysmal Subarachnoid Hemorrhage. J. Stroke Cerebrovasc. Dis. 2007, 16, 25–29. [Google Scholar] [CrossRef]
- Beck, J.; Raabe, A.; Szelenyi, A.; Berkefeld, J.; Gerlach, R.; Setzer, M.; Seifert, V. Sentinel Headache and the Risk of Rebleeding after Aneurysmal Subarachnoid Hemorrhage. Stroke 2006, 37, 2733–2737. [Google Scholar] [CrossRef] [PubMed]
- Juvela, S. Minor Leak before Rupture of an Intracranial Aneurysm and Subarachnoid Hemorrhage of Unknown Etiology. Neurosurgery 1992, 30, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Leblanc, R. The Minor Leak Preceding Subarachnoid Hemorrhage. J. Neurosurg. 1987, 66, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Edlow, J.A. Diagnosing Headache in the Emergency Department: What Is More Important? Being Right, or Not Being Wrong? Eur. J. Neurol. 2008, 15, 1257–1258. [Google Scholar] [CrossRef]
- Kowalski, R.G.; Claassen, J.; Kreiter, K.T.; Bates, J.E.; Ostapkovich, N.D.; Connolly, E.S.; Mayer, S.A. Initial Misdiagnosis and Outcome after Subarachnoid Hemorrhage. JAMA 2004, 291, 866–869. [Google Scholar] [CrossRef]
- Labovitz, D.L.; Halim, A.X.; Brent, B.; Boden-Albala, B.; Hauser, W.A.; Sacco, R.L. Subarachnoid Hemorrhage Incidence among Whites, Blacks and Caribbean Hispanics: The Northern Manhattan Study. Neuroepidemiology 2006, 26, 147–150. [Google Scholar] [CrossRef]
- Rajshekhar, V.; Harbaugh, R.E. Results of Routine Ventriculostomy with External Ventricular Drainage for Acute Hydrocephalus Following Subarachnoid Haemorrhage. Acta Neurochir. Wien. 1992, 115, 8–14. [Google Scholar] [CrossRef]
- Ransom, E.R.; Mocco, J.; Komotar, R.J.; Sahni, D.; Chang, J.; Hahn, D.K.; Kim, G.H.; Schmidt, J.M.; Sciacca, R.R.; Mayer, S.A.; et al. External Ventricular Drainage Response in Poor Grade Aneurysmal Subarachnoid Hemorrhage: Effect on Preoperative Grading and Prognosis. Neurocrit Care 2007, 6, 174–180. [Google Scholar] [CrossRef]
- Milhorat, T.H. Acute Hydrocephalus after Aneurysmal Subarachnoid Hemorrhage. Neurosurgery 1987, 20, 15–20. [Google Scholar] [CrossRef]
- Hasan, D.; Vermeulen, M.; Wijdicks, E.F.; Hijdra, A.; van Gijn, J. Management Problems in Acute Hydrocephalus after Subarachnoid Hemorrhage. Stroke 1989, 20, 747–753. [Google Scholar] [CrossRef]
- Svedung Wettervik, T.; Engquist, H.; Howells, T.; Hanell, A.; Rostami, E.; Ronne-Engstrom, E.; Lewen, A.; Enblad, P. Higher Intracranial Pressure Variability Is Associated with Lower Cerebrovascular Resistance in Aneurysmal Subarachnoid Hemorrhage. J. Clin. Monit. Comput. 2023, 37, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.B.; Tu, X.K.; Chen, Q.; Shi, S.S. Propofol Reduces Inflammatory Brain Injury after Subarachnoid Hemorrhage: Involvement of PI3K/Akt Pathway. J. Stroke Cerebrovasc. Dis. 2019, 28, 104375. [Google Scholar] [CrossRef] [PubMed]
- Robba, C.; Taccone, F.S.; Citerio, G. Monitoring Cerebral Oxygenation in Acute Brain-Injured Patients. Intensive Care Med. 2022, 48, 1463–1466. [Google Scholar] [CrossRef] [PubMed]
- Muehlschlegel, S. Subarachnoid Hemorrhage. Contin. Minneap. Minn. 2018, 24, 1623–1657. [Google Scholar] [CrossRef]
- Minhas, J.S.; Moullaali, T.J.; Rinkel, G.J.E.; Anderson, C.S. Blood Pressure Management After Intracerebral and Subarachnoid Hemorrhage: The Knowns and Known Unknowns. Stroke 2022, 53, 1065–1073. [Google Scholar] [CrossRef]
- Hillman, J.; Fridriksson, S.; Nilsson, O.; Yu, Z.; Saveland, H.; Jakobsson, K.E. Immediate Administration of Tranexamic Acid and Reduced Incidence of Early Rebleeding after Aneurysmal Subarachnoid Hemorrhage: A Prospective Randomized Study. J. Neurosurg. 2002, 97, 771–778. [Google Scholar] [CrossRef]
- Tang, C.; Zhang, T.S.; Zhou, L.F. Risk Factors for Rebleeding of Aneurysmal Subarachnoid Hemorrhage: A Meta-Analysis. PLoS ONE 2014, 9, e99536. [Google Scholar] [CrossRef]
- Naidech, A.M.; Janjua, N.; Kreiter, K.T.; Ostapkovich, N.D.; Fitzsimmons, B.F.; Parra, A.; Commichau, C.; Connolly, E.S.; Mayer, S.A. Predictors and Impact of Aneurysm Rebleeding after Subarachnoid Hemorrhage. Arch. Neurol. 2005, 62, 410–416. [Google Scholar] [CrossRef]
- Ohkuma, H.; Tsurutani, H.; Suzuki, S. Incidence and Significance of Early Aneurysmal Rebleeding before Neurosurgical or Neurological Management. Stroke 2001, 32, 1176–1180. [Google Scholar] [CrossRef]
- Huttunen, T.; von und zu Fraunberg, M.; Frosen, J.; Lehecka, M.; Tromp, G.; Helin, K.; Koivisto, T.; Rinne, J.; Ronkainen, A.; Hernesniemi, J.; et al. Saccular Intracranial Aneurysm Disease: Distribution of Site, Size, and Age Suggests Different Etiologies for Aneurysm Formation and Rupture in 316 Familial and 1454 Sporadic Eastern Finnish Patients. Neurosurgery 2010, 66, 631–638, discussion 638. [Google Scholar] [CrossRef]
- Bakker, N.A.; Metzemaekers, J.D.; Groen, R.J.; Mooij, J.J.; Van Dijk, J.M. International Subarachnoid Aneurysm Trial 2009: Endovascular Coiling of Ruptured Intracranial Aneurysms Has No Significant Advantage over Neurosurgical Clipping. Neurosurgery 2010, 66, 961–962. [Google Scholar] [CrossRef] [PubMed]
- Risselada, R.; Lingsma, H.F.; Bauer-Mehren, A.; Friedrich, C.M.; Molyneux, A.J.; Kerr, R.S.; Yarnold, J.; Sneade, M.; Steyerberg, E.W.; Sturkenboom, M.C. Prediction of 60 Day Case-Fatality after Aneurysmal Subarachnoid Haemorrhage: Results from the International Subarachnoid Aneurysm Trial (ISAT). Eur. J. Epidemiol. 2010, 25, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Molyneux, A.J.; Kerr, R.S.; Yu, L.M.; Clarke, M.; Sneade, M.; Yarnold, J.A.; Sandercock, P.; International Subarachnoid Aneurysm Trial (ISAT) Collaborative Group. International Subarachnoid Aneurysm Trial (ISAT) of Neurosurgical Clipping versus Endovascular Coiling in 2143 Patients with Ruptured Intracranial Aneurysms: A Randomised Comparison of Effects on Survival, Dependency, Seizures, Rebleeding, Subgroups, and Aneurysm Occlusion. Lancet 2005, 366, 809–817. [Google Scholar] [CrossRef] [PubMed]
- Wiebers, D.O.; Whisnant, J.P.; Huston, J., 3rd; Meissner, I.; Brown, R.D., Jr.; Piepgras, D.G.; Forbes, G.S.; Thielen, K.; Nichols, D.; O’Fallon, W.M.; et al. Unruptured Intracranial Aneurysms: Natural History, Clinical Outcome, and Risks of Surgical and Endovascular Treatment. Lancet 2003, 362, 103–110. [Google Scholar] [CrossRef]
- Vora, Y.Y.; Suarez-Almazor, M.; Steinke, D.E.; Martin, M.L.; Findlay, J.M. Role of Transcranial Doppler Monitoring in the Diagnosis of Cerebral Vasospasm after Subarachnoid Hemorrhage. Neurosurgery 1999, 44, 1237–1247, discussion 1247–1248. [Google Scholar] [PubMed]
- Mastantuono, J.M.; Combescure, C.; Elia, N.; Tramer, M.R.; Lysakowski, C. Transcranial Doppler in the Diagnosis of Cerebral Vasospasm: An Updated Meta-Analysis. Crit. Care Med. 2018, 46, 1665–1672. [Google Scholar] [CrossRef]
- Vespa, P.M.; Nuwer, M.R.; Juhasz, C.; Alexander, M.; Nenov, V.; Martin, N.; Becker, D.P. Early Detection of Vasospasm after Acute Subarachnoid Hemorrhage Using Continuous EEG ICU Monitoring. Electroencephalogr. Clin. Neurophysiol. 1997, 103, 607–615. [Google Scholar] [CrossRef]
- Claassen, J.; Hirsch, L.J.; Kreiter, K.T.; Du, E.Y.; Connolly, E.S.; Emerson, R.G.; Mayer, S.A. Quantitative Continuous EEG for Detecting Delayed Cerebral Ischemia in Patients with Poor-Grade Subarachnoid Hemorrhage. Clin. Neurophysiol. 2004, 115, 2699–2710. [Google Scholar] [CrossRef]
- McKinney, A.M.; Palmer, C.S.; Truwit, C.L.; Karagulle, A.; Teksam, M. Detection of Aneurysms by 64-Section Multidetector CT Angiography in Patients Acutely Suspected of Having an Intracranial Aneurysm and Comparison with Digital Subtraction and 3D Rotational Angiography. AJNR Am. J. Neuroradiol. 2008, 29, 594–602. [Google Scholar] [CrossRef]
- Hafeez, S.; Grandhi, R. Systematic Review of Intrathecal Nicardipine for the Treatment of Cerebral Vasospasm in Aneurysmal Subarachnoid Hemorrhage. Neurocrit Care 2019, 31, 399–405. [Google Scholar] [CrossRef]
- Lee, K.H.; Lukovits, T.; Friedman, J.A. “Triple-H” Therapy for Cerebral Vasospasm Following Subarachnoid Hemorrhage. Neurocrit Care 2006, 4, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Lennihan, L.; Mayer, S.A.; Fink, M.E.; Beckford, A.; Paik, M.C.; Zhang, H.; Wu, Y.C.; Klebanoff, L.M.; Raps, E.C.; Solomon, R.A. Effect of Hypervolemic Therapy on Cerebral Blood Flow after Subarachnoid Hemorrhage: A Randomized Controlled Trial. Stroke 2000, 31, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Jost, S.C.; Diringer, M.N.; Zazulia, A.R.; Videen, T.O.; Aiyagari, V.; Grubb, R.L.; Powers, W.J. Effect of Normal Saline Bolus on Cerebral Blood Flow in Regions with Low Baseline Flow in Patients with Vasospasm Following Subarachnoid Hemorrhage. J. Neurosurg. 2005, 103, 25–30. [Google Scholar] [CrossRef]
- Rosenwasser, R.H.; Armonda, R.A.; Thomas, J.E.; Benitez, R.P.; Gannon, P.M.; Harrop, J. Therapeutic Modalities for the Management of Cerebral Vasospasm: Timing of Endovascular Options. Neurosurgery 1999, 44, 975–979, discussion 979–980. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanicola, H.W.; Stewart, C.E.; Luther, P.; Yabut, K.; Guthikonda, B.; Jordan, J.D.; Alexander, J.S. Pathophysiology, Management, and Therapeutics in Subarachnoid Hemorrhage and Delayed Cerebral Ischemia: An Overview. Pathophysiology 2023, 30, 420-442. https://doi.org/10.3390/pathophysiology30030032
Sanicola HW, Stewart CE, Luther P, Yabut K, Guthikonda B, Jordan JD, Alexander JS. Pathophysiology, Management, and Therapeutics in Subarachnoid Hemorrhage and Delayed Cerebral Ischemia: An Overview. Pathophysiology. 2023; 30(3):420-442. https://doi.org/10.3390/pathophysiology30030032
Chicago/Turabian StyleSanicola, Henry W., Caleb E. Stewart, Patrick Luther, Kevin Yabut, Bharat Guthikonda, J. Dedrick Jordan, and J. Steven Alexander. 2023. "Pathophysiology, Management, and Therapeutics in Subarachnoid Hemorrhage and Delayed Cerebral Ischemia: An Overview" Pathophysiology 30, no. 3: 420-442. https://doi.org/10.3390/pathophysiology30030032
APA StyleSanicola, H. W., Stewart, C. E., Luther, P., Yabut, K., Guthikonda, B., Jordan, J. D., & Alexander, J. S. (2023). Pathophysiology, Management, and Therapeutics in Subarachnoid Hemorrhage and Delayed Cerebral Ischemia: An Overview. Pathophysiology, 30(3), 420-442. https://doi.org/10.3390/pathophysiology30030032